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a b s t r a c t

We formulate a stochastic description about the mechanical response of an interface
composed of non-covalent bonds. In such interfaces, the evolution of bonding probability
in response to deformation plays the central role in determining their traction-separation
behavior. The model connects atomistic and molecular level bonding properties to meso-
scale traction-separation relationship in an interface. In response to quasi-static loading,
the traction-separation of a stochastic interface is the resultant of varying bonding
probability as a function of separation, and the bonding probability follows the Boltzmann
distribution. The quasi-static stochastic interface model is applied to understand the
critical force while detaching a sphere from an infinite half space. We further show the
kinetics of interfacial debonding in the context of the Bell model (1978) and two of its
derivatives – the Evans-Richie model (1997) and the Freund model (2009). While
subjected to constant force, an interface creeps and its separation–time curve shows
typical characteristics seen during the creep of crystalline materials at high temperature.
When we exert constant separation rate to an interface, interfacial traction shows strong
rate-sensitivity with higher traction at faster separation rate. The model presented here
may supply a guidance to bring the stochastic nature of interfacial debonding into theories
on cracking initiation and growth during fatigue fracture.
& 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Most biological structures and synthetic materials are composed of interfaces, which enable the microstructures to bond
coherently to form macroscopic systems. In many circumstances, interfaces are specially tuned to realize particular
performance or function of the materials, and their mechanical behaviors are crucial for bottom-up design in hierarchical
materials (Hutchinson and Evans, 2000). Understanding the mechanical behavior at the interfacial level is hence crucial for
property control in materials, and is the key for further property-structure optimization. At the continuum level, the
mechanics of a cohesive interface is assumed to obey a traction-separation constitutive relation–a concept originally
proposed by Barenblatt (1959) and Dugdale (1960). Combining with the finite-element procedure, the convenience of
cohesive modeling in understanding fracture behavior in materials was recognized by Needleman and others (Needleman,
1990; Xu and Needleman, 1994). By putting cohesive zones in the interfaces in materials, many groups (e.g., Needleman,
1990; Tvergaard and Hutchinson, 1992; Xu and Needleman, 1994; Camacho and Ortiz, 1996; Yang et al., 1999; Gao and
Bower, 2004; Wei and Anand, 2004; Su et al., 2004; Warner et al. 2006; Wei et al., 2009) demonstrated the capability to
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track crack initiation, crack propagation, and crack branching etc., which otherwise could only be seen via tedious and
expensive experiments. Along this line, different phenomenological interface models have been proposed to represent the
physics of different types of bonds across an interface. For example, Xu and Needleman (1994) and Needleman (1990)
suggested a potential-based traction-separation law to describe the interfacial fracture, which provides a framework for
directly simulating crack branching phenomena. To model the failure of a polycrystalline system subjected to dynamic
loading, Camacho and Ortiz (1996) used a cohesive law in which its initial cohesive response is rigid, and there is a critical
traction at which strength softening starts. Wei and Anand (2004) later on developed an elastic–plastic interface model
which accounts for both reversible elastic, as well as irreversible inelastic separation-sliding deformation at the interface
prior to failure. Gurtin and Anand (2008) further formulated a gradient theory of nanocrystalline grain boundaries where
displacement discontinuity occurs, via which elastic and inelastic descriptions of slip and separation in grain boundaries
were deduced. Regardless of the success and broad usage of those cohesive models, caution should be always exercised as
we apply a cohesive model to a particular question. The real mechanics of an interface could be very sensitive to the type of
law we choose. For example, Wei and Hutchinson (1997) revealed that under large scale yielding, the notion of a thickness-
independent interface toughness no longer pertains, and a nonlinear fracture mechanics is required to quantify interfacial
failure. Falk et al. (2001) have found that finite element calculations of dynamic fracture based on embedded cohesive
surfaces in a continuum indicate that the predictions are sensitive to the cohesive law used. Cohesive laws that have an
initial elastic response were observed to produce spontaneous branching at high velocity. However, crack branching
behavior was not observed when cohesive laws that are initially rigid were implemented. The sensitivity of mechanical
behavior on the exact form of cohesive laws hence calls for more physically sound understanding about the cohesive
behavior of interfaces. One effective way is to bridge the traction-separation law of an interface with the atomistic origin of
bonds in the interface. The cohesive model using the virtual-internal-bond concept is one example to build up a linkage
between atomistic interaction to continuum models (Gao and Klein, 1998a; 1998b). Jiang et al. (2006) developed more
specific cohesive laws for particular interfaces bonding via the van der Waals interaction. Warner et al. (2006) have
calibrated cohesive laws by abstracting parameters from atomistic level simulations using empirical potentials. Experi-
mental methods are also suggested to probe the interface cohesive laws in particular system (e.g., Hong et al., 2009).

