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Dynamic spreading on pillar-arrayed surfaces:
Viscous resistance versus molecular friction
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of Sciences, Beijing 100190, People’s Republic of China

(Received 20 June 2014; accepted 29 August 2014; published online 12 September 2014)

The dynamic spreading of a liquid droplet on micropillar-arrayed surfaces is experi-
mentally investigated. A theoretical model is proposed to include energy dissipations
raised from both the viscous resistance at mesoscale and the molecular friction at
microscale in the triple-phase region. The scaling laws and spreading shape of the
droplet change with the variation of the liquid viscosity because of the competition
between these two mechanisms of energy dissipations at the moving contact line. The
Laplace pressures at the interior corner and at the wavy contact line are the answers
to the excess driving energy and the superwetting on pillar-arrayed surfaces. The
formation and evolution of the bulk and the fringe are also analyzed in detail. Our
results may help to understand the wetting dynamics on microtextured surfaces and
assist the future design of engineered surfaces in practical applications. C© 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4895497]

I. INTRODUCTION

The spreading of a droplet on a smooth substrate has been intensively studied for decades.1–3

Considering a droplet of radius R0 be much smaller than the capillary length LC A = √
γLV /ρg (γLV ,

ρ, and g are, respectively, the liquid-vapor interface energy, liquid density, and the gravitational
acceleration), the surface tension drives the droplet to spread (Fig. 1). There are essentially two
theoretical models to interpret the energy dissipation at the moving contact line (MCL) and therefore
leading to two scaling laws. In the framework of the hydrodynamics, the energy dissipation caused
by viscous resistance takes place at mesoscale L. L is the size of mesoscale region, which is estimated
as L ∼ Ca · R/θ , base on where the profile turns from concave to convex, where Ca = μU/γLV , R,
μ, U, and θ are, respectively, the capillary number, instant radius, viscosity, spreading velocity, and
instant contact angle (Fig. 1(b)).4 A rapid bending of the meniscus connects the quasi-static macro-
and micro-scale Lm, resulting a viscous dissipation of Dvis ∼ μ ln (R0/Lm) U 2/θ . Lm is a microscopic
neighborhood of the contact line (of the size of nanometer), where molecular details matter and a
molecular description needs to be adopted. The consequent scaling law of the spreading radius is
R ∼ t1/10, where t is the spreading time.5 In the framework of molecular kinetic theory (MKT),
the energy dissipation caused by adsorption and desorption of liquid molecules on a solid occurs at
molecular scale Lm (Fig. 1(c)).6 The liquid molecules jump between the adsorption sites separated
by a distance λ with a frequency κ0 in the triple-phase region, resulting a molecular dissipation of
Dmol ∼ ζU 2, where ζ = kBT / κ0λ

3, kB, and T are, respectively, the coefficient of molecular friction,
the Boltzmann constant, and absolute temperature. The consequent scaling law is R ∼ t1/7. These
two models include energy dissipations at different scales, respectively. However, more evidences
show that both viscous resistance at mesoscale and the molecular friction at microscale play a part
in energy dissipation at MCL.7 Thus, Brochard-Wyart and de Gennes8 and Ruijter et al.9 proposed a
combined model to take account of both factors. The derived scaling law is R ∼ tn and corroborated
by experiments and simulations, where 1/10 ≤ n ≤ 1/7 is the scaling exponent.
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FIG. 1. (a) A spreading droplet partially wets a smooth solid surface, where θ , R, and U are the instant contact angle, radius,
and velocity of the droplet, respectively. (b) Hydrodynamics: viscous resistance at mesoscale L. (c) Molecular kinetic theory:
molecular friction at microscale Lm. θm, λ, and κ0 are the microscopic contact angle, the distance between adsorption sites
on the solid surface, and the equilibrium frequency of liquid molecules, respectively.

