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Abstract The entropy concept was introduced into the

turbulence modeling strategy in the present work. First, the

turbulent boundary-layer was described from the point of

energy dissipation. Based on the theoretical analysis and

direct numerical simulations, the relationship between the

entropy increment and viscosity dissipation was systemat-

ically investigated. Then, an entropy function fs was pro-

posed to distinguish the turbulent boundary-layer from the

external flow. This function is universal, independent of the

inflow conditions or any specific turbulence model. With

this function, a new version of delayed-detached-eddy

simulation method SDES was constructed and verified with

the supersonic boundary-layer flow and the cavity-ramped

flow. Initial results showed that this method could suc-

cessfully avoid the modeled stress depletion problem

inherited from the original DES method.

Keywords Entropy � Turbulence boundary-layer �
Turbulence modeling � RANS/LES hybrid method

1 Introduction

Entropy, in addition to energy, is an essential physical

quantity in thermodynamics. It serves as a measure of the

irreversibility of a process and a criterion describing the

thermal equilibrium of a system. Because of its general

features, the entropy concept has been extended to many

other fields, such as thermodynamic optimization and

computational techniques [1–6].

As for the turbulent flow, McEligot et al. [7] concluded

that about two-thirds or more of entropy generation occurs

in the turbulent boundary-layer and they examined the

effects of Reynolds number and streamwise pressure gra-

dients on entropy generation. Moore et al. [8] and other

researchers [9, 10] developed a series of numerical models

for the turbulent entropy production terms. Recently, Zhao

et al. [11] systematically investigated the characteristics of

entropy increment in turbulent boundary-layer based on

direct numerical simulation (DNS) data. With this concept,

they revised the length scale of Baldwin–Lomax model,

enhancing its robustness for complex flows. They further

proposed an entropy-based shielding function to safely

preserve the RANS resolved region in the boundary-layer

and constructed a new version of delayed-detached-eddy

simulation method SDES to avoid the modeled stress

depletion (MSD) problem [12]. Although the recent

achievements have revealed another potential capability of

entropy in turbulence modeling, the definition of entropy

expression for turbulent boundary-layer is still not com-

prehensive. This paper continues to extend the competence

of the entropy concept for both compressible and incom-

pressible flows and revisits the SDES method in particular.

Virtually, all flows of practical engineering interests are

turbulent. Due to the irregular motion of turbulence, the

transportations of mass, momentum, and energy are

enhanced, while extra-energy is dissipated. In the near-wall

region, as for the fierce turbulent fluctuation and wall fri-

cation, a portion of mechanical energy is irreversibly

transformed into internal energy, i.e., the entropy increases.

Following McEligot et al. [7], we here define turbulence
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boundary-layer as the region where the local entropy

generation rate caused by viscous dissipation is the most

significant.

2 Theoretical foundation

With the above definition in mind, the quantitative

behavior of entropy increment caused by the viscous dis-

sipation is analyzed. The specific form of entropy s, i.e.,

entropy per unit mass (J/(K kg)) is both a state and process

variable [9]. For compressible flows, the state function of

entropy can be obtained from Gibbs equation as follows:

Ds ¼ cv ln
T

T1
� R ln

q
q1
¼cv ln

p

p1

q1
q

� �c� �
; ð1Þ

where cv = R/(c - 1) is the specific heat at constant

volume, R is the gas constant, c = 1.4 is the specific heat

ratio, and T, p, and q are the local temperature, pressure,

and density, respectively, subscript ? means the quantity

in the far field. For incompressible flows, s can be

expressed by

Ds ¼ cv ln
T

T1
: ð2Þ

On the other hand, the balance equation of s is written as

follows [9]:

ds ¼
1
q

o
oxj

�qj

T

� �
dt

dsc

þ
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dt

dsT

þ
U
qT
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where qj ¼ k oT
oxj

is the heat transfer, k ¼ lcR
ðc�1ÞPr

is the

thermal conductivity, Pr = 0.7 is the laminar Prandtl

number, w ¼ k
T

oT
oxj

oT
oxj

� 	
, U ¼ l

2
oui
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� 	2

, and l is the

molecular viscosity.

