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We propose the ratio of critical strain energy density by distortional deformation over that by volumetric
deformation as a material parameter to quantify the ductile-to-brittle transition in bulk metallic glasses
(BMG). A BMG is regarded to be ductile (with high fracture toughness) if the ratio is low, implying shear
dominated deformation precedes cavitation failure. In contrast, the BMG is brittle (with low fracture
toughness) when the ratio is large, suggesting that cavitation is prone to occur before energy being dis-
sipated via massive shear bands. The theory naturally reflects the intrinsic and extrinsic factors which
could influence the brittle-to-ductile transition in bulk metallic glasses.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Poisson’s ratio is found to have strong connection with the
fracture toughness of bulk metallic glasses, with a brittle-to-
ductile transition occurring at a critical Poisson’s ratio about
0.31–0.33 [1,2]. Beyond this critical point, further increasing in
Poisson’s ratio of BMGs gives rise to more diffusive shear bands
and more uniform plastic deformation, as seen in the analysis by
Wei et al. [3]. Similar to the brittle-to-ductile transition seen in
crystalline metals as temperature rises, the transition at the critical
Poisson’s ratio has to connect with deformation mechanisms. Since
the Poisson’s ratio can be directly expressed by the ratio of shear
modulus l over bulk modulus j, it is not surprising that l=j had
also been suggested to be an index for brittle-to-ductile transition
[4,2]. In addition, interfacial energy was also proposed for brittle-
to-ductile transition in crystalline materials [5].

In crystalline solids, metals in particular, plastic dissipation is
achieved through dislocation gliding. The fracture toughness could
be influenced by the local microstructures and crystal orientations
of individual grains at a crack tip. At low temperatures, dislocation
activities are largely suppressed and grain boundary deformation
or cleavage failure occur, and the yielding zone at the crack tip is
small. In contrast, dislocation mechanisms dominate plastic defor-
mation at high temperature and give rise to large yielding zone.
The difference in the size of the yielding zone around the crack
tip for those two scenarios results in the significant change in frac-
ture toughness of such crystalline metals. Metallic glasses are
regarded as homogeneous down to nanoscale and are considered
to be isotropic, as the materials own no internal long-range order
to facilitate preferential slips. Plasticity in BMGs is accommodated
by massive shear bands due to local strength softening in shear
bands [6,7]. The larger fracture toughness for BMGs with higher
Poisson’s ratio is associated with dense and uniform shear bands
around crack tip regions of the materials [3,7]. As the formation
of shear bands is directly related to distortional deformation, it is
convenient to adopt the strain energy density as a measurement
for brittle-to-ductile transition in BMGs.

So far, the strain energy density concept has been successfully
applied to analyze material failure, in particularly for fracture
behavior of brittle media, e.g. [8,10,9,11,12]. It is also recognized
that contributions by distortional deformation and volumetric
deformation in the strain energy density may attribute differently
to trigger crack propagation [13]. Given that the two parts of the
strain energy density not only are influenced by material proper-
ties of a BMG (e.g., the Poisson’s ratio or l=j), but also depend
on boundary conditions which may trigger different deformation
modes, we expect that the proposed index could reflect both the
intrinsic and the extrinsic factors which govern the brittle-to-duc-
tile transition in bulk metallic glasses. In what follows, we give
detailed formulae to obtain the index.
2. Distortional and volumetric parts of strain energy density

Following the steps given by Wei [13], we consider a material
point with general stress state ðrx;ry;rz; sxy; syz; szxÞ in a Cartesian
coordinate ðx; y; zÞ. The total strain energy per unit volume W can
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be decomposed into a distortional part Wd and a volumetric part
Wv . They are respectively written as

Wd ¼
1þ m

6E
ðrx � ryÞ2 þ ðry � rzÞ2 þ ðrz � rxÞ2
h

þ 6 s2
xy þ s2

yz þ s2
zx

� �i
ð1Þ

and

Wv ¼
1� 2m

6E
ðrx þ ry þ rzÞ2 ð2Þ

where E and m are the Young’s modulus and Poisson’s ratio of an iso-
tropic material. These two terms, if written in the principal stress
coordinate axes ðr1;r2;r3Þ, are

Wd ¼
3ð1þ mÞ

2E
s2

oct ¼
3

4l
s2

oct ð3Þ

and

Wv ¼
3ð1� 2mÞ

2E
p2 ¼ p2

2j
ð4Þ

respectively, with soct ¼ 1
3 ðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2
h i1=2

,
and p � ðr1 þ r2 þ r3Þ=3, and l and j are the shear modulus and
the bulk modulus, respectively. We define the quantity J which is
the ratio of distortional energy over volumetric energy