When the smooth substrate is patterned with micropillars, its intrinsic wettability is changed by
the surface roughness (the ratio between the actual and projected surface areas),10 resulting in new
phenomena such as superwetting,11, 12 drag reduction,13, 14 wetting transition,15, 16 etc. Because of
potential applications in fog-harvesting,17 biomedicine,18 anti-icing,19 microfluidics,20 etc., a surge
of interest in the dynamic spreading on micropillar-arrayed surfaces has emerged. However, the
wetting dynamics on pillar-arrayed surfaces is far from well understood and the scaling law is still
debated. The pioneering work of Hasimoto estimated the viscous resistance of the pillars to the fluid
by idealizing the pillars as infinitely long cylinders.21 Based on the Washburn law, Ishino et al.22

considered viscous dissipation on the substrate and the side walls, and obtained two extreme regimes
for short and tall pillars, respectively. Then, Srivastava et al.23 and Xiao and Wang24 developed
Ishino’s model and got a more accurate exponent. Taking account of the viscous dissipation in the
triple-phase region, dynamic wetting in the early stage of a liquid film with/without bulk droplet and
the entire drop footprint on pillar-arrayed surfaces were studied.25 Yuan and Zhao proposed a scaling
law taking account of the molecular friction at the MCL.12 Recently, Semprebon et al. did elegant
experiments and simulations to study the pinning and wicking of a liquid meniscus in a square
array of pillars, and proposed a criteria for spontaneous film formation.26 When liquid spreads on
a smooth solid, a mesoscale intermediate region of size L is used to connect the macroscale and
microscale region as shown in Fig. 1. When liquid spreads on a micropillar-arrayed surface, a new
lengthscale of the micropillars is introduced to the system, which is just about L and would lead to
new competitions between viscous resistance and surface forces at mesoscale, as well as induce new
phenomena and mechanisms. On the one hand, the pillars provide excess energy to drive the liquid
to spread faster. On the other hand, the excess solid-liquid interface results in excess contact line
length, which dissipates more energy at both meso- and micro-scale in the triple-phase region. There
lacks a systematic and multiscale study on the dynamic spreading of a droplet on micropillar-arrayed
surfaces.

In this paper, we first carry out experiments of the spreading of droplets with varied viscosity on
micropillar-arrayed surfaces. The liquid structures during the superwetting are revealed and analyzed
in detail. Then, theoretical models including energy dissipations at both meso- and micro-scale are
constructed to interpret underlying physical mechanisms. Competition between the lengthscales of
the droplet and the pillars, as well as competition between the viscous resistance and the molecular
friction result in changes in the scaling law and the spreading shape.

II. EXPERIMENTAL METHODS

The preparation of micropillar-arrayed surfaces was carried out in two steps. First, the negative
pattern was fabricated on a silicon wafer using conventional photolithography followed by a deep
reactive ion etching process at the Institute of Microelectronics, Peking University (Fig. 2(d)). Then,
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FIG. 2. (a) Side view, (b) top view of experiments, and (c) illustration of a droplet on a pillar-arrayed surface. Scanning
electron microscope (SEM) images of (d) the silicon mould and (e) the PDMS pillars. Rb, Hb, and Rf are the radius and
height of the bulk droplet, and the average fringe radius, respectively. w, Hf, and p are the pillar size, the pillar height, and
the period of the pillars, respectively.

TABLE I. Parameters of the pillar-arrayed surfaces (Hf = 30 μm).

Sample 1 2 3 4 5 6

w (μm) 5 5 10 5 15 15
p (μm) 25 20 30 15 35 20
φs = w2/p2 0.04 0.06 0.11 0.11 0.18 0.56
ro = 1 + 4wH f /p2 1.96 2.50 2.33 3.67 2.47 5.50

TABLE II. Properties of different silicone oils (KF-96, Shin-Etsu).27

Viscosity Surface tension Density
μ (mPa s) γLV (mN/m) ρ (kg/m3)

5 19.7 910
50 20.7 959
500 21.1 970

the silicon pattern was used as a mould for patterning the Polydimethylsiloxane (PDMS) shown in
Fig. 2(e). Topological parameters [w, p, Hf], surface roughness ro and density of roughness φs of
these experimental samples were varied and listed in Table I. The surface roughness is defined as the
ratio between the actual and projected surface areas and ro = 1 + 4wH f /p2 for square pillars. The
larger the ro is, the larger the actual surface area is. The density of roughness is defined as the ratio of
the area of the top faces to the total base area and φs = w2/p2 for square pillars. Because the pillar
heights of all the samples are the same, the smaller φs is, the larger the space among the pillars is.
The liquid was chosen to be silicone oil with different viscosities μ, but similar surface tensions γLV

and densities ρ (Table II). The contact angle of the silicone oil on PDMS is zero. Since the capillary
length for silicone oil is LC A = √