It is worth noting that those phenomenological continuum models and atomistic-mechanism based models are
essentially for one way transition from bonding state to rupture. At the atomistic scale, in particular for an interface
composed of non-covalent bonds, molecular bonds at an interface undergo concurrent bonding and debonding while
subjected to external disturbance, and may reach its equilibrium at a given state only if we wait sufficiently long. The
scenario might be the exact cases in biological systems, where connections between different structures are typically
achieved via non-covalent bonding, and their mechanics is associated with chemi-mechanical transduction (Tidball, 2005).
Such bonding and debonding kinetics could give rise to rich biological phenomena, and is of significance for the activities of
cell, such as cell adhesion and cell mobility (Thomas et al., 2002; Marshall et al., 2003, Phan et al., 2006; Lin and Freund,
2007, Lin et al., 2008; Wei, 2008a, 2008b) and the life time of bonds. There is emerging effort to develop understanding
about the mechanics of stochastically bonded interfaces in biological systems. For example, Deshpande et al. (2006, 2008)
applied the cohesive model concept to develop a bio-mechanical model while coupling cell contractility with focal adhesion
formation. Qian et al., (2008, 2009) and Wang and Gao (2008) performed simulations and developed theoretical models
about the lifetime and the strength of periodic bond clusters between elastic media. With the growing evidence that cells
may not only sense the mechanical properties of substrates (e.g., Lo et al., 2000; Engler et al., 2006) but also respond actively
to external dynamic loading (e.g., Jungbauer et al., 2008), there is compelling need to develop atomistic dynamics based
cohesive interface composed of non-covalent bonds for such systems as well, in order to build connections between
atomistic and molecular level bonding properties and meso-scale measurable quantities.

In this paper, we describe a model that suggests that the traction-separation at an interface composed of non-covalent
bonds is governed by stochastic bonding-debonding process, and develop stochastic-based traction-separation laws capable
of connecting atomistic/molecular level interface properties to meso-scale description. At quasi-static loading, it is thought
that at a given separation, the bonding probability follows the Boltzmann distribution. Dynamic response of an interface is
regarded as debonding ascribed by the diffusive process. This process resembles chemical potential driven vacancy
nucleation and diffusion in crystalline solids. In the following sections, we first describe the stochastic cohesive model in an
interface composed of non-covalent bonds, with the static case discussed first and followed by the dynamic response of a
stochastic interface. At the end, we apply the stochastic traction-separation model to the bench mark problem of finding the
critical detachment and the stability of adhesion when one body is in contact with an elastic half space.

2. Traction-separation law governed by stochastic bond dissociation

We consider a bond complex as illustrated in Fig. 1. The spring-bond systemmay represent actual mechanical behavior of
fundamental units in natural and artificial composite structures where interfaces are bonded via polymer chains (e.g., Smith
et al., 1999; Wiita et al., 2007), such as DNA unfolding while being stretched, the response of force spectroscopy (e.g., atomic
force microscopy) while measuring adhesion or friction properties of surfaces (e.g., Binnig et al., 1986; Marshall et al., 2003),
the hairy attachment from the lowest hierarchical spatula in gecko by van deer Waals interaction (Autumn et al., 2002;
Huber et al., 2005), and so on. The bond itself is depicted by the potential energy UðrÞ at its reaction coordinate r.
The structure in Fig. 1 is best for interactions which could be approximated by pair potentials. The chain is described by
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Fig. 1. Illustration to show the two parts of a bond complex, the bond pocket characterized by a potential function U(r) and the spring system. Bond rupture
is controlled by the modified potential due to the change in r when force/displacement is applied to the complex.
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a free energy Eðx; tÞ at the stretching distance x while the complex is subjected to tensile loading F at the time t.
The transmitted force will change bond energy and reaction coordinate r, and the latter is also connected with x. Hence
UðrÞ ¼ UðrðxÞÞ. We are interested in developing the traction-separation law for a cohesive interface composed of such
potential bonding sites of density ρðzÞ (per unit area at the position z). Note that there may exist a difference between the
load F to the chain and the load f acting directly along the reaction coordinate, in particular for bonded DNAs or polymer
chains in viscous media. At this moment, we neglect this effect and we assume what transmitted to the bond is force but not
displacement. A representative surface is assumed to compose of sufficiently large number of bonds so that it is statistically
meaningful to derive the collective response of those bonding sites.

At the separation distance x and at the time t, we define a bonding probability function bðx; tÞ, which refers to the fraction
of closed bonds in a unit surface with bonding site density ρðzÞ. A generic form of traction Tðx; t; zÞ (force per unit area) can
then be deduced

Tðx; t; zÞ ¼ ρðzÞbðx; tÞ∂Eðx; tÞ
∂x

ð1Þ

In what follows, we will use a constant distribution of bond density ρ. To connect Eq. (1) with commonly known traction-
separation laws, we consider an interface with all bond complexes being either closed or ruptured. A closed bond has
a lower energy level in contrast to a ruptured bond by an amount of u0. At equilibrium and when no traction is exerted to
the interface, bðx; tÞ is independent of the time t and follows a Boltzmann distribution:

bðx; tÞ ¼ b0 ¼
1

1þexpð�u0=kBTÞ
¼ 1
1þexpð�βu0Þ

with β¼ 1
kBT

; ð2Þ

where kB is the Boltzmann constant and T is the absolute temperature. If the interface is forced to separate under external
loading, i.e., the right hand side of bond complex in Fig. 1 has the displacement x, which consequently modifies the potential
landscape of the bond on the left hand side. The energy barrier u0 is lowered to be UðrðxÞÞ. It is noted that we apply
quasi-static displacement controlled loading at this moment in order to derive the general form of traction-separation law
for a non-covalent bond interface. Now the ratio of closed bonds will be altered to be

bðxÞ ¼ 1
1þexp½�βUðrðxÞÞ�: ð3Þ

Following Eq. (1), we obtain the induced traction at the prescribed separation x:

TðxÞ ¼ ρ

1þexp½�βUðrðxÞÞ�
∂EðxÞ
∂x

¼ ρ

1þexp½�βUðrðxÞÞ�
∂UðrÞ
∂ r

: ð4Þ

In the above equation, we have used the force equilibrium condition in the bond complex at static state,

∂UðrÞ
∂ r

¼ ∂EðxÞ
∂ x

: ð5Þ

With known UðrÞ and EðxÞ, we can proceed to obtain the time-independent traction-separation law based on stochastic
bonding process at an interface. For simplicity but without loss in physics, we may use simple forms for both UðrÞ and EðxÞ:.
We first consider the potential model proposed by Bell (1978). An applied force may modify the potential of the bond pocket
following

UðrÞ ¼ u0� f rb; ð6Þ
where f is force transmitted to the bond in response to the separation x and rb is the characteristic width of the potential
well. A detailed illustration of the energy landscape is given in Fig. 2.

Typically, for van der Waals bonds in biological systems, rb is on the order of nanometers (Evans and Ritchie, 1997).
Let EðxÞ ¼ kcx2=2 where kc is the stiffness of the chain (note that more complicated spring behavior could be used here).
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Fig. 2. Demonstration to show how the energy landscape U(r) in the Bell's model is tilted by external load. The parameters of the potential well are shown,
with r0 being the zero energy distance, and rm is where the energy reaches its minimum of u0.

Table 1
Three groups of bond properties used for Eq. (7), which give rise to corresponding time-independent
traction-separation response shown in Fig. 3a–c.

Type kc (N/m) u0(kT) rb(Å)

Flexible 0.2 4 5
Intermediate 1.0 40 4
Stiff 10 400 3
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By applying f ¼ ∂EðxÞ=∂x and substituting Eq. (6) into Eq. (4), we obtain the time-independent traction-separation law as

TðxÞ ¼ ρ kcx
1þexp½βð�u0þ f rbÞ�

¼ ρ kcx
1þexp½βð�u0þkcx rbÞ�

ð7Þ

We explore the traction-separation governed by stochastic bonding in an interface using Eq. (7). In Table 1, we listed the
bond energy, bond stiffness and potential well width for several typical bonds. Fig. 3a–c shows respectively, the traction-
separation curves of flexible, intermediate, and stiff interfaces. Here we have used a bond density of ρ¼ 1019 bonds/m2,
which is about 10 bonds in one square nanometer and is close to the number of nearest neighbor bonds between two atomic
planes in crystalline materials. The density in most interfaces could be actually lower than this number. While the flexible
interface shows rather slow drop in traction after the peak (Fig. 3a), tractions decrease progressively with strain after the
strength peak in a stiff interface (Fig. 3c). It resembles a gradual failure to abrupt rupture transition as we increase the
stiffness of an interface.

The actual potential of the bond pocket could be more complex. For example, the 6–12 Lenard-Jones potential is broadly
used to represent the van der Waals interaction between biological bonds, which the potential function is given as

UðrÞ ¼ 4u0
r0
r

� �12
� r0

r

� �6� �
; at rm ¼

ffiffiffi
26

p
r0 ¼ 1:123r0; Um ¼ �u0: ð8Þ

An explicit expression for traction-separation laws is not available in that case. We may numerically solve the traction-
separation relation via the following steps:
(a)
 For an applied displacement X to the bond complex, it contains two contributions, the position change r�rm by the
bond (assuming the bond is at the lowest energy point rm at the beginning), and the displacement in the chain x, i.e.,
X ¼ xþðr�rmÞ;
(b)
 Applying force equilibrium in Eq. (5), we have �ð24u0=r0Þ ½2ðr0=rÞ13�ðr0=rÞ7� ¼ kc½X�ðr�rmÞ�;

(c)
 In the case of extremely stiff chains, i.e., kc-1, we may either replace the right hand side by f when force controlled

boundary is applied, or r is known when displacement controlled boundary is exerted;

(d)
 Solving the above equation for r, we can subsequently derive x, f , and UðrÞ, and then the bonding probability by

substituting UðrÞ in Eq. (3);