On the right side of Eq. (3), the first term dsc is the

thermal conductive term, whose value may be either neg-

ative or positive. The other two terms stand for the entropy

production terms. dsT represents the entropy generation

due to heat transfer across finite temperature gradients,

while dsl represents the local entropy generation by the

viscous dissipation. These two positive terms apply to both

compressible and incompressible Newtonian fluids [9]. As

the term dsc includes the second derivative of T which may

cause numerical singularity at the adiabatic wall, we sim-

ply neglect this term at this step. By combing Eq. (3) with

(1) or (2) (depending on the flow condition), the entropy

increment caused by the viscous dissipation can be

deduced as follows:

Dsvis ¼
dsl

dsT þ dsl
� Ds ¼ U

Uþ w
� Ds: ð4Þ

For turbulent flows, Eq. (4) is Reynolds-averaged and

the turbulent terms are modeled with the Moore model [8]:

D�svis ¼
1þ lt=lð Þ �U

1þ lt=lð Þ �Uþ 1þ kt=kð Þ �w
� D�s ¼

�U
�Uþ a �w

� D�s;

ð5Þ

in which a ¼ lPrtþltPr
lPrtþltPrt

, Prt = 0.9 is turbulent Prandtl

number, lt is the turbulent viscosity, and the instantaneous

variables in �U, �w, D�s are replaced with the corresponding

averaged one, respectively.

When the potential flows pass the wall, the mechanical

energy is dissipated to zero due to the viscous frication.

Naturally, the value of D�svis at the wall is directly related to

inflow speeds, i.e., it varies orders of magnitude from the

low-speed flows to hypersonic flows. In order to obtain

D�svis normalized for modeling convenience, the following

procedures are taken.

For adiabatic boundary-layer flows, the maximum

entropy increment could be expressed as follows [13]:

Dsmax ¼ cv ln
p1
pw

� 1þ c� 1

2
Ma2
1

� �c� �
; ð6Þ

where the subscript w means the quantity at the wall. Since

p?\ pw in general, we simplify Eq. (6) and assume Dsmax

as follows:

Dsmax ¼ cv ln 1þ c� 1

2
Ma2
1

� �c

: ð7Þ

With D�svis normalized by Dsmax (Eq. (7)), a novel

entropy concept, named entropy increment ratio �svis, is

proposed:

�svis ¼
D�svis

Dsmax

¼
�U

�Uþ a �w
� D�s

Dsmax

: ð8Þ

�svis represents the viscous dissipation rate of per unit

mechanic energy, whose behavior is systematically

investigated based on the DNS data (Table 1). Figure 1

compares the profiles of �svis and the streamwise velocity �u
normal to the wall with different inflow Mach numbers.

The profile of �svis depicts a consistent trend as that of the

velocity �u, and the boundary-layer region is well

represented by �svis [ 0. Moreover, the value of �svis

Table 1 Simulation conditions for the boundary-layer flows (DNS)

Ma Re Tw/T? Tw/Tr

Case 1 0.7 5.0 9 104 1.098 1.003

Case 2 2.25 6.35 9 105 1.9 0.961

Case 3 6 2.0 9 106 6.98 0.878

Ma inflow Mach number, Re Reynolds number per inch, Tw wall

temperature, T? inflow temperature, and Tr recovery temperature
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approaches unity toward the wall. This character is

convenient as the weak dependence of models or

physical parameters on flow conditions is always desired.

Remember that entropy may also increase in other

regions, such as the areas where shock waves and detached

vortex exist. To avoid this defect, an entropy function is

proposed to confine the predicted turbulent boundary-layer

near the wall:

fs ¼ 1:0� tanh �svis=l3s
� �

; ð9Þ

where ls is the length-scale ratio, which is designed to be

less than 1.0 in the boundary-layer and increase quickly in

the external flows. We construct ls following the spirit of

DES97 [14], but with minor revision:

ls ¼
Csf ða1; a2Þd=CDESD; �svis [ 0:05;

d=CDESD; otherwise,



ð10Þ

in which Cs = 0.12 is an empirical constant, f(a1,a2) is an

anisotropic function recommended by Scotti et al. [15], d is

the distance normal to the wall, CDES = 0.65, and D is the

grid spacing defined by D = max(Dx, Dy, Dz).

The distributions of �u, �svis and fs are investigated in the

24� supersonic compression corner flow (DNS) [11]. As

Fig. 2 indicates, the general velocity criterion (�u/U?

\ 95 % or 99 %) fails to denote the boundary-layer range,

especially in the corner area where the velocity is decel-

erated by shocks. Comparatively, the turbulent boundary-

layer predicted by �svis and fs based on the viscosity dissi-

pation is more reasonable.

