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This article is devoted to providing a theoretical underpinning for ensemble forecasting
with rapid fluctuations in body forcing and in boundary conditions. Ensemble aver-
aging principles are proved under suitable “mixing” conditions on random boundary
conditions and on random body forcing. The ensemble averaged model is a nonlinear
stochastic partial differential equation, with the deviation process (i.e., the approxima-
tion error process) quantified as the solution of a linear stochastic partial differential
equation.

Keywords Multiscale modeling; Ensemble averaging; Random partial differential
equations; Stochastic partial differential equations; Random boundary conditions;
Martingale.
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1. Motivation

A complex system often involves with multiple scales, uncertain parameters or coefficients,
and fluctuating interactions with its environment. Ensemble forecasting for such a complex
system is a prediction method to obtain collective or ensembled view of its dynamical
evolution, by generating multiple numerical predictions using different but plausible re-
alizations of a model for the system. The multiple simulations are generated to account
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Ensemble Averaging for Dynamical Systems 945

for errors introduced by sensitive dependence on the initial/boundary conditions and errors
introduced due to imperfections in the model [8, 9].

In order to better understand the theoretical foundation of ensemble forecasting, we
consider a system modeled by partial differential equations (PDEs) with fast oscillating
random forcing in the physical medium or on the physical boundary, and show that ensemble
averaged dynamics converges to the original dynamics, as a scale parameter tends to zero.

Some relevant recent works [1, 3, 10, 15] are about averaging or homogenization for
random partial differential equations (random PDEs) with fast oscillating coefficients in
time or space. Different from the method in the above mentioned works, we present a
more direct approach, in order to derive an averaging principle and deviation estimates for
PDEs with random oscillating coefficients and random oscillating boundary conditions.
We previously studied [13] stochastic partial differential equations (stochastic PDEs) with
perturbed white noise dynamical boundary conditions which are measured by a small scale
parameter ε > 0. In that case, the effectively reduced model does not capture the influence
of the random force on boundary.

In this article, we consider the following PDE with a random oscillating body forc-
ing and/or a small random oscillating boundary condition, for a unknown random field
uε(x, t, ω)

uε
t = uε

xx + g(t/ε, uε, ω) , uε(x, 0) = u0(x), (1)

uε(0, t) = √
εf (t/ε, ω), uε(l, t) = 0. (2)

Here x ∈ (0, l), l > 0, t > 0, ε is a small positive scale parameter, and ω is in a sample space
�. A probability P with a σ−algebra F is defined on this sample space. The mathematical
expectation with respect to P is denoted by E. We often suppress the ω−dependence for
notational clarity.

We prove an ensemble averaging theorem (Theorem 1 in §2) for the random system
(1)–(2), that is, we obtain a stochastic model for uε as ε → 0. It turns out that the random
boundary condition appears as a white noise on the dynamical field equation for u, as ε → 0.
The ensemble averaged model is a stochastic partial differential equation (stochastic PDE)
for u, instead of a random PDE, with a homogenous boundary condition. When the random
boundary condition is absent, we further show that the deviation process (i.e., approximation
error process), uε −u, can be quantified as the solution of a linear stochastic PDE (Theorem
2 in §3).

On the technical side, in order to pass the limit ε → 0, we first prove the tightness of
the distribution of {uε}, so we just consider 〈uε, ϕ〉 for every bounded continuous function
ϕ with compact support. Then, in §2.2, we construct a process Mε

t , which is a martingale
by Ethier and Kurtz’s result [4, Proposition 2.7.6]. This construction is very direct [3]. By
passing the limit ε → 0 in Mε

t , we obtain the stochastic PDE satisfied by the limit u of uε .
This method is also applied to show that the deviation process, uε − u, is the solution of a
linear stochastic PDE; see Section 3.

Note that we take
√

ε as the intensity scale for the noise boundary condition. This is
for simplicity. In fact, our approach can also treat the case ε

α
2 ∧1f (t/εα), with 0 < α ≤ 2.

A similar case is also discussed in [3]. But the case α > 2 is more singular, one should
consider the limit of ε

α
2 −1uε as ε → 0.

This article is organized as follows. After recalling some basic background, we prove an
ensemble averaging theorem for a random PDE system with a random boundary condition
and with a random body forcing, in Section 2, and further characterize the deviation process
in Section 3.
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946 Wang et al.

2. Ensemble Averaging Under Small Fast Oscillating Random Boundary
Conditions

We consider the random PDE system (1)–(2). Consider the Hilbert space H = L2(0, l)
with the usual norm ‖ · ‖0 and inner product 〈·, ·〉. Define A = ∂xx with the zero Dirichlet
boundary condition. It defines a compact analytic semigroup S(t), t ≥ 0, on H. Denote by
0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of −A with the corresponding eigenfunctions {ek}∞k=1,
which forms an orthonormal basis of H. For every α > 0, define a new norm ‖u‖α =
‖(−A)α/2u‖0, for those u ∈ H such that this quantity is finite.

Here we make the following assumptions about the mixing properties of the random
boundary and body forcing in the random PDE system (1)–(2).