(e)
 With known bonding probability at each separation X, we obtain the traction-separation law using Eq. (4). When the

stiffness of the chain is rather small, i.e., r�rm⪡x, we may simply use x as the separation of the bond complex instead of X.
In Fig. 4, we show an example of traction-separation laws in interfaces governed by LJ interaction. The influence of
chain stiffness kc on the traction-separation law are demonstrated. In Fig. 4a, several traction-separation curves using
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Fig. 3. The static traction-separation governed by stochastic bond rupture in an interface given by Eq. (7). (a) Traction-separation for a flexible interface. (b)
Traction-separation for an intermediate interface. (c) Traction-separation for an extremely stiff interface.
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rb ¼ 5� 10�10m and u0 ¼ 40kT in the LJ potential in Eq. (8) are presented. We see that lower stiffness kc in the chain may
induce separation instability: After the peak traction, the interfacial separation, which is the combination of bond separation
and the chain elongation, could actually bounce back due to the traction-softening, and the latter results in more
deformation relaxation in the chain than the extension in the bond pocket. It is noted that this phenomenon is due to the
condition that we allow the bond separation r to increase monotonically. This instability makes the interface brittle like.
High bond energy for the bond pocket will give rise to the same type of separation instability as demonstrated in Fig. 4b,
where we have used a chain stiffness of kc ¼ 2N=m and a bond potential well width of rb ¼ 5� 10�10m.

In both Eqs. (4) and (7), the traction maximizes at the separation xm satisfies ∂TðxÞ=∂x¼ 0. Taking Eq. (7) as the example,
the maximum traction can be obtained by solving the following equation for xm:

ðβkcxmrb�1Þexp½βð�u0þkcxmrbÞ��1¼ 0: ð9Þ

With xm from Eq. (9), we obtain the maximum traction:

Tm ¼ ρ kcxm�kBT
rb

� �
: ð10Þ
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The asymptotic solution to Eq. (9) is

xm ¼ u0

kcrb
� ln βu0

βkcrb
; ð11Þ

and corresponding asymptotic formulation for the maximum traction is

Tm ¼ ρ

rb
u0�kBTðln βu0þ1Þ	 


: ð12Þ

As shown in Fig. 5, the asymptotic solution is very close to the numerical solution as u0Z12kBT , where the relative
difference is within 1%. We find that at equilibrium the maximum traction is independent of the chain stiffness kc.

It is also convenient to derive the surface energy of two materials in contact. Let γa and γb the surface energies of the two
materials, respectively, and γab be the interfacial energy of the two materials in contact. For an ideally flat surface, the
adhesion energy Γ of the two surfaces will lead to

Γ ¼ γaþγb�γab ¼ ρbðx¼ 0Þu0 ¼
ρu0

1þexpð�βu0Þ
; ð13Þ

Eq. (13) essentially builds up a connection between the atomistic level bonding information in an interface with its
macroscopically measurable interfacial energy. We will further show that the stochastic bonding controlled interfacial
model can be applied to describe the adhesion of a sphere (or a infinitely long cylinder) in contact with an infinite half space
elastic medium in Section 4.

We may further build up a connection between the atomistic bond information with the fracture toughness G0 for the
traction-separation law given in Eq. (7). The energy to separate the interface from the traction-free bonding state to infinite
distance is given as

G0 ¼
Z 1

0
TðxÞ dx¼ ρ kc

ðβkc rbÞ2
Z 1

0

t
1þexpðt�uÞdt with u¼ βu0 ð14Þ

The integral at the right hand side of Eq. (14) is one of the integrals of the Fermi–Dirac distribution (Weisstein, 2014),
which has a closed form expressionZ 1

0

ts

1þexpðt�uÞ dt ¼ �Γðsþ1ÞLi1þ sð�euÞ for sZ�1 ð15Þ

where Γ is the Gamma function and Li1þ sð�euÞis the Polylogarithm function. With Eqs. (14) and (15), we now obtain the
close form expression of fracture toughness

G0 ¼ � 2ρ kc
ðβkc rbÞ2

Li2ð�eβu0 Þ; and G0 � u0kBT
ρ kc

ðkc rbÞ2
when βu0⪢1: ð16Þ

We have used the limitation of

lim
ReðuÞ-1

Li1þ sð�euÞ ¼ � us

Γðsþ1Þ ð17Þ

in the last step of Eq. (16). Note that the close form expression of fracture toughness may be only available for simple
potential models like the Bell model (Bell, 1978). We have to rely on numerical methods in more sophisticated potentials.
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Y. Wei / J. Mech. Phys. Solids 70 (2014) 227–241 233
With the current development of the interfacial model, we are already able to bring in experiments from the literature
for some simple validations. We consider graphene and graphite, which seem to be one of the most mechanically
characterized materials at both atomistic scale and macroscopic scale in recent years. Experimental measurement for
cleavage energy along the c-axis in graphite is about 6175 meV/atom (Zacharia et al., 2004), that would give the van der
Waals potential energy between C-C bonds to be about u0¼6175 meV/atom. With Eq. (13), we obtain an adhesive energy
to be 0.34 J/m2. This number is in good agreement with recent measurement of 0.31 J/m2 for the adhesive energy of multi-
layer graphene (Koenig et al., 2011). In addition, by taking rb¼0.34 nm (which is the interlayer distance in graphite), we
predict with Eq. (12) that the peak strength to separate graphite along its c-axis is about 230 MPa. As the van der Waals
potential energy between C–C bonds is close to the thermal energy kBT at room temperature (about 0.026 meV/atom), the
predicted peak strength is very sensitive to u0. For example, when u0¼40 meV/atom, the predicted peak strength drops to
51 MPa. That may explain why current measurement for the cleavage strength of graphite show huge scattering.

