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a b s t r a c t

Herein, we describe a method that can be used to estimate the surface equi-biaxial residual stress of a
material using instrumented sharp indentation. In this method, the fractional change in the loading
curvature, rather than the contact area, was chosen as the analytical parameter; this fractional change
can be more precisely obtained. A linear relationship between the fractional change in the loading
curvature and the normalized equi-biaxial residual stress was found via dimensional and finite element
analysis, and this linear relationship greatly simplifies the formulas associated with this method.
Moreover, the proposed method was successfully verified using experimental data from our laboratory
and from the literature.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is important to be able to estimate the surface residual stresses
that exist in metal parts and structures because they can enhance or
undermine the mechanical performance (e.g., fatigue, fracture, corro-
sion, and wear) of these materials. Hence, various methodologies have
been developed to estimate surface residual stress. These methods can
be divided into two categories: mechanical methods (e.g., hole-drilling
and saw-cutting) and physical methods (e.g., X-ray and neutron
diffraction) [1]. Each of these methods has its intrinsic shortcomings.
Instrumented indentation testing (IIT) is a newly developed technique
that has many advantages over these traditional methods for estimat-
ing the surface residual stress of a material. It is non-destructive
compared to other conventional mechanical methods, and it is super-
ior to physical methods because the testing can be localized to a
particular area. In IIT, indentation depths between 10�1 and 100 μm
are usually used, and spatial resolutions between 100 and 101 μm can
be obtained. Physical methods use penetration depths between 100

and 105 μm and have spatial resolutions between 102 and 103 μm.
The effects of residual stress on the results obtained using IIT

were first reported by Tsui et al. [2] and Boshakov et al. [3] in 1996.
Using experimental observations and finite element analysis, they
discovered three instructive phenomena: (1) Tensile residual

stress tends to lower the loading curve, while compressive
residual stress tends to raise it. (2) Residual stress has a minimal
influence on indentation hardness (HIT). (3) The contact areas of
stressed and unstressed materials differ even when they are
indented to the same indentation depth. Interestingly, Sakharova
et al. [4] reported that there is a linear relationship between the
fractional change in the indentation load ((F�F0)/F0) and the
normalized residual stress (σR/σy), and that this relationship can
be utilized to evaluate the residual stress of a material.

Based on these thought-provoking discoveries, researchers pro-
posed several analytical methods that can be utilized to estimate the
surface residual stress of a material using IIT. In 1998, Suresh and
Giannakopouls [5] proposed a method to determine the equi-biaxial
residual stress of a material using the difference in contact area
between stressed and unstressed materials indented to the same
depth. In 2003, Lee and Kwon [6] created a new method to estimate
residual stress using the load difference between stressed and
unstressed specimens at the same indentation depth. However, both
of these methods require the contact area to be measured. Subse-
quently, Zhao et al. [7] suggested a method to determine the residual
stress, elastic modulus and yield stress of a material from the load–
depth curve gathered from one conical indentation test. In this
method, the contact area does not need to be measured; however,
56 empirical coefficients are involved, and it is only suitable for
perfectly elastic plastic materials.

Herein, we propose a novel method based on IIT that can be used
to estimate the surface equi-biaxial residual stresses in metal parts
and structures. The fractional change in the loading curvature
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((c�c0)/c0) was chosen as the analytical parameter because it
typically reflects the effects of residual stresses on IIT outcomes
and because it can be precisely obtained from the loading curves.
First, a dimensionless relationship between (c�c0)/c0 and σR/σy was
derived using dimensional analysis. Then, numerical simulations
were performed to fit this equation by varying the values associated
with residual stress and the properties of the materials. Finally,
accuracy and sensitivity analyses were performed via finite element
and error propagation analyses, respectively. The validity and relia-
bility of the method were verified using experimental data both from
our laboratory and from the literature [8,9].

2. Forward analysis

2.1. Model hypothesis

The mechanical model is illustrated in Fig. 1. The surface of the
sample is flat over a length many times larger than the circum-
scribed diameter of the indentation. The sample was penetrated to
a depth less than 1/10 of its thickness by a conical indenter with a
half apex angle of 70.31 (equal to the equivalent semi-conical angle
of Berkovich or Vickers indenters). The equi-biaxial residual stress
was assumed to be uniform over the indentation depth (see Fig. 1).
The material of the specimen was modeled using the elastic-
power law strain hardening plastic constitutive relationship, a
widely accepted approximation for most metals. The uni-axial true

stress–true strain relationship can be expressed as

σ ¼
Eε; for εrσy

E ;

Eεy1�nεn; for εZσy

E ;

(
ð1Þ

where E is the elastic modulus, σy is the yield stress, n is the strain-
hardening exponent, and εy is the ratio of the yield stress to the
elastic modulus.