(Hg) For every t, g(t, ·) is Lipschitz continuous in u with Lipschitz constant Lg and
g(t, 0) = 0. For every u ∈ H , g(·, u) is an H-valued stationary random process and is
strongly mixing with an exponential rate γ > 0. That is,

sup
s≥0

sup
U∈Gs

0 ,V ∈G∞
s+t

|P(U ∩ V ) − P(U )P(V )| ≤ e−γ t , t ≥ 0,

where 0 ≤ s ≤ t ≤ ∞, and G t
s = σ {g(τ, u) : s ≤ τ ≤ t} is the σ -algebra generated

by {g(τ, u) : s ≤ τ ≤ t}.
(Hf ) The process f (t) is a bounded continuous differentiable process, and the time deriva-

tive process ft (t) is a bounded stationary process with Eft = 0. Furthermore, ft is
strong mixing with exponential rate, that is

sup
s≥0

sup
U∈F s

0 ,V ∈F∞
s+t

|P(U ∩ V ) − P(U )P(V )| ≤ e−λt , t ≥ 0,

where 0 ≤ s ≤ t ≤ ∞, λ > 0, and F t
s = σ {ft (τ ) : s ≤ τ ≤ t} is the σ -algebra gener-

ated by {ft (τ ) : s ≤ τ ≤ t}.

Remark 1. Taking time derivative on the random boundary condition, we have

uε
t = uε

xx + g(t/ε, uε) , uε(x, 0) = u0

uε
t (0, t) = 1√

ε
ft (t/ε), uε

t (l, t) = 0,

which is a system with a random dynamical boundary condition.

To “homogenize” the inhomogeneous boundary condition in the system (1)–(2), we
transform the random boundary condition to the field equation by introducing a new
random field ûε(x, t) = uε(x, t) − √

εf (t/ε)(1 − x
l
). Then, ûε

xx = uε
xx and the system

(1)–(2) becomes

ûε
t (x, t) = ûε

xx(x, t) + g(t/ε, uε(x, t)) − 1√
ε
ft (t/ε)

(
1 − x

l

)
, (3)

ûε(x, 0) = u0 − √
εf (0)

(
1 − x

l

)
, (4)

ûε(0, t) = 0, ûε(l, t) = 0, (5)
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Ensemble Averaging for Dynamical Systems 947

which is a random system with homogeneous boundary conditions. By the assumption
(Hf ), f is bounded. Thus,

E sup
t0≤t≤T

‖ûε(t) − uε(t)‖0 = √
εE

[
sup

t0≤t≤T

|f (t/ε)|]‖1 − x

l
‖0 → 0 , ε → 0 . (6)

So in the following subsections, we consider ûε in space C(t0, T ; H ) for some T > t0 > 0,
and derive an ensemble averaged equation to be satisfied by the limit of ûε .

2.1. Tightness

In this section, we examine the tightness of the distribution of ûε in space of continuous
functions, C(t0, T ; H ), for all fixed T > t0 > 0.

In the mild or integral formulation, Equation (3) becomes

ûε(t) = S(t)ûε(0) +
∫ t

0
S(t − s)g

( s

ε
, uε(s)

)
ds − 1√

ε

∫ t

0
S(t − s)ft

( s

ε

) (
1 − x

l

)
ds .

By the properties of the semigroup S(t), we have

‖ûε(t)‖0 ≤ ‖ûε(0)‖0 +
∫ t

0
‖g

( s

ε
, uε(s)

)
‖0 ds + 1√

ε

∥∥∥∥
∫ t

0
S(t − s)ft

( s

ε

) (
1 − x

l

)
ds

∥∥∥∥
0

,

and by the assumption (Hg),

‖g
( s

ε
, uε(s)

)
‖0 ≤ Lg‖uε(s)‖0 ≤ Lg(‖ûε(s)‖0 +

√
εlCf ) . (7)

Then we have, for every T > 0 and 0 < t ≤ T ,

E sup
0≤s≤t

‖ûε(s)‖0 ≤ ‖ûε(0)‖0 + Lg

∫ t

0
sup

0≤r≤s

‖ûε(r)‖0 ds

+ CT,1 + sup
0≤s≤t

‖I ε(s)‖0, (8)

where CT,1 is a positive constant depending only on Lg , l, and Cf , and

I ε(t) := 1√
ε

∫ t

0
S(t − s)ft

( s

ε

) (
1 − x

l

)
ds .

Next we treat the singular term I ε(t). By the factorization method [2], for some 0 < α < 1,

I ε(t) = sin πα

α

∫ t

0
(t − s)α−1S(t − s)Y ε(s) ds,

with

Y ε(s) = 1√
ε

∫ s

0
(s − r)−αft

( r

ε

)
S(s − r)

(
1 − x

l

)
dr . (9)

Then, for every T > 0, there is a positive constant CT,2 such that

E sup
0≤s≤t

‖I ε(s)‖2
0 ≤ CT,2

∫ t

0
E‖Y ε(s)‖2

0 ds , 0 ≤ t ≤ T .
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948 Wang et al.