3 Entropy-based DES method

Since entropy function fs could denote the turbulent

boundary-layer physically, it is applied as a shielding

Fig. 1 Entropy increment ratio and velocity profiles normal to the

wall of different Mach numbers (DNS results)

Fig. 2 Distributions of streamwise velocity �u (only depict �u/

U?\0.95) (a), entropy increment ratio �svis (only depict �svis [ 0.01)

(b) and entropy function fs (only depict fs\0.95) (c) along the

compression ramp

Fig. 3 DES97 and SDES in the boundary-layer flow. a Time-

averaged velocity and fs profiles along the wall-normal direction

(x=8.8 in), b time-averaged eddy viscosity profiles along the wall-

normal direction (x=8.8 in), and c time-averaged wall-friction

coefficient along the streamwise direction (x-direction)

Chin. Sci. Bull. (2014) 59(31):4137–4141 4139

123



function with the length scale ~d in DES97 redefined as

follows:

~d ¼ d � fsmax 0; d � CDESDð Þ: ð11Þ

The performance of this entropy-based DES method

(named SDES) is investigated preliminarily. Figure 3

compares the results of DES97 and SDES with SA-RANS

[16] and DNS in the supersonic boundary-layer flow (Case

2 in Table 1). The grid resolution ranges between the

classical values used in LES and RANS simulations, in

order to exhibit the MSD problem. With this ambiguous

grid, the RANS reserved range (d \ CDESD) in DES97

only holds 20 % of the boundary-layer (Fig. 3a). Since the

near-wall grid is not fine enough to directly resolve the

turbulent fluctuation, the modeled Reynolds stresses pre-

dicted by DES97 are lacked. As Fig. 3 shows, DES97

underestimate the eddy viscosity by almost 40 % (Fig. 3b),

while the velocity profiles slightly depart from that of DNS

at the log-law region (Fig. 3a). With the thickness of the

boundary-layer increasing along the streamwise direction,

the wall-frication coefficient predicted by DES97 becomes

much lower than DNS (Fig. 3c). On the other side, the

shielding function fs in SDES accurately denotes the whole

layer (Fig. 3a) and the MSD problem is greatly alleviated.

Thus, the results of SDES agree well with DNS data.

Figure 4 shows details of DES97 and SDES resolutions

in the cavity-ramp flow [12]. The grid around the cavity

area is refined to capture the free-shear layer structure

(Fig. 4a, b), so is the grid in the ramped portion for the

Fig. 4 DES97 and SDES over the cavity ramp. a Grid, b time-averaged flowfield, c RANS reserved region in DES97, d time-averaged entropy

function fs in SDES (only depict fs \ 0.95), and e, f time-averaged turbulent viscosity obtained by DES97 and SDES, respectively (only depict

lt/l?[ 200)

Fig. 5 Time-averaged skin-frication coefficients (a) and streamwise

velocity (b) distributions
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recovering boundary-layer. Therefore, the RANS modeled

area where d \ CDESD in DES97 becomes inadequate in

the above regions (Fig. 4c). In contrast, the proposed

entropy function fs in SDES could reliably indicate the

boundary-layer development (Fig. 4d), resulting in a more

prominent level of eddy viscosity distribution (Fig. 4e, f).

The error of the predicted length of the recirculation zone

is 8.6 % larger than the experimental data for DES97,

which is reduced by 50 % for SDES (Fig. 5a). Since the

rise of wall frication indicates the rate of recovery of the

boundary-layer downstream of reattachment, the recover-

ing streamwise velocity of SDES develops more quickly

than DES97 (Fig. 5b).

4 Conclusion

In summary, a normalized entropy concept—entropy

increment ratio �svis—was deduced in this paper. It serves as

a pivotal parameter in the function fs to reliably denote the

turbulent boundary-layer from the point of energy dissi-

pation. Through employing fs as a shielding function, a

novel hybrid strategy (SDES) was revisited and showed the

superiority over DES97 in the simulation of supersonic

cavity-ramp flow. Although it is not necessarily the best

formulation available, the present one for fs appears simple

and general enough to be recommended in the turbulence

modeling related to the boundary-layer. Nevertheless, the

effect of the neglected term dsc which is important in

hypersonic flows with remarkable wall-heat convection is

left for further investigations.
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