3. Dynamical response of a stochastic interface

In the previous section, we formulated the mechanical behavior of an interface governed by stochastic when bonding-
rupture events are an extremely slow process and the mechanical behavior is regarded to be quasi-static. In many real
applications, time and deformation rate are indispensable to understand interfacial failure. A significant difference between
the static response and the dynamics behavior in an interface is the high rate sensitivity of traction predicted by dynamic
models. Existing theories about the kinetic debonding are built upon the one-dimensional Kramers' reaction rate theory
(Kramers, 1940), and have been applied successfully in molecular level mechanics (Zhurkov, 1965; Bell, 1978; Evans and
Ritchie, 1997; Freund, 2009). In this scheme, it is assumed that debonding occurs diffusively rather than ballistically (Freund,
2009) along its reaction coordinate. The probability function kof f , also called the off-rate, quantifies the transition chance of a
closed bond to become ruptured in a unit time, and is the key parameter for bond kinetics. A simple yet very successful
model for the bond off-rate was suggested by Bell (1978)

kof f ¼ υ0expð�βu0Þexpðβ f rbÞ: ð18Þ
where υ0 is a constant rate characterized by bond vibration. To fully utilize the successful debonding theories for single
molecules (Bell, 1978; Evans and Richie, 1997; Freund, 2009) and bridge the atomistic level bond properties to meso-scale
interfacial mechanics, we further extend the dynamic debonding model for single molecules by (a) considering both bond
rupture and rebonding mechanisms which could be of significance for biological systems like cell motion, and by (b)
describing the evolution of the density of closed bonds in an interface, rather than the instantaneous rupture of all closed
bonds, in order to capture the gradual degradation and failure process occurring at an interface.

3.1. Evolution of bond density in an interface

We depart from the models for a single bond complex, and assume that debonding is a thermally activated process
driven by the change in free energy per unit area resulting from an increase in load. We define an excessive free energy of a
representative unit surface by taking (Wei et al., 2010)

Δμ¼ ρ kBT log ½bðx; tÞ=be�þδUðx; tÞ; ð19Þ
where be is the equilibrium bond concentration in a unit area at a prescribed separation x. The first term in Eq. (19)
represents an entropic contribution to the free energy change; while the second is the work done by external load. At a
given separation x, the bond density at infinite time t follows the Boltzmann distribution and is given in Eq. (3)

bðx; t-1Þ¼ beðxÞ ¼
1

1þexp½�βUðrðxÞÞ� ð20Þ

Here UðrðxÞ ¼ �u0þδUðx; tÞ. The rate of debonding is assumed to follow as

ρ
∂ bðx; tÞ

∂ t
¼ �kof f

kBT
Δμ¼ �β kof fΔμ; ð21Þ

where kof f is assumed to be a constant, and a more complicated case can be considered. It is further noted that in Eq. (21),
we neglect possible threshold strength for bond breakage. This mechanism could certainly be included to model richer
interfacial behavior, in particular when debonding is more ballistic like rather than diffusive like.

Now we proceed to derive bðx; tÞ once the reaction coordinate and the initial conditions are given. While the idea can be
applied to any boundary condition, we particularly show the dynamical interfacial behavior for two special cases: an
interface subjected to constant force or under a constant separation rate.

3.2. Force controlled interfacial creeping

We first consider the case of force loading and assume we know the force at any given time. In this circumstance, we set
the clock to time t¼0 as the step load F acts directly on a unit area. We hence have δUðx; tÞ ¼ F x. We define a macroscopic
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interfacial stiffness Km which connects with the stiffness of individual bonds via Km ¼ ρbðx; tÞKb. Here Kb is a lumped
stiffness which is slightly different from kc and Kb includes the contribution from both the chain and the bond pocket. In
most polymeric bonding, we expect Kb � kc. Force equilibrium at any instance requires F ¼ Km x¼ ρbðx; tÞKb x. We set the
initial bond density (right before the load F being applied) to be bðx; t ¼ 0Þ ¼ b0. The applied load will give rise to a separation
jump x0 ¼ F=ρb0Kb . At any other time, the separation x is a resultant of F, and can be determined via the force equilibrium
condition as

x¼ F
ρbðx; tÞKb

ð22Þ

Now with Eq. (21), we have the evolution of bond density in terms of the applied force:

∂ bðx; tÞ
∂ t

þkof f log
bðx; tÞ
beðxÞ

� �
¼ �β kof f

F2

ρ2bðx; tÞKb
: ð23Þ

We may develop some elementary understanding on Eq. (23) by neglecting the second term on the left hand side. It is
convenient to obtain

b2ðx; tÞ ¼ b20�2β kof f
F2

ρ2Kb
t ð24Þ

In Eqs. (23) and (24), we have two characteristic time scales ts and tmax, with

ts ¼ 1= kof f and tmax ¼
b20

2β kof f

ρ2Kb

F2
; ð25Þ

and the latter defines the surviving time of the interface. With Eqs. (22) and (24), we now deduce the accumulated
separation at the interface as a function of time:

x�x0 ¼
F

ρKbb0
1� t

tmax

� ��1=2

�1

" #
: ð26Þ

We show in Fig. 6 the evolution of separation as a function of time given in Eq. (26). It is noted that the incremental
separation shows three characteristic stages resembling the creep to rupture behavior of materials at high temperature: the
primary stage with fast growth rate, the secondary stage with nearly steady state growth rate of separation, as well as the
tertiary stage where the interface separation accelerates quickly to its final point where the interface losses its capability for
load carrying.