Notice that

E‖Y ε(s)‖2
0 = 1

ε

∫ s

0

∫ s

0
(s − r)−α(s − τ )−α

E

[
ft

( r

ε

)
ft

(τ

ε

)]
× S(s − r)

(
1 − x

l

)
S(s − τ )

(
1 − x

l

)
drdτ ,

by the assumption (Hf ). For every T > 0, there is a positive constant CT,3 such that for all
0 ≤ t ≤ T ,

E sup
0≤s≤t

‖I ε(s)‖0 ≤ CT,3 . (10)

Hence, for every T > 0, applying the Gronwall inequality to (8), we obtain

E sup
0≤t≤T

‖ûε(t)‖0 ≤ CT (1 + ‖ûε(0)‖0), (11)

for some constant CT > 0. Furthermore, from the mild form of ûε , by the fact that
‖S(t)u‖1 ≤ 1√

t
‖u‖0, we have

‖ûε(t)‖1 ≤ 1√
t
‖ûε(0)‖0 +

∫ t

0

1√
t − s

‖g(
s

ε
, uε(s))‖0 ds + ‖I ε(s)‖1 . (12)

We now consider the term ‖I ε(s)‖1. Still by the factorization method,

‖I ε(t)‖1 ≤ sin α

π

∫ t

0
(t − s)α−1‖S(t − s)Y ε(s)‖1 ds

≤ sin α

π

∫ t

0
(t − s)α−1 1√

t − s
‖Y ε(s)‖0 ds,

where Y ε(s) is defined by (9). Then, choose α with 1/2 < α < 1, and by the same discussion
for (10), we conclude that for every T > 0

E‖I ε(t)‖1 ≤ CT,5 , 0 ≤ t ≤ T

for some constant CT,5 > 0. Then for t0 > 0, from (7) and (12), and by Gronwall inequality
we have

E‖ûε(t)‖1 ≤ CT , t0 ≤ t ≤ T , (13)

for some constant CT > 0.
To show the tightness of the distributions of ûε , we need a Hölder estimate in time. For

every 0 ≤ s < t ≤ T ,

‖ûε(t) − ûε(s)‖0 ≤ ‖(S(t) − S(s))ûε(0)‖0 +
∥∥∥∥
∫ t

s

S(t − σ )g
(σ

ε
, uε(σ )

)
dσ

∥∥∥∥
0

+ 1√
ε

∥∥∥∥
∫ t

s

S(t − σ )ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥
0

+
∥∥∥∥
∫ s

0
[S(t − σ ) − S(s − σ )]g

(σ

ε
, uε(σ )

)
dσ

∥∥∥∥
0
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Ensemble Averaging for Dynamical Systems 949

+ 1√
ε

∥∥∥∥
∫ s

0
[S(t − σ ) − S(s − σ )] ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥
0

.

By the estimate on ‖ûε(t)‖0 and (7), we have for some constant CT > 0,

E

∥∥∥∥
∫ t

s

S(t − σ )g
(σ

ε
, uε(σ )

)
dσ

∥∥∥∥
2

0

≤ CT |t − s|.

Moreover, by the strong continuity of the semigroup S(t), we also have

E

∥∥∥∥
∫ s

0
[S(t − σ ) − S(s − σ )] g

(σ

ε
, uε(σ )

)
dσ

∥∥∥∥2

0

≤ CT |t − s| .

Now consider for the singular terms. First, notice that (1 − x/l) is smooth. We have

S(t − σ )
(

1 − x

l

)
∈ L∞(0, l) .

Therefore,

E
1

ε

∥∥∥∥
∫ t

s

∫ t

s

S(t − σ )ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥
2

0

=
∫ t

s

∫ t

s

1

ε
E

[
ft

(σ

ε

)
ft

(τ

ε

)] ∫ l

0
S(t − σ )

(
1 − x

l

)
S(t − τ )

(
1 − x

l

)
dx dσdτ

≤ Cl,T

∫ t

s

∫ t

s

1

ε
E

[
ft

(σ

ε

)
ft

(τ

ε

)]
dσdτ,

for a positive constant Cl,T depending on T and l. Now by (Hf ), we have

E
1

ε

∥∥∥∥
∫ t

s

S(t − σ )ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥
2

0

≤ Cl,T |t − s| .

Furthermore,

E
1

ε

∥∥∥∥
∫ s

0
[S(t − σ ) − S(s − σ )]ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥2

0

= 1

ε

∑
k

lk

∫ s

0

∫ s

0
Eft

(σ

ε

)
ft

(τ

ε

) [
e−λk (t−σ ) − e−λk (s−σ )

]
× [

e−λk (t−τ ) − e−λk (s−τ )
]

dσ dτ,

where

lk =
∫ l

0
(1 − x

l
)ek(x) dx .

Then still by (Hf ), we have for some constant CT > 0

E
1

ε

∥∥∥∥
∫ s

0
[S(t − σ ) − S(s − σ )] ft

(σ

ε

) (
1 − x

l

)
dσ

∥∥∥∥2

0

≤ CT |t − s| .
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950 Wang et al.

Combining all the above estimates we have for some constant CT > 0 such that for 0 ≤
s < t ≤ T

E‖ûε(t) − ûε(s)‖2
0 ≤ CT |t − s| . (14)

Now we need the following lemma [7]. Suppose X1 and X2 are two Banach spaces. Let
T > 0, 1 ≤ p ≤ ∞, and B be a compact operator from X1 to X2. That is, B maps bounded
subsets of X1 to relatively compact subsets of X2.

Lemma 1 ([7]). Let H be a bounded subset of L1(0, T ;X1) such that G = BH is a subset
of Lp(0, T ;X2) bounded in Lr (0, T ;X2) with r > 1. If

lim
σ→0

‖u(· + σ ) − u(·)‖Lp(0,T ;X2) = 0 uniformly for u ∈ G,

then G is relatively compact in Lp(0, T ;X2) (and in C(0, T ;X2) if p = +∞).

Then by the above lemma we have the following tightness result.

Lemma 2. (Tightness) Assume that both (Hg) and (Hf ) hold. For every 0 < t0 < T , the
distribution of {ûε}0<ε≤1 is tight in space C(t0, T ; H ).