2.2. Dimensional analysis

For a sharp indenter penetrating a stressed specimen, the load
(F) must be a function of the following seven independent
parameters: the elastic modulus (E), Poisson's ratio (ν), the yield
stress (σy), the strain hardening exponent (n) of the specimen, the
equivalent half apex angle (α), the indentation depth (h), and the
equi-biaxial residual stress (σR). In other words,

F ¼ f ðE;ν;σy;n;α;h;σRÞ: ð2Þ
For a sharp indentation into an unstressed specimen, the load

can be expressed as

F0 ¼ f 0ðE;ν;σy;n;α;hÞ; ð3Þ
where F0 is the indentation load without residual stress. By
applying the Π theorem in the dimensional analysis, Eqs. (2) and
(3) can be rewritten as

F ¼ σyh
2f

E
σy

;ν;n;α;
σR

σy

� �
¼ ch2; ð4Þ

F0 ¼ σyh
2f 0

E
σy

;ν;n;α
� �

¼ c0h
2; ð5Þ

where c and c0 are the loading curvatures of the indentations with
and without residual stress, respectively. Based on Eqs. (4) and (5),
the ratio (c�c0)/c0 is

c�c0
c0

¼ f ððE=σyÞ;ν;n;α; ðσR=σyÞÞ� f 0ððE=σyÞ;ν;n;αÞ
f 0ððE=σyÞ;ν;n;αÞ

¼ g
E
σy

;ν;n;α;
σR

σy

� �
: ð6Þ

Because the functional dependence on ν is weak [10] and the
equivalent half apex angle is constant (equal to 70.31), Eq. (6) can
be simplified to

c�c0
c0

¼∏ εy;n;
σR

σy

� �
: ð7Þ

Up to this point, the dimensionless function Π(εy, n; σR/σy) has
been derived to relate the indentation response to the equi-biaxial
residual stress. However, this function cannot be known from the

Rσ

Fig. 1. A schematic showing the conical indentation of a specimen with equi-
biaxial residual stress.

Rσ

70.3° 

Fig. 2. The finite element mesh used in the simulation of IIT on specimens with equi-biaxial residual stress.
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dimensional analysis alone, and it must be obtained either
experimentally or by performing simulations.

2.3. Finite element analysis

The commercially available finite element software ABAQUS
[11] was used to simulate the problem of a conical rigid indenter
penetrating into a semi-infinite homogeneous elastic-power law
strain hardening material with equi-biaxial residual stress. Due to
the symmetry of this problem, an axisymmetric model was
adopted (see Fig. 2). The indenter was modeled as an analytical
rigid cone with a half apex angle (α) of 70.31, and the specimen
was treated as a body of revolution that was 400 μm high with a
radius of 400 μm with 3000 CAX4R elements. Roller boundary
conditions were applied along the axis of symmetry and on the
bottom surface of the specimen. The equi-biaxial residual stress
(σR) was simulated by applying pressure on the outer cylindrical
surface of the specimen. Coulomb's friction law was applied
between the contact surfaces (with a friction coefficient of 0.15).
In each simulation, the maximum indentation depth was 10 μm,
and the number of the contact elements in the contact zone was
greater than 40. To obtain the dimensionless function, we varied
εy, n, and σR/σy from 0.001 to 0.010, 0.05 to 0.30, and �0.9 to 0.9
(‘� ’ indicates compression, and the specific values are shown in
Table 1), respectively. These values cover most combinations of
mechanical properties and residual stresses for engineered metal
materials. For convenience, we fixed the elastic modulus (E) at
100 GPa because it does not influence the dimensionless function
and Poisson's ratio (ν) at 0.3 because it has only a minor effect on
indentation [10].