γLV /(ρg) ≈ 1.48 mm, the ratio R0 / LCA is less than 17% (initial
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FIG. 3. A schematic of the experimental setup.

droplet radius R0 ∼ 0.25 mm), which makes the surface tension take priority over gravity in the
wetting process. The liquid motion was captured using an inverted high-magnification microscope
(IX71, Olympus) and a high-speed camera (Hotshot 512 sc, NAC) at a frame rate up to 60 000 fps.
The schematic of experimental setup is shown in Fig. 3.

III. RESULTS AND DISCUSSION

A. Experimental results

When a droplet was brought into contact with a micropillar-arrayed surface, the droplet spread
into two parts (Fig. 2). The lower part, namely the fringe, penetrated into the gaps among the pillars.
The upper part, namely the bulk, spread on the base of the fringe and supplied the expansion of the
fringe. We captured snapshots during this process between two columns of pillars and generated
corresponding three-dimensional spreading profiles of the liquid based on the Fresnel equations
shown in Fig. 4. (Details of three-dimensional spreading profiles are described in the Appendix.39)
When the droplet was brought into contact with the substrate, the liquid wedge began to spread
(Fig. 4(a)). The height of the pillars is 30 μm, hence the liquid below 30 μm is the fringe and that
above 30 μm is the bulk. The fringe penetrated into the gaps among the pillars with a velocity
faster than the bulk (Fig. 4(b)). With the increase of the distance between the fringe and the bulk,
a transition region gradually formed to link the liquid among the pillars and the liquid wedge
(Fig. 4(c)). When the fringe flowed over the pillars, the liquid also spread fast along the height of the
pillars and resulted in a ridge of liquid above the pillar top and a meniscus in the transition region
(Fig. 4(d)). In this way, the fringe separated from the droplet and penetrated among the pillars.

FIG. 4. Sequence snapshots and three-dimensional spreading profiles of liquid (μ = 5 mPa s) on pillar-arrayed surfaces
(sample 2 in Table I). The color represents the height of the liquid.
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FIG. 5. Experimental snapshots of the spreading of a droplet with viscosities of (a) 5 mPa s, (b) 50 mPa s, and (c) 500 mPa s
on the lyophilic pillars (sample 1 in Table I). In the projection of the liquid, the dark area means the interface is inclined with
the substrate at a large angle, while the bright area means the interface is parallel to the substrate. (d)-(f) Illustration of the
square, octagonal, and circle shape of the fringe.

The dynamic behaviors of the fringe in our experiments are consistent with the previous numerical
simulations.26

The dynamic processes of droplets with different viscosities spreading on micropillar-arrayed
surfaces are shown in Fig. 5. At a first glance of Fig. 5, the liquid flowed in a viscosity-dependent
capillary velocity, so a droplet with a lower viscosity spread faster. The bulk expanded on the base
of the fringe, whose top was chemically and topologically smooth.28, 29 Thus, the flow velocity of
the bulk was isotropic, and its projection was always a circle as shown in Figs. 2(b) and 5. Observed
under the microscope, the dark area means there is an interface inclined with the substrate, while the
bright area means the interface is parallel to the substrate. In fringe region, the liquid surface is nearly
parallel to PDMS. Most of incident energy transmits through liquid and PDMS, and only small part
of energy is reflected. In the contact line region, the liquid surface is inclined at a large angle with
the substrate. Therefore, little incident energy transmits resulting in a dark outline at the contact line
region. The fringe shape was influenced by its viscosity. The fringe propagated ahead of the bulk
in the forest of micropillars. The pillars accelerated the approaching MCL, and pinned the leaving
MCL. The distance between pillars varied with flow direction, making the corresponding energy
dissipation to be anisotropic.30 Therefore, the fringe spread in a direction-dependent velocity.31