Proof. Let X1 = H 1
0 (0, l), X2 = L2(0, l) and B being the embedding from X1 to X2. By

estimate (13) for some constant CT > 0

E‖ûε‖L1(t0,T ;X1) < CT ,

then by the Markov inequality for each κ > 0, there is K1 > 0 such that

P{‖ûε‖L1(t0,T ;X1) ≤ K1} ≥ 1 − CT

K1
≥ 1 − κ

2
. (15)

Further, noticing estimate (14), by the Garcia–Rademich–Rumsey theorem [5], for
some constant CT > 0

E‖ûε‖C1/2(0,T ;L2(0,l)) ≤ CT .

Then still by Markov inequality for each κ > 0 there is K2 > 0 such that

P

{
sup

0≤t≤T ,0<σ<T −t

‖ûε(t + σ ) − ûε(t)‖0√
σ

≤ K2

}
≥ 1 − CT

K2
≥ 1 − κ

2
. (16)

Now define sets

S1 = {u ∈ L1(t0, T ;X1) : ‖u‖L1(t0,T ;X1) ≤ K1}

and

S2 =
{
u ∈ S1 :

‖u(t + σ ) − u(t)‖0√
σ

≤ K2 , t0 < t < T , 0 < σ < T − t

}
.
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Ensemble Averaging for Dynamical Systems 951

Then by the estimates (15) and (16)

P{ûε ∈ S2} > 1 − κ .

By the definition of S2, for each u ∈ S2

lim
σ→0

sup
t0<t<T

‖u(t + σ ) − u(t)‖0 = 0.

Then by Lemma 1, set S2 is compact in space C(t0, T ;X2), that is the distributions of
{ûε}0<ε≤1 is tight in space C(t0, T ; H ). The proof is complete. �

2.2. Ensemble Averaging

Next we use the weak convergence method [6] to pass the limit ε → 0. In this approach we
construct a martingale which has the following form

�(t) −
∫ t

0
Aε�(s) ds,

for some F t
0-process �(t) defined by zε

1(t) and Aε , which is a pseudo differential operator
to be introduced later.

Because of the tightness of ûε in space C(t0, T ; H ) for every fixed t0 > 0, in or-
der to determine the limit equation of ûε in space C(t0, T ; H ), we consider the limit of
�(〈ûε(t), ϕ〉), for every bounded second-order differentiable function � : R → R and for
every compactly supported smooth function ϕ ∈ C∞

b (0, l).
First, we have

�(〈ûε(t), ϕ〉) − �(〈u0, ϕ〉) =
∫ t

0
�′(〈ûε(s), ϕ〉)〈ûε(s), ϕxx〉 ds

+
∫ t

0
�′(〈ûε(s), ϕ〉)

〈
g

( s

ε
, ûε(s)

)
, ϕ

〉
ds

− 1√
ε

∫ t

0
�′(〈ûε(s), ϕ〉)

〈
ft

( s

ε

) (
1 − x

l

)
, ϕ

〉
ds . (17)

To treat the singular term in (17), we apply a perturbation method in [6, Chapter 7]. To this
end, we define the following two processes

Fε
0 (t) := 1√

ε

∫ ∞

t

E

[
f ε

t

( s

ε

)
|F t/ε

0

]
ds (18)

and

Fε
1 (t) := 1√

ε
E

[∫ ∞

t

�′(〈ûε(t), ϕ〉)
〈
ft

( s

ε

) (
1 − x

l

)
, ϕ

〉
ds

∣∣∣F t/ε

0

]

= �′(〈ûε(t), ϕ〉)
〈
1 − x

l
, ϕ

〉
Fε

0 (t). (19)

Then we have the following lemma.
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952 Wang et al.

Lemma 3. Assume that (Hf ) holds. Then

E|Fε
1 (t)| ≤ C

√
ε,

for some constant C > 0and

E sup
0≤t≤T

|Fε
1 (t)| → 0 , ε → 0 ,

for every T > 0.

Proof. By the boundedness of ftand the strong mixing property, we have

E|Fε
0 (t)| ≤ C

√
ε (20)

for some constant C > 0. Then by the choice of �, the proof is complete. �

Now we apply a diffusion approximation to derive the limit of ûε in the sense of
distribution. For this we introduce the following operator

Aε�(t) = P- lim
δ→0

1

δ
E

[
�(t + δ) − �(t)|F t/ε

0

]
(21)

for F t/ε

0 measurable function �(t) with supt E|�(t)| < ∞. Using Ethier and Kurtz’s result
[4, Proposition 2.7.6], we know that

�(t) −
∫ t

0
Aε�(s) ds

is a martingale with respect to F t/ε

0 . Define processes Y ε and Zε as follows

Y ε(t) = �(〈ûε(t), ϕ〉) − Fε
1 (t) , Zε(t) = AεY ε(t) .