Now we resort to numerical methods to understand the influence of the second term on the right hand side of Eq. (23)
on the mechanics of a stochastic interface. For simplicity, we use the dimensionless form of the equation by letting
~t ¼ kof f t; ~x ¼ ðx=x0Þ ¼ ðxρb0Kb=FÞ; ~b ¼ ðbðx; tÞ=b0Þ, with which we have

∂ ~bð ~x; ~t Þ
∂ ~t

¼ � 1
b0

log
b0 ~bð ~x; ~t Þ
beð ~xÞ

" #
� ζ

b0 ~bð ~x; ~t Þ
; with ζ¼ βF2

ρ2b0Kb
ð27Þ
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Fig. 6. Interfacial separation as a function of creep time, which shows different stages of separation increase. It resembles the creeping behavior of
materials at high temperature.
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From Eq. (27), we see that it is possible for the right hand side to be zero, indicating that the entropic driven rebonding is
capable of matching the debonding at an applied force. It hence suggests that the interface will have a theoretically infinite
life-time under the applied load. In other circumstances, the interface will have a finite life-time. Given the diversity of
interfacial bonds, the dimensionless bond dissociation rate ζ could vary largely. In Table 2, we show typical parameters
which are close to many real adhesively jointed interfaces. This group of materials/interfacial parameters gives rise to a
dissociation rate close to kof f , and supplies guidance in case the readers wants to use the model in their own systems,
combining Eqs. (20), (22) and (27) to solve the evolution of bond density and interface separation. In Fig. 7a, we show the
evolution of bonding probability as a function of time for different dimensionless bond dissociation rate ζ.

With Eqs. (20) and (27), we can then deduce the creeping history of the interface under constant force, and this
information is given in the separation-time curves in Fig. 7b for several different ζ. So far, we have discussed the dynamic
behavior of an interface subjected to constant load, next we will consider the situation when displacement controlled
loading is applied.
3.3. Displacement controlled interface separation

While the model discussed here can essentially be applied to arbitrary displacement-controlled loading history, we focus
on the case of constant separation rate. With dx=dt ¼ V , we can now rewrite Eq. (23) as

∂ bðx; tÞ
∂ t

þ kof f log
bðx; tÞ
beðxÞ

� �
¼ �β kof f bðx; tÞKbðVtÞ2: ð28Þ
Table 2
Typical parameters for an adhesively joint interface, with which we obtain the dimensionless bond dissociation rate ζ.

Parameters Value Explanation

E 10 GPa Interfacial modulus
kB 1.38�10�23 J/K The Boltzmann constant
T 300 K Room temperature
β 2.5�1020 J�1 β¼ 1=kBT
u0 10kBT Bond energy
b0 E1 (using Eq. 2) Initial bonding probability
ρ 1018 bonds/m2 (1/nm2) Bond surface density
F 2�107 N Applied force (per m2)
F/ρ 2�10�11 N (20 pN) Average force per bond
s 20 MPa Interfacial stress
Kb 100 pN/nm Bond stiffness
x0 2�10�11 m (2 Å) Initial separation by F
ζ 1.0 Dimensionless bond dissociation rate
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Fig. 7. (a) Bonding probability as a function of time described by Eq. (38). Here several different ζ is explored to show the critical value: above which the
interface will have an infinite life time under the applied load; blow that the interface will have a finite lifetime. This transition is associated with a critical
force following Eq. (27). (b) Interfacial creep under constant loading.
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Similar to the discussions on constant loading, we first consider the case where debonding dominates and entropy driven
recovery is negligible. In this circumstance, we drop the second term on the left-hand side of Eq. (28) and obtain

bðx; tÞ ¼ b0exp �β kof f Kb

3 V
x3

� �
; ð29Þ

Now the traction-separation behavior is

Tðx; tÞ ¼ ρb0Kb xexp �β kof f Kb

3 V
x3

� �
: ð30Þ

We show in Fig. 8a the traction–time curves, where the maximum traction increases at higher loading rates. Typical
traction-separation curves at higher separation rates are given in Fig. 8b. The maximum traction can be obtained from
Eq. (30) as

Tmax ¼ ρb0Kb ð3αeÞ�1=3 at x¼ ð3αÞ�1=3; and α¼ β kof f Kb

3V
: ð31Þ

The interfacial toughness, the energy required to separate the interface, can be deduced by

G¼
Z 1

0
Tðx; tÞ dx¼ ρb0Kb

Γð2=3Þ
3

V
ξ

� �2=3

with ξ¼ β kof f Kb

3
; ð32Þ

where we see strong rate sensitivity of released energy as we separate the interface at higher rates, with more energy
required at faster separation rate. Now we explore the solution of Eq. (28) by the numerical method. Let ~b ¼ ðbðx; tÞ=b0Þ,
~t ¼ kof f t, and ~x ¼ ðx=x0Þ ¼ ðxρb0Kb=FÞ, we have the dimensionless form of the above equation:

∂ ~bð ~x; ~t Þ
∂ ~t

¼ � 1
b0

log
b0 ~bð ~x; ~t Þ
beð ~xÞ

" #
� ~b ~t

2
ϑ;withϑ¼ βKb

V2

kof f
2: ð33Þ
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Table 3
Typical parameters for an adhesively joint interface subjected to constant separating
velocity. Parameters shown here, combined with those listed in Table 1, will lead to a
dimensionless debonding rate ϑ on the order of 1.

Parameters Value Explanation

kof f 1/s Rate coefficient
V 2�10�10 m/s (0.2 nm/ns) Separating velocity
ϑ �1 Dimensionless debonding rate
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Fig. 10. Illustrations to show that the dependence of adhesion on the detailed geometry of the surface in contact. Although the critical separation xm where
traction maximizes (TðrÞ ¼ Tm) and the maximum allowable separation xf are fixed, the traction profile TðrÞ could differ substantially (see the four
illustrations above) as a resultant from the difference in the profile of the contacting surface. The actually critical force for detachment is then very sensitive
to the shape of the contact zone.
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In addition to the parameters listed in Table 3, we also give representative values for the parameters in Eq. (33). The
choice of kof f and the typical velocity shown in Table 2 will lead to ϑ on the order of 1. In following discussions, the variation
of ϑ is solely due to change to the separating velocity V. In contrast to the mechanical behavior of an interface under
displacement controlled separation (as shown in Fig. 8), the mechanical response of an interface subjected to constant
separation rate shows distinct characteristics when debonding and entropy driven recovery are considered. Fig. 9a shows
the evolution of bonding probability as a function of loading time (equivalent to separation as we apply constant velocity).
Slow loading rates give rise to gradual decrease in bonding probability. Higher loading rates also result in higher overshoot
of the peak traction, and the traction then decreases quickly with separation, as seen in Fig. 9b.
4. Application: detachment of a sphere from an elastic half space.

With above descriptions of traction-separation laws of an interface with non-covalent bonding, we now apply the model
to the detachment of a sphere from an elastic half space, which have elastic modulus and Poisson's ratio of ðE1; ν1Þ and
ðE2; ν2Þ, respectively. The same type of problem, but in the context of a constant surface adhesion energy, has been
considered by Johnson et al., (1971) and Derjaguin et al. (1975; 1983). A more complex surface profile has also been
investigated (Guduru, 2007). Here we consider the tensile traction in the contacting zone governed by stochastic bonding.
We note that the shape of the traction, and hence the detachment load, is sensitive to the detailed geometry of the profile in
contact, as apparently seen in Fig. 10. We assume the surfaces are ideally smooth. The sphere has radius R and interacts with
the substrate via non-covalent bonding. In Fig. 11, we show the interfacial stress distribution of a sphere (or a cylinder)
adhering to a flat substrate at self-equilibrium. The stress distribution in the compressive zone PðrÞ is obtained by applying
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Fig. 11. Illustration to show the interfacial stress distribution of a sphere (or a cylinder) adhering to a flat substrate at self-equilibrium. Here the stress
distribution in the compressive zone PðrÞ is given by the Hertz theory of elastic contact and the tensile cohesive zone has stress Tðr; δzÞ (at position r where
the separation between the two bodies in contact is δz) governed by the stochastic traction-separation law given in Eq. (4).
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the Hertz contact theory between the sphere and the substrate (Hertz, 1896; Johnson 1985), with

PðrÞ ¼ P0 1� r
a

� �2� �1=2
; a¼ 3FRR

4En

� �1=3

; P0 ¼
3FR
2πa2

¼ 6FRðEnÞ2
π3R2

 !1=3

and
1
En

¼ 1�ν1
2

E1
þ1�ν2

2

E2
; ð34Þ

where FR is the applied force, a is the resultant radius of the contact zone, and En is the compound modulus.
At self-equilibrium, FR is the resultant force from the tensile traction at the peripheral of the contact zone, and is given as

FR ¼ �Fcoh ¼ �
Z aþ c0

a
Tðr; δzÞ 2πrdr; ð35Þ

where c0 is the width of the cohesive zone and Fcoh is the integral force by adhesion. The tensile cohesive zone has stress
Tðr; δzÞ governed by the general stochastic traction-separation law in Eq. (4). Next we aim to derive the pulling force F as we
move the sphere away from the surface. The balance of the force requires