Furthermore, the velocity was symmetric about the orthogonal and diagonal directions because of
the arrangement of the pillars (Fig. 2(d)). In this way, the fringe evolved into an octagonal shape
(Figs. 5(b) and 5(e)). For a liquid with a lower viscosity, its velocity and corresponding inertial
force were larger. The fringe easily overcame the energy barrier along the diagonal direction of the
pillars, becoming approximately a square (Figs. 5(a) and 5(d)). For a liquid with a higher viscosity,
its velocity and corresponding inertial force was smaller. The MCL tried to achieve a kinetic balance
in all directions, making the fringe roughly a circle (Figs. 5(c) and 5(f)).

To reveal the spreading rules on the pillar-arrayed surface, we quantitatively recorded the
evolution of the fringe area S with respect to time shown in Fig. 6. The scaling law of the fringe
area varied with liquid viscosity. In Fig. 6(a), the fringes with μ = 5 mPa s evolved in a scaling
law of about S ∼ t2/3. When the liquid viscosity is small, the molecular friction at microscale is
the main source of energy dissipation. In Fig. 6(c), the fringes with μ = 500 mPa s evolved in a
scaling law of about S ∼ t1/2. When the liquid viscosity is large, the viscosity resistance at mesoscale
is the main source of energy dissipation. The scaling index of the liquid with μ = 50 mPa s was
between 1/2 and 2/3 (Fig. 6(b)). In this situation, the viscous resistance together with the molecular
friction contributes to the energy dissipation, so the scaling law depends on their proportion in
the total energy dissipation. The physical mechanisms behind the scaling laws will be analyzed
and discussed in Sec. III B. The corresponding spreading velocity U ∼ t−2/3 for μ = 5 mPa s and
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FIG. 6. The evolution of the fringe area with respect to time of droplets with viscosities of (a) 5 mPa s, (b) 50 mPa s, and (c)
500 mPa s on pillar-arrayed surfaces, respectively. S and S0 represent the instant and initial area of the fringe, respectively.
τ =tγLV /μR0 is the dimensionless spreading time. The colored points represent data for sample 1–6 in Table I. The dashed
and solid lines represent the scaling laws S/S0 ∼ τ 1/2 and S/S0 ∼ τ 2/3, respectively.

U ∼ t−3/4 for μ = 500 mPa s. So, we plotted the evolution of spreading velocity with respect to time
shown in Fig. 7 and found that the experiments obey the calculated scaling laws, which depended on
the liquid viscosity. Compared with the spreading on a smooth surface with scaling index between
2/7 and 1/5,1 the scaling indices were much larger and the spreading velocities were much faster. This
is because the pillars accelerated the liquid, causing the lyophilic surface to become superlyophilic.

How did these micropillars accelerate the liquid and make the liquid superwet the solid? We used
a high-magnification microscope to reveal the details in spreading (Fig. 8). Driven by the surface
tension, the contact line moved along its normal at first. Once getting in touch with the pillars at 0.2 ms,
the liquid began to spread along the pillars. The radius of curvature of the liquid in the inset was
about 2 μm in the order of w. Hence, the local Laplace pressure Pc1 ∼ γLV /w ∼ 103 Pa, which
provided additional driving energy to pull the liquid to spread with a fast velocity along the corner
between the pillars and the substrate.32 The liquid near the pillars quickly accommodated to the
square shape and was pinned by the pillars at 0.4 ms. Meanwhile, the rest part of the MCL still kept
spreading in a line with a slow velocity. As a result, a local Laplace pressure Pc2 ∼ γLV /p ∼ 102 Pa
was formed and made the MCL to be a wavy line at 0.8 ms. The local radius of curvature trended to
become larger at 1.6 ms. The fast and slow part of the MCL tried to reach a balance state and return
a line finally. This process repeated in every period. The Laplace pressures at the interior corner and
at the wavy MCL are the answers to the superwetting on the pillar-arrayed surface.