A direct calculation yields

Zε(t) = �′(〈ûε(t), ϕ〉)[〈ûε(t), ϕxx〉 + 〈g(t/ε, uε(t)), ϕ〉]
− �′′(〈ûε(t), ϕ〉)

〈(
1 − x

l

)
, ϕ

〉2 1√
ε
ft

(
t

ε

)
Fε

0 (t)

+ �′′(〈ûε(t), ϕ〉)
[
〈ûε(t), ϕxx〉 +

〈
g

(
t

ε
, uε(t)

)
, ϕ

〉 ] 〈
1 − x

l
, ϕ

〉
Fε

0 (t)

:= Zε
1(t) + Zε

2(t) + Zε
3(t) . (22)

Next we pass the limit ε → 0 for ûε(t) in space C(t0, T ; H ). By the convergence result
of Walsh [12, Theorem 6.15], we only need to consider finite dimensional distributions
of {〈ûε(t), ϕ1〉, . . . , 〈ûε(t), ϕn〉} for every ϕ1 , . . . , ϕn ∈ C∞

b (0, l). That is, we pass limit
ε → 0 in

E

{[
Y ε(t) − Y ε(s) −

∫ t

s

Zε(r) dr

]
h(〈ûε(r1), ϕ1〉, . . . , 〈ûε(rn), ϕn〉)

}
= 0
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Ensemble Averaging for Dynamical Systems 953

for every bounded continuous function h and 0 < r1 < · · · < rn < T with T > 0. Denote
by û one limit point in the sense of distribution of ûε as ε → 0 in space C(t0, T ; H ). For
simplicity we assume ûε converges in distribution to û as ε → 0. Then by the estimates in
Lemma 3 we have

Y ε(t) − Y ε(s) → �(〈û(t), ϕ〉) − �(〈û(s), ϕ〉) (23)

in distribution.
Consider the integral term in (17). First, we need the following lemma whose proof is

given in Appendix A.

Lemma 4. The following convergence in probability holds:∫ t

0

[
g(r/ε, uε(r)) − ḡ(uε(r))

]
dr → 0 , ε → 0 .

Then by this lemma, we have∫ t

s

Zε
1(r) dr →

∫ t

s

�(〈û(r), ϕ〉) [〈û(r), ϕxx〉 + 〈ḡ(û(r)), ϕ〉] dr (24)

in distribution as ε → 0. By the the estimate (20), we have

E

∫ t

s

|Zε
3(r)| dr → 0 . (25)

Now we consider Zε
2(t). Define a bilinear operator

〈�ϕ, ϕ〉 = b

∫ l

0

∫ l

0

(
1 − x

l

)
ϕ(x)

(
1 − y

l

)
ϕ(y) dx dy, (26)

where b is the variance of ft , which is constant defined as

b := 2Eft (t)ft (t) > 0 . (27)

We again apply a perturbation method. Set

Fε
2 (t) := −�

′′
(〈ûε(t), ϕ〉)

〈(
1 − x

l

)
, ϕ

〉2 1√
ε

∫ ∞

t

E

[
ft

( s

ε

)
Fε

0 (s) − 1

2
b
∣∣F t/ε

0

]
ds .

(28)
By the properties of conditional expectation, the definition of Fε

0 and the fact of F t
0 ⊂ F s

0
for s ≥ t ,

1√
ε

∫ ∞

t

E

[
ft

( s

ε

)
Fε

0 (s) − 1

2
b
∣∣F t/ε

0

]
ds

= 1

ε

∫ ∞

t

∫ ∞

s

E

[
ft

( s

ε

)
ft

(τ

ε

)
− 1

2
b|F t/ε

0

]
dτds.

Then, by the strong mixing properties of ft in the assumption (Hf ), we have as ε → 0

sup
t≥0

EFε
2 (t) = O(ε) .
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954 Wang et al.

Furthermore, by the same calculation as for Zε(t), we have the following lemma.

Lemma 5. The following result holds:

AεF ε
2 (t) = −�′′(〈ûε(t), ϕ〉)

〈(
1 − x

l

)
, ϕ

〉2 1√
ε

[
ft

(
t

ε

)
Fε

0 (t) − 1

2
b

]
+ Rε

1(t) (29)

with E|Rε
1(t)| = O(ε) as ε → 0.

Now we have the following F t/ε

0 -martingale

Mε
t := �(〈ûε(t), ϕ〉) − Fε

1 (t) − Fε
2 (t) −

∫ t

0
�′(〈ûε(s), ϕ〉)[〈ûε(s), ϕxx〉

+ 〈ḡ(ûε(s)), ϕ〉] ds + 1

2

∫ t

0
�′′(〈ûε(s), ϕ〉)〈�ϕ, ϕ〉 ds + Rε(t)

with E|Rε(t)| = O(ε) as ε → 0. Then by passing the limit ε → 0, the distribution of the
limit u of ûε solves the following martingale problem

M(τ ) = �(〈u(t), ϕ〉) −
∫ t

0
�′(〈u(s), ϕ〉)[〈u(s), ϕxx〉 + 〈ḡ(u(s)), ϕ〉] ds

+ 1

2

∫ t

0
�′′(〈u(s), ϕ〉)〈�ϕ, ϕ〉 ds, (30)

which is equivalent to the fact that u is the martingale solution of the following stochastic
PDE:

du = [uxx + ḡ(u)] dt −
√

b
(

1 − x

l

)
dB(t), (31)

where B is a usual scalar Brownian motion, and b is the variance of ft as defined in (27).
Finally, by the uniqueness of the solution to equation (31), we have the following main

result on ensemble averaging under a random boundary condition.

Theorem 1. (Ensemble averaging under a random boundary condition)
For every t0 > 0 and T > t0, the solution uε , of the random PDE system (1), converges

in distribution to u in space C(t0, T ; H ), with u solving the limit equation (31).

3. Ensemble Averaging Under Fast Oscillating Random Body Forcing

In this section, we consider the special case when the random boundary condition is absent.
The approach to derive ensemble averaged model in the last section is applicable in this
case. But our goal here is to further show that the deviation process, uε −u, can be quantified
as the solution of a linear stochastic partial differential equation.