Typical load–depth curves of indentations with different εy and
σR/σy values are shown in Fig. 3. All of the loading curves generally
agree with the forms of Eqs. (4) and (5) as predicted by dimen-
sional analysis. The loading curves that display compressive
residual stress are above those that do not display residual stress;
the loading curves that display tensile residual stress are below
those that do not display residual stress. When the absolute value
of residual stress decreases, the loading curve tends to move
towards that that does not display residual stress. In addition,
when εy increases, the effect of the residual stress on the
indentation loading curves becomes more significant.

The ratio (c�c0)/c0 was obtained by determining the indenta-
tion loading curvatures using Eqs. (4) and (5), and its relationship
with the normalized residual stress (σR/σy) is illustrated in Fig. 4.
The variation of (c�c0)/c0 with respect to σR/σy for materials with
different εy and a constant strain-hardening exponent n¼0.30 is
shown in Fig. 4a. Obviously, (c�c0)/c0 has a linear relationship
with σR/σy. The slope of a plot of (c�c0)/c0 vs. σR/σy not only differs
for compressive and tensile residual stress, but it also decreases
with increasing εy. Fig. 4b shows the variation in (c�c0)/c0 with

respect to σR/σy for materials with different strain-hardening
exponents and a constant εy of 0.010. These data indicate that
(c�c0)/c0 varies linearly with σR/σy. Likewise, the slope of the plot
of (c�c0)/c0 vs. σR/σy is asymmetric. In addition, the slope
decreases with decreasing n. Because (c�c0)/c0 and σR/σy have a
linear relationship as shown in Fig. 4, we can further simplify
Eq. (7) to

c�c0
c0

¼ f ðεy;nÞ
σR

σy
; ð8Þ

Table 1
The properties of the materials and the residual stresses used in the simulations. A total of 660 combinations exist.

Elastic modulus Poisson's ratio Yield strain Hardening exponent Normalized residual stress
E (GPa) ν εy ¼ σy=E n σR=σy

100 0.3 0.001 0.05 �0.9
0.002 0.10 �0.7
0.003 0.15 �0.5
0.004 0.20 �0.3
0.005 0.25 �0.1
0.006 0.30 0
0.007 0.1
0.008 0.3
0.009 0.5
0.010 0.7

0.9

Fig. 3. The influence of residual stress on the indentation loading curves in materials
with different εy values and a constant n¼0.15: (a) εy¼0.001; (b) εy¼0.010.
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where f ðεy;nÞ is different for compressive residual stress and
tensile residual stress and dependent upon the properties of the
material.

The slope function f ðεy;nÞ was evaluated by fitting the linear
coefficients of various materials (Fig. 5). For compressive residual
stress, the function of f ðεy;nÞ is

f ðεy;nÞ ¼ ð�1:0515n2þ0:7815n�0:25528ÞlgðεyÞ

�2:36329n2þ1:9639n�0:79588; ð9Þ

whereas for tensile residual stress, the function of f ðεy;nÞ becomes

f ðεy;nÞ ¼ ð�0:577n2þ0:47181n�0:23222ÞlgðεyÞ

�1:58988n2þ1:52078n�0:83757: ð10Þ

Thus far, the analytical equation relating the indentation
parameter (c�c0)/c0 to the normalized equi-biaxial residual stress

(σR/σy) has been established as

σR

σy
¼

½ð�1:0515n2þ0:7815n�0:25528ÞlgðεyÞ
�2:36329n2þ1:9639n�0:79588��1c� c0

c0

; forðc�c0Þ40;

½ð�0:577n2þ0:47181n�0:23222ÞlgðεyÞ
�1:58988n2þ1:52078n�0:83757��1c� c0

c0

; forðc�c0Þo0:

8>>>>>><
>>>>>>:

ð11Þ

3. Reverse analysis

3.1. The principle of reverse analysis

By directly applying Eq. (11) (presented in Section 2.3), we
developed a new method for determining the equi-biaxial residual
stress of a material (Fig. 6). After indentation tests were performed
on specimens with and without residual stress, c and c0 were
calculated using Eqs. (4) and (5). If the properties of a material

Fig. 4. The linear relationship between fractional change in loading curvature ((c�c0)/c0) and relative stress (σR/σy) in materials with different εy and n: (a) n¼0.30;
(b) εy¼0.010. The slope is different for compressive residual stress and tensile residual stress.

Fig. 5. The relationship between the slope function f ðεy ;nÞ and the material properties for two cases: (a) compressive residual stress; (b) tensile residual stress. The results
were calculated using Eqs. (9) and (10), respectively.
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have been determined by a tensile or indentation test [10,12], its
equi-biaxial residual stress can be easily obtained using Eq. (11).