FIG. 7. The evolution of the spreading velocity with respect to time of droplets with viscosities of 5 mPa s (red squares),
50 mPa s (green triangles), and 500 mPa s (blue circles) on pillar-arrayed surfaces, respectively. The colored points represent
data for samples in Table I. The red and blue lines represent the scaling laws U ∼ t−2/3 and U ∼ t−3/4, respectively.
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FIG. 8. Sequence snapshots of liquid (μ = 5 mPa s) spreading on pillar-arrayed surfaces (sample 3 in Table I). The inset
shows a close-up image of radius of curvature of the liquid labeled by a yellow dashed line. Pc1 and Pc2 represent the local
capillary pressures.

The inertial force plays a part in the spreading dynamics. For the low-viscosity situations,
according to Fig. 7, the absolute spreading velocity U of liquid with viscosity of 5 mPa s is at
the order of 10−2 m/s. The corresponding inertial force ρU2 ∼ 10−1 Pa, while the interface force
γ LV/L ∼ 103 Pa, the viscous force μU/L ∼ 100 Pa, and the molecular-friction force ζU/L ∼ 106 Pa,
where the density ρ ∼ 103 kg/m3, surface tension γ LV ∼ 10−2 N/m, viscosity μ ∼ 10−3 Pa s, the
coefficient of molecular friction ζ ∼ 103 Pa s,33 and characteristic length L ∼ 10−5 m. In this paper,
we focus on the main effects and obtain the scaling laws. The inertial effect is not the main effect,
however it would also affect the dynamic process in the low-viscosity cases, which needs further
consideration and systematic studies. With the increase of the viscosity of the liquid, the absolute
spreading velocity decreases, and the inertial effect decreases accordingly.

B. Scaling analysis

To reveal the underlying mechanism of the viscosity-dependent scaling laws of a droplet
spreading on the pillar-arrayed surface, we proposed a combined model of the hydrodynamics
and the molecular kinetic theory to take account of energy dissipated by both the viscous resis-
tance at mesoscale and the molecular friction at microscale. The spreading speed is controlled
by the balance of the rate of change in the driving energy F and energy dissipation D, i.e.,
F = D. In our case, the droplet is sufficiently small, the gravitational force could be ignored
compared with the surface tension. Therefore, the rate of change in interface energy per unit
length of the MCL is F = [(γSV − γSL ) · ro − γLV cos θ ] U , where γ SL, γSV , and γLV are the
solid-liquid, solid-vapor, and liquid-vapor interface energies, respectively. θ is the instant con-
tact angle. Taking account of the Young’s equation (γSV − γSL = γLV cos θ0, where θ0 is the
static contact angle),34 F = γLV U (ro · cos θ0 − cos θ ). Adopting the lubrication approximation
(Hb � Rb, θ ∼ Hb/Rb ∼ 0),35 F ∼ γLV Uθ2.

The energy dissipation in the triple-phase region arises from two aspects: the viscous resistance
Dvis owing to the viscous bending at mesoscale and the molecular friction Dmol owing to the ad-
sorption/desorption of liquid molecules on the solid surface at microscale. First, let us discuss Dvis ,
which is a weighted average of those occurring on the top surfaces Db, side walls of the pillars Ds,
and the substrate Df (Fig. 2). The rate of viscous dissipation per unit volume in a fluid with viscos-
ity μ is ε ≈ μ(du / dz)2 = μ[U / h(r)]2,36 where h(r) ≈ θr for small θ considering the lubrication
approximation,35 and r is the distance from the liquid wedge. Integrating εb (the rate of viscous dis-
sipation per unit volume in the bulk) over the wedge on the top surface of the pillars, we can estimate
Db ≈ ∫ Hb+H f

H f
εbhbdr = μU 2

∫ Hb+H f

H f
dr/hb ≈ μU 2 ln

[(
Hb + H f

)
/H f

]
/θ . In the same way, the

energy dissipation on the substrate can be estimated as D f ≈ ∫ H f

Lm
ε f h f dr = μU 2

∫ H f

Lm
dr/h f .