We consider the following PDE with random oscillating body forcing on a bounded
interval (0, l)

uε
t = uε

xx + g(t/ε, uε) , uε(x, 0) = u0, uε(0, t) = 0, uε(l, t) = 0. (32)

Here, we still make the assumption (Hg) on the random body forcing g.
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Ensemble Averaging for Dynamical Systems 955

We introduce the notation ϕ(t) to quantify the mixing as follows

ϕ(t) � sup
s≥0

sup
U∈Gs

0 ,V ∈G∞
s+t

|P(U ∩ V ) − P(U )P(V )| .

By the above assumption, for each α > 0∫ ∞

0
ϕα(t) dt < ∞ .

For the random oscillating PDE (32) we have an averaging principle as above. Introduce
the following averaged equation

ut = uxx + ḡ(u) , u(0) = u0, (33)

where ḡ(u) = Eg(t, u) = limT →∞ 1
T

∫ T

0 g(s/ε, u) ds. Define the deviation process

zε(t) := 1√
ε

(uε(t) − u(t)) . (34)

Then the following averaging principle will be established.

Theorem 2. (Ensemble averaging under random body forcing)
Assume that (H) holds. Then, given a T > 0, for every u0 ∈ H , the solution uε(t, u0)

of (32) converges in probability to the solution u of (33) in C(0, T ; H ). Moreover, the rate
of convergence is

√
ε, that is, for each κ > 0 there is Cκ

T > 0 such that

P

{
sup

0≤t≤T

‖uε(t) − u(t)‖0 ≥ Cκ
T

√
ε

}
≤ κ . (35)

Furthermore, the deviation process zε converges in distribution in the space C(0, T ; H ) to
z, which solves the following linear stochastic PDE

dz(t) = [zxx(t) + g′(u(t))z(t)] dt + dW̃ , z(0) = z(l) = 0, (36)

where

g′(u) = Eg′
u(t, u)

and W̃ (t) is an H-valued Wiener process defined on a new probability space (�̄, F̄ , P̄) with
the covariance operator

B̃(u) = 2
∫ ∞

0
E [(g(t, u) − ḡ(u)) ⊗ (g(0, u) − ḡ(u))] dt .

Remark 2. This deviation result is similar to the averaging results for random PDEs in
[3, 11].

Proof. First by the assumption of Lipschitz property on g in (H), and noticing that there
is no singular term here, standard energy estimates yield that for every T > 0

sup
0≤t≤T

‖uε(t)‖2
1 ≤ CT , (37)
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956 Wang et al.

and

‖uε(t) − uε(s)‖0 ≤ CT |t − s| , 0 ≤ s ≤ t ≤ T , (38)

with some positive constant CT . Then we have the tightness of the distributions of uε in
space C(0, T ; H ) for every T > 0.

Notice also that uε(t) satisfies

uε(t) = S(t)u0 +
∫ t

0
S(t − s)g(s/ε, uε(s)) ds ,

and for every ϕ ∈ H

〈uε(t), ϕ〉 = 〈S(t)u0, ϕ〉 +
∫ t

0
〈S(t − s)g(s/ε, uε(s)), ϕ〉 ds .

By passing the limit ε → 0, we can just consider the integral term in the above equation. By
the tightness of the distributions of uε , we can follow the same discussion as in Appendix
A which yields the averaged equation (33) and the esitmate (35).

We next consider the deviation process zε . By the definition of zε ,

żε = zε
xx + 1√

ε
[g(t/ε, uε) − ḡ(u)] , zε(0) = 0,

with the zero Dirichlet boundary condition. For every α > 0,

‖Aαzε(t)‖0 =
∥∥∥∥ 1√

ε

∫ t

0
AαeA(t−s)

[
g

( s

ε
, uε(s)

)
− ḡ(u(s))

]
ds

∥∥∥∥
0

≤
∥∥∥∥ 1√

ε

∫ t

0
AαeA(t−s)

[
g

( s

ε
, uε(s)

)
− g

( s

ε
, u(s)

)]
ds

∥∥∥∥
0

+
∥∥∥∥ 1√

ε

∫ t

0
AαeA(t−s)

[
g

( s

ε
, u(s)

)
− ḡ(u(s))

]
ds

∥∥∥∥
0

:= I1(t) + I2(t) .

Notice that for 0 < α < 1/2,

1√
ε
‖AαeA(t−s)

[
g

( s

ε
, uε(s)

)
− g

( s

ε
, u(s)

)]
‖0 ≤ C

(
1 + 1√

s

)
Lg‖zε‖0,

for some constant C > 0. Then

E sup
0≤t≤T

I1(t) ≤ CT ,

for some constant CT > 0. For I2, by the factorization method again, we have

I3 = sin πθ

θ

∫ t

0
(t − s)θ−1eA(t − s)AαY ε(s) ds,

where Y ε is defined as

Y ε(s) = 1√
ε

∫ s

0
(s − r)θ eA(s−r)

[
g

( r

ε
, u(r)

)
− ḡ(u(r))

]
dr.
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Ensemble Averaging for Dynamical Systems 957

Then

E sup
0≤t≤T

I2(t) ≤ CT

∫ T

0
E‖AαY ε(s)‖0 ds,

for some CT > 0. Notice that

‖AαY ε(s)‖2
0 = 1

ε

∫ l

0

∫ s

0

∫ s

0
(s − r)θ (s − τ )θAαeA(s−r)