FþFR�Fcoh ¼ 0: ð36Þ

The exact explicit expression for the pulling force F, which involves the integral of tractions with exponential terms (see
Eq. 4), is usually not available even for the traction law given in Eq. (7). However, it is convenient to numerically calculate the
pulling force for essentially arbitrary surface profile with known bond potential. Without loss in generality, we use a
simplified version of the traction-separation law by approximating it to a triangle-shape profile defined by the maximum
traction Tm, the separation xm where the traction maximizes, and the failure distance c0. So we could straightforwardly shed
light on the linkage between bond properties at the atomistic level and the critical detachment at the macroscopic level. We
note that Tm at xm are directly connected with bond properties (as described in Eqs. 11 and 12) if the Bell's potential is
adopted. The failure distance c0 can also be determined by taking a point where the traction is negligible in contrast to the
peak traction. For example, we may take c0 such that traction there is one percentage of Tm. Now the simplified traction-
separation law is given as

Tðr; δzÞ
Tm

¼

r�a
xm

; arroaþxm
aþ c0 � r
c0 �xm

; aþxmrrraþc0
0; otherwise

8><
>: ð37Þ

With the simplified version of traction in Eq. (37), we may obtain the explicit expression of force contributed by the
tensile region in the contact zone

Fcoh ¼
Z aþ c0

a
Tðr; δzÞ2πrdr¼

Z aþxm

a
þ
Z aþ c0

aþxm

� �
Tðr; δzÞ 2πrdr ð38Þ

which is a function of the details of the cohesive function and the radius in contact

Fcoh ¼
πTm

3
ð2axmþx2mþ3ac0þc20þc0xmÞ ð39Þ

With Eq. (34) given by Hertz (1896), we have FR

FR ¼
4Ena3

3R
: ð40Þ

With Eqs. (39) and (40), we now can write the pulling force in explicit form as

F ¼ Fcoh�FR ¼
πTm

3
ð2axmþx2mþ3ac0þc20þc0xmÞ�

4Ena3

3R
: ð41Þ
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By applying ∂F=∂a¼ 0, we obtain the contacting radius at which the pulling force maximizes, and this critical contacting
radius is

ac ¼
πRTm

12En
ð2xmþ3c0Þ

� �1=2
ð42Þ

Eq. (42), combined with the observation in Fig. 3a, suggests why self-adhesion can be apparently higher in interfaces
with long interacting distance and in compliant systems. The corresponding maximum pulling force at the critical radius
acis

Fm ¼ F ð0Þcohþ
8En

3R
πRTm

12En
ð2xmþ3c0Þ

� �3=2
; ð43Þ

where F ð0Þcoh is the pulling force at the point a¼ 0 and is given as

Fð0Þcoh ¼
πTm

3
ðx2mþc20þc0xmÞ: ð44Þ

It is noted that both xm and c0 not only depend on the bond properties, but are also influenced by the geometrical feature
of the interface (as evidently seen in Fig. 10). Once the surface profiles of the elastic media in contact are known, we can
obtain the corresponding xm and c0. As suggested by Eqs. (42) and (33), both the contact radius at self-equilibrium and the
maximum pulling-off force depend not only on the compound elastic modulus, the strength of the interface, and the
spherical radius, but also on the detailed shape of the contact zone. For the contact of an sphere with an infinite half space,
we show in Fig. 12 the contact radius versus pulling force curves for different interfacial properties. Fig. 12a shows how the
details of the contact zone may change the adhesion and the critical pulling force; while Fig. 12b presents how the elastic
properties and the strength of the interface may affect the contact radius-pulling force trajectory. Via both Eqs. (42) and (33),
we demonstrate the details about how the interfacial properties may alter the contact radius-pulling force relationship,
instead of using the lumped surface energy.

5. Conclusions

In this paper, we consider stochastic bonding/debonding governed adhesion in an interface composed of non-covalent
bonds. When the interface is subjected to moderate stresses or deformation rate at finite temperature, we develop a
stochastic model for the traction-separation response of the interface at static state and in dynamic situations. Our model is
based on a simplified, and at best incomplete, model of stochastic interfaces, but it is nevertheless helpful to demonstrate
the phenomenon of interest, and to predict qualitative trends. Particular examples include the evolution of pulling force
during the separation of two bodies in contact via non-covalent bonds. The stress-field shown in Fig. 11 naturally describes
the tensile traction at the peripheral of a contact region, and connects the influence of interfacial energy with atomistic/
molecular level bonding. Its shear response, while not discussed here, could be naturally deduced if the potential energy is a
function of three dimensional reaction coordinates. The dynamic response of an interface subjected to a constant pulling
force resembles typical creep rupture. With growing interest in developing in-depth scientific understanding about fatigue
crack growth using cohesive models (e.g., Ortiz and Pandolfi, 1999; Nguyen et al., 2001; Yang et al., 2001; Roe and Siegmund,
2003; Maiti and Geubelle, 2005; Robinson et al., 2005; Bouvard et al., 2009; Ural et al., 2009; Truong and Kitamura, 2010),
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the dynamic part of the interface model presented here may help to bring in both bond dissociation and rebonding kinetics
at an interface subjected to either monotonic or cyclic loading. Since the evolution of bonding probability in response to
deformation plays the central role in determining the traction-separation laws of interfaces, the model naturally includes
damage, strength softening, and interfacial failure in a consistent framework. It can be implemented in numerical modeling
for cracking initiation and growth during fatigue fracture, and may have the potential to bring bond stochastic and bond
kinetics into closer conformity with classical theories of fatigue fracture.
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