3.2. Accuracy analysis using finite element analysis

Numerical simulations of indentations were used to assess the
accuracy of the reverse analysis for materials with different
combinations of properties and residual stresses. The fractional
change in the loading curvature ((c�c0)/c0) was calculated from
the loading curves, and the residual stress (σRre) was obtained using
Eq. (11). Considering the input residual stress (σRin) as the nominal
true value, we calculated errors for all cases (εy, n, and σR/σy were
varied from 0.001 to 0.010, 0.05 to 0.30, and �0.9 to 0.9,
respectively) as shown in Fig. 7. We found that the errors
associated with the tensile residual stresses were lower than those
associated with the compressive residual stresses and that smaller
errors were associated with higher values of εy and n. In most
cases, the maximum error was below 10% if σR/σy40 and below
20% if σR/σyo0. Note that significant errors can occur if εy nears
0.001 and n nears 0.05.

3.3. Sensitivity analysis by error propagation

In experiments, errors are introduced when the loading curvatures
are measured from indentations and when the properties of a material
are obtained via tensile or indentation tests. These errors may lead to
high variability in the estimation of residual stress. Therefore, it is
necessary to investigate how sensitive the results obtained from the
proposed method are to changes in (c�c0)/c0, εy, and n.

To characterize the sensitivity of the proposed method, we
perturbed the values of (c�c0)/c0, εy, and n by 5%, 5%, and 0.02,
respectively. After introducing these perturbations, the method
depicted in Fig. 6 was adopted to evaluate the equi-biaxial resi-
dual stress (σRer). The relative errors of the residual stress
(i.e., (σRer�σRre)/σRre) were calculated and presented as three-
dimensional maps (see Fig. 8). Fig. 8a and b show that for a 5%

perturbation in εy, the maximum deviation of residual stress is
approximately 17% with errors below 9% in most cases. Fig. 8c and
d shows that for a 0.02 perturbation in n, the maximum deviation
of residual stress is approximately 15% with errors that are usually
below 4%. Because (c�c0)/c0 has a linear relationship with σR/σy, a
5% perturbation in (c�c0)/c0 leads to a 5% error in the residual
stress estimation.

3.4. Validity and reliability verification by experiment

Four commonly used metals (Al 2024, Al 7075, Copper C11000
and Ti Grade 5) were selected to verify the proposed method.
These materials have a wide range of elasticities (see εy in Table 2).

To obtain the mechanical properties of these metals, we conducted
uni-axial tensile tests at room temperature in accordance with
ISO6892-1. For each type of material, three dumbbell-shaped speci-
mens with rectangular cross-sections (10 mm �3mm) were pro-
cessed. Using an extensometer (gauge length of 25 mm), the tests
were performed on a MTS 810 material testing machine (MTS Systems
Corporation, Eden Prairie, MN, USA) at a strain rate of 0.0023 s�1. The
elastic modulus (E), the yield stress (σy) and the strain-hardening
exponent (n) were determined for each material (Table 2).

Instrumented sharp indentation tests were carried out to assess the
validity of the proposed method. We designed a stress-applying
apparatus, which could load the specimen with a well-defined
external tensile/compressive force, to simulate the residual stresses
inside the specimens (Fig. 9). A uniform uni-axial tensile stress (see
Fig. 9a) could be applied to the specimen by screwing in the loading
nut, while a uniform compressive stress (see Fig. 9b) could be applied
by screwing in the loading bolt. Moreover, this load could bemeasured
by the load cell, and the stress could be directly calculated (load
divided by the cross-sectional area of the specimen (thickness
approximately 3 mm, width approximately 4 mm)). In each experi-
ment, the uni-axial pre-stress was kept below the elastic limit of each
material. For each type of metal, five groups of stress states (two
groups were tensile, two groups were compressive and one was
stress-free) were applied. For each group, five indentation tests were
performed using a universal hardness testing machine (ZHU2.5/Z2.5,
Zwick/Roell Corporation, Ulm-Einsingen, Germany) equipped with a
hardness measurement head and a Vickers indenter (see Fig. 9c). The
work range of the built-in load cell varies from 5 to 2500 N with a
force resolution of 0.01 N. The resolution of the displacement mea-
surement is 0.02 μm. All of the indentation tests were conducted in
load control mode using a three-step procedure that involved loading
at a constant rate (1.7 N s�1) to a prescribed maximum load (50 N),
holding 10 s at the maximum load, and unloading using the same rate
that was used during loading. The resulting mean loading curves were

Carry out indentation tests on specimens with and
without residual stress, and record the loading curves.