[
g

( r

ε
, u(r, x)

)
− ḡ(u(r, x))

]
× AαeA(s−τ )

[
g

(τ

ε
, u(τ, x)

)
− ḡ(u(τ, x))

]
drdτdx . (39)

A standard discussion for the averaged equation yields that

sup
0≤t≤T

‖u(t)‖2
1 ≤ CT ,

for some constant CT > 0. Then AαeA(s−r)[g( r
ε
, u(r, x)) − ḡ(u(r, x))] ∈ Gr

0 and
AαeA(s−τ )[g( τ

ε
, u(τ, x))− ḡ(u(τ, x))] ∈ G∞

τ and they are bounded real-valued random vari-
ables for fixed x ∈ (0, l). Applying a mixing property [4, Proposition 7.2.2] and choosing
positive parameters α and θ so that α + θ < 1/2, we have

E‖AαY ε(s)‖2
0 ≤ CT , 0 ≤ s ≤ T ,

and then

E sup
0≤t≤T

I2(t) ≤ CT ,

for some constant CT > 0. So for some α > 0,

E‖zε‖C(0,T ;Hα/2) ≤ CT .

Furthermore, for s, t with 0 ≤ s < t ≤ T ,

‖zε(t) − zε(s)‖2
0 = 2

ε

∥∥∥∥
∫ t

s

eA(t−r)[g(r/ε, uε(r)) − ḡ(u(r))] dr

∥∥∥∥
2

0

+ 2

ε

∥∥∥∥(I − eA(t−s))
∫ s

0
eA(s−r)[g(r/ε, uε(r)) − ḡ(u(r))]dr

∥∥∥∥2

0

.

Then via a similar discussion as that for (39), we conclude that for some 0 < γ < 1,

E‖zε(t) − zε(s)‖2
0 ≤ CT |t − s|γ ,

which yields the tightness of the distributions of zε in C(0, T ; H ).
We decompose zε = zε

1 + zε
2 so that

żε
1 = Azε

1 + 1√
ε

[g(t/ε, u) − ḡ(u)] , zε
1(0) = 0,

and

żε
2 = Azε

2 + 1√
ε

[g(t/ε, uε) − g(t/ε, u)] , zε
2(0) = 0 .
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958 Wang et al.

For ϕ ∈ C∞
b (0, l), we also consider the limit �(〈zε

1(t), ϕ〉) for every bounded second
order differentiable function � : R → R in the weak convergence method. Notice that

�(〈zε
1(t), ϕ〉) − �(〈0, ϕ〉) =

∫ t

0
�′(〈zε

1(s), ϕ〉)〈zε
1(s), ϕxx〉 ds

+ 1√
ε

∫ t

0
�′(〈zε

1(s), ϕ〉)〈g(
s

ε
, u(s)) − ḡ(u(s)), ϕ〉 ds .

Define the following process

Gε
1(t) := 1√

ε
E

[∫ ∞

t

�′ (〈zε
1(t), ϕ

〉) 〈
g

( s

ε
, u(t)

)
− ḡ(u(t)), ϕ

〉
ds

∣∣∣G t/ε

0

]
. (40)

A direct calculation yields that

Gε(t) := Aε�(〈zε
1(t), ϕ〉) − AεGε

1(t) = �′(〈zε
1(t), ϕ〉)〈zε

1(t), Aϕ〉 + �′′(〈zε
1(t), ϕ〉)

× 1

ε

∫ ∞

t

E

[〈
g

(
t

ε
, u(t)

)
− ḡ(u(t)), ϕ

〉 〈
g

( s

ε
, u(t)

)
− ḡ(u(t)), ϕ

〉
|G t/ε

0

]
ds

+ �′′(〈zε
1(t), ϕ〉)〈zε

1(t), Aϕ〉 1√
ε

∫ ∞

t

E

[〈
g

( s

ε
, u(t)

)
− ḡ(u(t)), ϕ

〉
|G t/ε

0

]
ds .

Define two bilinear operators

Bε(u, s, t) := 2

[
g

(
t

ε
, u

)
− ḡ(u)

]
⊗

[
g

( s

ε
, u

)
− ḡ(u)

]
,

and

B̃(u) := 2
∫ ∞

0
E [(g(t, u) − ḡ(u)) ⊗ (g(0, u) − ḡ(u))] dt .

Then by a mixing property [4, Proposition 7.2.2], we have

E|Gε
1(t)| → 0 ,

E

∣∣∣∣�(〈zε
1(t), ϕ〉)

[
1

ε

∫ ∞

t

E

[
1

2
〈Bε(u(t), s, t)ϕ, ϕ〉 ∣∣F t/ε

0

]
ds − 1

2

〈
B̃(u(t))ϕ, ϕ

〉]∣∣∣∣ → 0,

and

E

∣∣∣∣�′′(〈zε
1(t), ϕ〉)〈zε

1(t), Aϕ〉 1√
ε

∫ ∞

t

E

[〈
g

( s

ε
, u(t)

)
− ḡ(u(t)), ϕ

〉
|G t/ε

0

]
ds

∣∣∣∣ → 0,

as ε → 0. Then we also have a martingale

Mε
t := �(〈zε

1(t), ϕ〉) −
∫ t

0
�′(〈zε

1(s), ϕ〉)〈zε
1(s), ϕxx〉 ds

− 1

2

∫ t

0
�′′(〈zε

1(s), ϕ〉)〈B̃(u)ϕ, ϕ〉 ds + O(ε) .
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Ensemble Averaging for Dynamical Systems 959

By passing the limit ε → 0 and by the same discussion as in Section 2, we see that zε
1

converges in distribution to z1, which solves

dz1 = Az1 +
√

B̃(u)dW̃ , z1(0) = 0, (41)

where W̃ is a cylindrical Wiener process defined on a new probability space (�̄, F̄ , P̄) with
covariance operator IdH . Furthermore, zε

2 converges in distribution to z2, which solves

ż2 = Az2 + g′(u)z , z2(0) = 0 .