Because p ∼ Hf, dhf / dr � θ , resulting in Df � Db. Hasimoto has already estimated the en-
ergy dissipation on the side walls of pillars, Ds ≈ μU 2/ln (p/w).21 Because ln (p/w) ∼ 1 �
θ/ln

[(
Hb + H f

)
/H f

]
, Ds � Db. So, the total viscous dissipation Dvis ≈ μU 2 ln

(
Hb/H f

)
/θ . The

energy dissipation owing to the molecular friction is described in MKT Dmol∼U 2ζ , where ζ =
kBT / κ0λ

3 is the coefficient of molecular friction.
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When a droplet is deposited on the pillars, the initial spherical droplet with radius R0 evolves
into the bulk and the fringe. For the sake of mass conservation, V0 = Vb + V f , i.e., 4π R3

0/3 =
π Hb

(
3R2

b + H 2
b

)
/6 + π (1 − φs) H f R2

f , where Rb and Rf are, respectively, the average radius of
the bulk and the fringe, φs is the density of roughness (φs = w2/p2 for pillars). In the spreading
process, αRb ∼ R f ∼ R is validated in the previous works,12, 37 where α (α ≤ 1) is independent of
time. So θ ∼ Hb/Rb ∼ (

4R3
0 − 3h̄ R2

)
/R3, where h̄= (1 − φs) H f .

Based on the above estimates of the energies and geometric relations, we arrive at the derivation
of scaling laws of a droplet on pillar-arrayed surfaces.

U = Ṙ ∼ γLV θ3

Cμ + ζθ
∼ γLV

(
4R3

0/R3 − 3h̄/R
)3

Cμ + ζ
(
4R3

0/R3 − 3h̄/R
) , (1)

where C is a constant in our cases.
In Eq. (1), the terms (4R3

0/R3) and (3h̄/R) represent the contributions of the bulk droplet and
the surface roughness, respectively. From Eq. (1), two extreme regimes could be distinguished: one
is for the smooth surface and the other is for the rough surface.

(1) Smooth surface, i.e., relative large droplet, short or sparse pillars. The effect of surface rough-
ness is negligible, so we neglect term (3h̄/R) in Eq. (1) and obtain the governing equation for
a droplet on smooth surfaces

Ṙ ∼ γLV
(
4R3

0/R3
)3

Cμ + 4ζ R3
0/R3

. (2)

When the viscous resistance is dominant, Ṙ ∼ Uc,v R9
0/R9, where the capillary velocity Uc,v =

γLV /μ. The dimensionless solution is R/R0 ∼ (
t/τc,v

)1/10
, where the characteristic time

τc,v = μR0/γLV is only controlled by the properties of the droplet R0, γLV , and μ. When
the molecular friction is dominant, Ṙ ∼ Uc,m R6

0/R6, where Uc,m = γLV /ζ is the molecular

capillary velocity. The dimensionless solution is R/R0 ∼ (
t/τc,m

)1/7
, where the characteristic

time τc,m = ζ R0/γLV is controlled by not only properties of the droplet R0 and γLV , but also
property of the solid-liquid interface ζ . These results are analogous to those described by
previous works,8, 9 and have been examined by a variety of experiments7 and simulations.38

(2) Rough surface, i.e., relative small droplet, long or dense pillars. The effect of surface roughness
dominates the dynamic wetting process, so we neglect term (4R3

0/R3) in Eq. (1) and obtain
the governing equation for a droplet on pillar-arrayed surfaces

Ṙ ∼ γLV
(
3h/R

)3

Cμ − 3ζh/R
, (3)

and three scenarios are possible.

(a) When viscous resistance takes priority, Ṙ ∼ γLV h
3
/μR3, the dimensionless solution is

R/R0 ∼ (
t/τ r

c,v

)1/4
. The characteristic time τ r

c,v = μR4
0/γLV h

3
is controlled not only by prop-

erties of the droplet R0 and Uc,v , but also by the topology of the pillars h̄= (1−φs) H f . The
consequent scaling law of spreading area is S ∼ t1/2.

(b) When molecular friction takes priority, Ṙ ∼ γLV h
2
/ζ R2, the dimensionless solution is R/R0 ∼(

t/τ r
c,m

)1/3
. The characteristic time τ r

c,m = ζ R3
0/γLV h

2
is controlled by properties of the droplet

R0 and γLV , property of the solid-liquid interface ζ , as well as the topology of the pillars φs

and Hf. The consequent spreading area S ∼ t2/3 and is corroborated in our experiments shown
in Fig. 6(a).