Obtain c and c0 by fitting the loading 
curves in the form of F=ch2.

Determine εy and n by tensile test or 
indentation test.

Substitute into Eq. (11) and obtain σR.

Fig. 6. A flow chart describing the methodology used for determining equi-biaxial
residual stress with instrumented indentation.

Fig. 7. Accuracy analysis of the reverse analysis for materials with varied εy and different n: (a) n¼0.05; (b) n¼0.15; (c) n¼0.30. σRin is the input residual stress value for the
finite element analysis.
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adopted (see Fig. 10) because there were minor differences in the
loading curves obtained from each group when the same stress state
was used. These data show that residual stress affects the indentation
loading curves of these materials. In Fig. 10, the solid curves represent
the behavior of the unstressed specimens. It is obvious that tensile
residual stress tends to lower the loading curves, while compressive
residual stress tends to raise the curves. By calculating the loading
curvature for each curve, we could easily obtain the values of the

stresses by substituting the calculated (c�c0)/c0 and the properties of
thematerials into Eq. (11). Because the half value of the uni-axial stress
is equivalent to the equi-biaxial residual stress as Giannakopoulos [13]
argued, the final values of the stresses (see Table 3) are twice the
values we obtained using Eq. (11). The absolute errors between the
nominal values measured using the load cell and the estimated values
determined using the method proposed in the present work are
commonly less than 50MPa, and the relative errors are less than 20%.

Fig. 8. Error sensitivity distribution of the residual stress estimation: (a) and (b) withþ5% and �5% perturbations in εy; (c) and (d) with þ0.02 and �0.02 perturbations in n.
σRre is the residual stress value obtained from the reverse analysis.
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3.5. Validity and reliability verification using experimental data from
the literature

In addition, the proposed method was verified using experi-
mental results found in the literature.

Lee et al. [8] performed sharp indentation tests on strained API
X65 steel samples. In their experiments, all of the specimens were
loaded to the same maximum indentation load. The authors did
not provide the indentation curves in their paper, but gave the
relative indentation depths at the maximum indentation loads.
The absolute indentation depth for each average residual stress
was calculated and listed in Table 4. The fractional change in
loading curvature ((c�c0)/c0) can be approximated using

c�c0
c0

� h0

h

� �2

�1; ð12Þ

where h and h0 are the indentation depths at the same maximum
indentation load with and without residual stress, respectively. As
Sakharova et al. [4] mentioned, the elastic modulus (E), yield
stress, and strain-hardening exponent of API X65 steel are 210 GPa,
approximately 457 MPa, and approximately 0.1, respectively.
By substituting the calculated values of (c�c0)/c0 and the proper-
ties of the material into Eq. (11), the residual stresses can be
determined. Because Giannakopoulos [13] argued that the equi-
biaxial residual stress is equivalent to the average residual stress,
the final values of the stresses were twice those that we obtained
using Eq. (11). As shown in Table 4, the estimated residual stresses
are in good agreement with the nominal values from the literature.

Wang et al. [9] performed indentation tests on ion-implanted
and unimplanted areas of a type of commercial stainless steel. The
ion-implanted test induces a uniform equi-biaxial compressive
residual stress. The loads with and without residual stress at the
same indentation depth are 36 mN and 33 mN, respectively. The
fractional change in loading curvature ((c�c0)/c0) can be approxi-
mated using

c�c0
c0

� F�F0
F0

; ð13Þ

where F and F0 are the indentation loads at the same maximum
indentation depth with and without residual stress, respectively.
As Sakharova et al. [4] stated, the elastic modulus (E) of the
material is 205 GPa, the yield stress is 1.04 GPa, and the strain-
hardening exponent is approximately 0.3. By substituting the
calculated value of (c�c0)/c0 and the material's properties into
Eq. (11), the residual stress can be determined. The residual stress
was calculated to be �612 MPa, which is close to the value that
was reported by Wang et al. (�631 MPa).