Then zε converges in distribution to z with z solving (36). The proof is complete. �

Remark 3. The assumption on the strong mixing property in (H ) can be weakened as∫ ∞

0
ϕα(t) dt < ∞,

for some α > 0. In this case, we also have Theorem 2. See [15, 11] for more details.
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Appendix

Proof of Lemma 4

A similar result has been given in [11, Proposition 7]. Here we present another proof which
gives a stronger convergence, together with the convergence rate in probability.

First, under the assumption (Hg), we show that for almost all ω ∈ �,∥∥∥∥
∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr

∥∥∥∥
0

= O(
√

ε) , ε → 0, (A.1)

for every q ∈ H .
Noticing ∫ t

0
[g(r/ε, q) − ḡ(q)] dr ∈ H ,

we get∥∥∥∥
∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr

∥∥∥∥
0

= sup
ϕ∈H

1

‖ϕ‖0

∣∣∣∣
〈∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr, ϕ

〉∣∣∣∣ .
Consider

E

〈∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr, ϕ

〉2

=
∫ t

0

∫ t

0
E

〈
g

( r

ε
, q

)
− ḡ(q), ϕ

〉 〈
g

( s

ε
, q

)
− ḡ(q), ϕ

〉
drds .

By a mixing property [4, Proposition 7.2.2 ], we have

E

〈∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr, ϕ

〉2

= O(ε)‖ϕ‖0. (A.2)

Noticing that

∥∥∥∥
∫ t

0

[
g

( r

ε
, q

)
− ḡ(q)

]
dr

∥∥∥∥
0

= sup
ϕ∈H

〈∫ t

0

[
g

(
r
ε
, q

) − ḡ(q)
]

dr, ϕ
〉

‖ϕ‖0
,
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by estimate (43) we have (42).
By the estimate in Section 2.1, for every κ > 0, there is Cκ

T > 0, which is independent
of ε, such that

P
{‖ûε(t) − ûε(s)‖0 ≤ Cκ

T

√
t − s

} ≥ 1 − κ, (A.3)

for every t ≥ s ≥ 0. Furthermore, by the tightness of the distributions of {uε} in space
C(0, T ; H ), for every κ > 0, there is a compact set Kκ ⊂ C(0, T ; H ) such that

P{uε ∈ Kκ} ≥ 1 − κ . (A.4)

So we define

�κ = {ω ∈ � : events in (42) , (44) and (45) hold} .

Due to the compactness of Kκ , for every ε > 0, we only need to consider a finite ε-net
{q1 , q2 , . . . , qN } in C(0, T ; H ), which covers {uε}. Without loss of generality, we assume
that qj , j = 1, 2, . . . , N , are simple functions [11].

Now we consider all ω ∈ �κ . By the construction of ûε and boundedness of f , we have
for ω ∈ �κ

‖uε(t) − uε(s)‖0 ≤ Cκ
T

√
t − s + √

εC,

for some constant C > 0.
For every δ > 0, we partition the interval [0, T ] into subintervals of length of δ. Then

for t ∈ [kδ, (k + 1)δ), 0 ≤ k ≤ [ T
δ

],∥∥∥∥
∫ t

kδ

[
g

( r

ε
, uε(r)

)
− ḡ(uε(r))

]
dr

∥∥∥∥
0

≤
∥∥∥∥
∫ t

kδ

[
g

( r

ε
, uε(r)

)
− g(

r

ε
, uε(kδ))

]
dr

∥∥∥∥
0

+
∥∥∥∥
∫ t

kδ

[
g

( r

ε
, uε(kδ)

)
− g(

r

ε
, qj (kδ))

]
dr

∥∥∥∥
0

+
∥∥∥∥
∫ t

kδ

[
g

( r

ε
, qj (kδ)

)
− ḡ(qj (kδ))

]
dr

∥∥∥∥
0

+
∥∥∥∥
∫ t

kδ

[
ḡ(qj (kδ)) − ḡ(uε(kδ))

]
dr

∥∥∥∥
0

+
∥∥∥∥
∫ t

kδ

[
ḡ(uε(kδ)) − ḡ(uε(r))

]
dr

∥∥∥∥
0

,

for some qj . Notice that, by the assumption (Hg) and the definition of ḡ, ḡ is also Lipschitz
continuous in u with the same Lipschitz constant Lg . Then by the assumption (Hg) and the
definition of �κ ,∥∥∥∥

∫ t

0

[
g(

r

ε
, uε(r)) − ḡ(uε(r))

]
dr

∥∥∥∥
0

≤ T [LgC
κ
T δ + √

εC + Lgε + O(
√

ε) + Lgε + LgC
κ
T δ + √

εC] .

Due to the arbitrary choice of δ, ε, and κ , and notice a similar discussion as that in [11], we
thus complete the proof. �
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