(c) Both viscous resistance and molecular friction contribute to the energy dissipation and govern
the spreading process. So, the dimensionless solution is R/R0 ∼ (

t/τ r
c

)n
, where 1 / 4 < n <

1 / 3 depends on their proportion in the total energy dissipation. With the increase of μ / ζ , the
scaling exponent n gradually increases from 1/4 to 1/3. The consequent spreading area S ∼ t2n

is shown in Fig. 6(b).
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The above theoretical results are validated in our experiments shown in Fig. 6. With lower
viscosity, the liquid spreads faster with a larger scaling exponent of 2/3; with higher viscosity, the
liquid spreads slower with a smaller exponent of 1/2. The velocity increases faster than the decrease
of the viscosity.

IV. CONCLUSION

We have experimentally studied the spreading dynamics of a droplet on micropillar-arrayed
surfaces. Because of the competition between the viscous resistance at mesoscale and the molecular
friction at microscale, the spreading shape and scaling exponent change with the variation of the
liquid viscosity. When the viscosity is small, the molecular friction dominates and energy mainly
dissipates when liquid molecules adsorb and desorb on the solid at MCL. With the increase of the
viscosity, the effect of the viscous resistance increases. When the viscosity is large, the viscous
resistance dominates and energy mainly dissipates when the meniscus bends in the triple-phase
region. We theoretically obtained the governing equation for dynamic spreading of a droplet, which
takes account of the combined influences of the viscous resistance and the molecular friction.
Scaling laws for different cases were derived and experimentally validated. The details in the
dynamic spreading process were revealed. The Laplace pressures at the interior corner and at the
wavy MCL were the answers to superwetting on the pillar-arrayed surface. Under the drive of the
excess driving energy, the fringe separated from the droplet and penetrated into the gaps among the
pillars. Our results may help to understand the dynamic spreading on microtextured surfaces and
assist the future design of engineered surfaces in practical applications.
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APPENDIX: THREE-DIMENSIONAL SPREADING PROFILES

When light moves from a medium with a regractive index n1 into another medium with n2,
reflection and refraction may happen. The relationship between the angles of incidence, reflection,
and refraction is described by the law of reflection θ i = θ r, and Snell’s law n1sin θ i = n2sin θ t.
The relationship between the incident energy EI, reflection energy ER, and transmision energy ET is
described by the Fresnel equations

ER = fR EI and ET = fT EI (A1)

where

fR = 1

2

[(
n1 cos θi − n2 cos θt

n1 cos θi+n2 cos θt

)2

+
(

n1 cos θt − n2 cos θi

n1 cos θt+n2 cos θi

)2
]

and fT = 1 − fR (A2)

are the reflectance and the transimittance, respectively.
When light moves from the air through a PDMS membrane along the normal of the PDMS

surface, ET1 = fT1EI, where fT1 is a constant (Fig. 9(a)). When light moves from the air through a
liquid wedge and a PDMS membrane, ET2 = fT2(θ )EI, where fT2(θ ) is a function of the wedge angle
θ (Fig. 9(b)) and could be derived from Eqs. (A1) and (A2). So, we can get

ET2

ET1
= fT2 (θ )

fT1
. (A3)

Substituting Eqs. (A1) and (A2) into Eq. (A3), we can obtain tan (θ ) = (ET2 / ET1), where ET1

and ET2 are proportional to the gray scale of a point x in the experimental snapshots when liquid did
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FIG. 9. Illustrations of total incident energy EI, the reflection energy ER, and transmission energy ET of the light when the
light moves from the air through (a) a PDMS membrane, and (b) a liquid wedge and a PDMS membrane.

not and did flow over the PDMS substrate, respectively. In this way, the spreading profile could be
obtained

z (x) =
∫ x

0
z′ (t)dt =

∫ x

0
tan (θ )dt =

∫ x

0
 (ET2/ET1)dt. (A4)
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