4. Conclusion

A novel method that can be used to effectively estimate the
surface equi-biaxial residual stress of a material has been pro-
posed. This method does not require the contact area to be
measured; it is often difficult to experimentally determine this
value precisely. Instead, the fractional change in the loading
curvature ((c�c0)/c0) was chosen as the analytical parameter, as
it typically reflects the effect of residual stress on IIT outcomes and
can be obtained much more precisely from the loading curves.
A linear relationship between (c�c0)/c0 and σR/σy was found using
dimensional and finite element analysis. The linear coefficient only
depends on the mechanical parameters of the material. This linear
relationship greatly simplifies the analytical expression that
relates the residual stress to the indentation response. In addition,
the proposed method was verified using four common metals, and
a loading stress apparatus was designed. The resulting absolute
errors between the estimated values determined using the pro-
posed method and the nominal values measured using the load
cell were typically less than 50 MPa, and the relative errors were
less than 20%. Instrumented indentation data from the literature

Table 2
Materials' mechanical properties tested by uni-axial tensile tests.

Material Elastic modulus E (GPa) Yield stress σy (MPa) εy ¼ σy=E Hardening exponent n

Mean E Std. ΔE Mean σy Std. Δσy Mean εy Mean n Std. Δn

Al 2024 71.4 0.4 350.8 2.5 0.0049 0.177 0.003
Al 7075 72.7 1.0 531.6 2.9 0.0073 0.107 0.002
Copper C11000 121.8 6.6 345.7 0.8 0.0028 0.016 0.002
Ti Grade 5 121.1 2.3 886.6 3.1 0.0073 0.057 0.002

Fig. 9. A schematic of the uni-axial stress loading apparatus and testing machine:
(a) loading apparatus for tensile stress; (b) loading apparatus for compressive
stress; (c) the Zwick ZHU2.5/Z2.5 universal hardness testing machine.

Z. Lu et al. / Materials Science & Engineering A 614 (2014) 264–272270



Fig. 10. The resulting mean loading curves of five indentations in each stress state for four metals: (a) Al 2024; (b) Al 7075; (c) Copper C11000; (d) Ti Grade 5.

Table 3
A comparison of the estimated stresses determined using the proposed method with the nominal stresses measured using a load cell. A nominal stress value of zero means
that external forces are not applied in the group (which is treated as a reference).

Material Nominal stress Loading curvature Estimated stress Absolute error Relative error
σRnor (MPa) c (GPa) σRest (MPa) σRest�σRnor (MPa) ðσRest�σRnorÞ=σRnor (%)

Al 2024 �246.7 37.516 �302.6 �55.9 22.7
�134.4 36.285 �162.0 �27.6 20.5

0 34.866 N.A. N.A. N.A.
104.9 33.790 92.9 �12.0 �11.4
316.7 30.157 406.4 89.7 28.3

Al 7075 �319.1 44.809 �341.2 �22.1 6.9
�185.2 43.480 �188.1 �2.9 1.6

0 41.841 N.A. N.A. N.A.
168.5 39.836 175.8 7.3 4.3
288.2 38.381 303.0 14.8 5.1

Copper C11000 �208.7 32.971 �249.2 �40.5 19.4
�114.9 32.170 �128.0 �13.1 11.4

0 31.323 N.A. N.A. N.A.
163.4 30.033 118.1 �45.3 �27.7
286.7 28.371 270.3 �16.4 �5.7

Ti Grade 5 �335.5 77.781 �420.8 �85.3 25.4
�174.1 75.717 �208.9 �34.8 20.0

0 73.683 N.A. N.A. N.A.
174.8 71.762 147.4 �27.4 �15.7
341.7 68.035 433.4 91.7 26.8

Table 4
A comparison of the estimated stresses determined using the proposed method with the nominal stresses from the literature.

Nominal stress Calculated indentation depth Estimated stress Relative error
σRnor (MPa) [8] h (μm) σRest (MPa) ðσRest�σRnorÞ=σRnor (%)

439.8 94.6 406.0 �7.7
282.6 91.6 275.0 �2.7
151.8 89.1 157.0 3.4
81.9 87.7 88.9 8.5
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also confirmed that the estimated residual stress values deter-
mined by this method were in good agreement with the nominal
values from the literature. Thus, we believe that the proposed
method will be useful in the practical measurement of residual
stress by instrumented indentation.
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