J ¼ Wd

Wv
¼ 1þ m

1� 2m
soct

p

� �2

¼ 3j
2l

soct

p

� �2

ð5Þ

and propose it as an index for brittle-to-ductile transition. It is con-
venient to see that J depends not only on the Poisson’s ratio, but also
on the externally applied stress. By knowing that distortional defor-
mation will promote shear deformation and dissipate more energy,
we see that J ! 0 corresponding to high fracture toughness; while
J !1 implying the brittle side. When the material point reach
von Mises yielding [14] first, and also recognize that we have
soct ¼

ffiffiffiffiffiffiffiffi
2=3

p
sy on the basis of yielding at pure shear, we have

Js ¼
1þ m

1� 2m
2
3

sy

p

� �2

ð6Þ

In this scenario, current hydrostatic tension plays a central role
to the fracture toughness of BMGs. Minimizing the hydrostatic ten-
sion could substantially increase the fracture toughness of BMGs,
since the formation of shear band – while reduces the strength –
still remains the integrity of the material [6,15]. The analysis
shown here explains why mode II crack would exhibit higher frac-
ture toughness than that of mode I crack in BMGs. Similarly, one
may imagine the situation where hydrostatic tension is significant
and reaches the critical value first,

Jt ¼
1þ m

1� 2m
soct

pc

� �2

ð7Þ

In this case, the BMG will behavior like brittle materials. While
reducing the distortional deformation could give rise to increase Jt

and hence increasing ductility, we expect this change could be
rather small as cavitation failure would directly break the material
apart.

So far, we have demonstrated that the brittle-to-ductile index
does not only depend on material properties, but also vary as the
loading conditions change. By combining the two scenarios
depicted by Eqs. (6) and (7), we may obtain a brittle-to-ductile
transition index which is solely dependent on material parameters.
In that limit case, the brittle-to-ductile index is given as:

Jc ¼
2ð1þ mÞ

3ð1� 2mÞ
sy

pc

� �2

ð8Þ
As discussed by Wei [13], sy and pc are independent material
parameters. There is a fundamental difference between the resis-
tance to glide a dislocation in a crystallographic plane and the
strength to separate an atomic plane into two free surfaces. An
intuitive explanation on this see [13] is that the presence of dislo-
cations in an atomic plane would dramatically change the resis-
tance to relative gliding between the top and the bottom blocks
separated by the plane, i.e., sy drops, but has minor impact to pc .
3. Application to mode I crack

Now we demonstrate how we combine the intrinsic and extrin-
sic factors to understand the brittle-to-ductile transition in metal-
lic glasses. For a crack under far-field mixed-mode loading k1 and
k2, its stress components rr ;rh and srh ahead of the crack tip are
given by Williams [16]:

rr ¼
ffiffiffi
2
r

r
½k1ð3� cos hÞ cosðh=2Þ þ k2ð3 cos h� 1Þ sinðh=2Þ� þ . . . ð9aÞ

rh ¼
ffiffiffi
2
r

r
½k1ð1þ cos hÞ cosðh=2Þ � k2ð3 sin hÞ cosðh=2Þ� þ . . . ð9bÞ

srh ¼
ffiffiffi
2
r

r
½k1 sin h cosðh=2Þ þ k2ð3 cos h� 1Þ cosðh=2Þ� þ . . . ð9cÞ

Note that the stresses ahead of the crack tip are expressed in the
cylindrical polar coordinates (r; h). When only k1 is applied, it is
convenient to obtain the maximum shear stress smax at any h

sh
max ¼

ffiffiffi
2
r

r
k1 cosðh=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� cosðhÞÞð1� cosðhÞÞ

p
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The maximum shear stress smax for all h occurs when
h ¼ hm ¼ 103:8�. The hydrostatic tension, for the plane strain crack,
is given as

p ¼ 4
3

ffiffiffi
2
r

r
k1ð1þ mÞ cosðh=2Þ ð11Þ

and its maximum pmax occurs at h ¼ 0. Now the maximum shear
stress over the maximum hydrostatic tension is given as

smax

pmax
¼ 3 cosðhm=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
4ð1þ mÞ ð12Þ

By taking m ¼ 0:33, we find that smax=pmax ¼ 0:7. It suggests that if
sc=pc in Eq. (8) is smaller than smax=pmax, we expect shear dominated
deformation and the tested material would be dutile like. while
sc=pc > smax=pmax, we may find the material is brittle like.
4. Discussion and concluding remarks

Since fracture toughness measures the energy dissipation while
a crack propagates [17], the strain energy based index seems to be
more appealing to quantify brittle-to-ductile transition in contrast
to other material parameters like Poisson’s ratio, the ratio of shear
modulus l over bulk modulus j, or the surface energy. We also
note that while the critical index given in Eq. (8) seems to be more
universal, it is hard to reach both shearing yielding and cavitation
failure simultaneously at a material point during experiments. So
the fracture toughness measured in real experiments may be bet-
ter captured by either Eq. (6) or (7), depending on whether the
shear stress or the hydrostatic tension reaches their respective
threshold first. In addition, more experimental validations are
desired to test the predicability of the above brittle-to-ductile tran-
sition index.
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