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A THEORETICAL ANALYSIS ON THE THERMAL BUCKLING
BEHAVIOR OF FULLY CLAMPED SANDWICH PANELS WITH
TRUSS CORES

Wu Yuan, Xi Wang, Hongwei Song, and Chenguang Huang
Key Laboratory for Mechanics in Fluid Solid Coupling Systems,
Institute of Mechanics, Chinese Academy of Sciences, Beijing, China

This article presents a theoretical analysis on the thermal buckling behavior of sandwich
panels with truss cores under fully clamped boundary conditions, subjected to uniform
temperature rise. The Reissner model is developed by ignoring the flexural rigidity of
the core and considering the shear stiffness of the sandwich panel is only contributed
by truss cores. By using double Fourier expansions to the virtual deformation mode,
the critical temperature of sandwich panels is obtained. Theoretically predicted critical
temperatures are in good agreement with those from FEM. The effect of boundary
conditions and structure parameters of the sandwich panel are also discussed.

Keywords: Reissner model; Sandwich panel; Thermal buckling; Truss cores

1. INTRODUCTION

Due to the lightweight andmultifunctional characteristics, cellular materials and
their sandwich structures have been extensively investigated for their fundamental
properties [1–7] and applications in thermal insulation, heat transfer enhancement,
shock resistance, energy absorption, etc. [8–14]. Among them, sandwich panels
with truss cores have been proposed recently and have demonstrated significant
advantages [3, 7, 15–19]. They have been considered as promising candidates for
the lightweight design and thermal protection structures utilized in high-speed flight.
When being used as load-bearing components in a thermal protection system, the
sandwich panel experiences large temperature changes and may buckle due to the in-
plane load caused by the constrained thermal expansion. Likewise, thermal buckling
is one of the most pressing issues in the advancement of high-speed flight. For
example, during X-15 flights, windshield damage occurred when thermal buckling
of the retainer frame caused intense local heating in the glass [20]. Therefore, it
is imperative to carry out theoretical studies on the thermal buckling behavior of
sandwich panels with truss cores.
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1434 W. YUAN ET AL.

Previous theoretical researches mainly focus on the buckling and post-buckling
behavior of thin plates and thin laminates. Mossavarali and Eslami [21] studied the
post-buckling of a thin plate, which has initial flaws. Fu [22] studied the buckling
behavior of plates at various complex boundary conditions by using the reciprocal
theorem. Raju et al. [23] analyzed the thermal buckling behavior of circular plates
with localized axisymmetric damages. The effect of transverse shear deformation
across the thickness was ignored by the preceding studies. For a sandwich panel
with truss cores, which has poor shear stiffness, ignorance of the transverse shear
effect may result in a big error.

So far, there have been a number of theoretical models developed on sandwich
panels, such as the Reissner model [24], Hoff model [25], and Tu model [26], etc. The
overwhelming majority of the available analytical solutions reported in the literature
have been obtained for sandwich plates with simply supported edges (SSSS plates)
[27]. Chen et al. [28] analyzed the buckling behavior of SSSS sandwich panels with
metallic truss cores using Reissner’s model.

For sandwich panels under fully clamped conditions (CCCC), the critical
buckling temperature cannot be analytically solved as one under simply supported
conditions, since governing equations for the deformation mode are complicated
due to complex boundary conditions. Lopatina and Morozovb [27] proposed a
solution to the buckling problem formulated for a rectangular sandwich plate
having all the edges fully clamped (CCCC plate) and subjected to a uniaxial
compressive loading. Al-Khaleefi and Kabir [29] considered plates with fully
clamped boundary conditions where displacement solution functions were assumed
in the form of two sets of double Fourier series expansions. For sandwich panels
with truss cores, which have weak cores and thin sheets, the thermal buckling
behavior has not been systematically investigated.

Within the authors’ knowledge, there have been few theoretical studies
reported on the thermal buckling of sandwich panels with truss cores, especially
under CCCC conditions. This article adopts first-order deformation theory and
assumes the truss core is a continuous material. Using Reissner’s model, the critical
buckling temperature of CCCC sandwich panels subjected to uniform temperature
rise is solved through the method of double Fourier expansions to the virtual
deformation mode. Theoretically predicted critical buckling temperatures agree well
with those obtained from numerical models.

THEORETICAL ANALYSIS

Here, a Reissner model is developed to analyze the thermal buckling behavior
of the CCCC sandwich panel with truss cores. Sandwich panels with truss cores
of importance are illustrated in Figure 1. According to the geometry of the
unit truss cell, sandwich panels can be classified in pyramidal, tetrahedral, and
Kagome configurations. The fundamental mechanical property of various truss
cores have been investigated extensively, and elastic constants can be conveniently
obtained. For example, Deshpande et al. [2] gave the three-dimensional elastic
constitutive relation of lattice truss cores. In the present work, the face sheet and
core of sandwich panels are made of identical metal materials that can resist high
temperature, and the face sheet is very thin. Figure 2 shows the schematic of the
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THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1435

Figure 1 Schematics of sandwich panels with truss cores: (a) Sandwich panels with truss cores: tetrahedral,
pyramidal, and Kagome configuration; (b) representative cell of truss cores: tetrahedral, pyramidal, and
Kagome.

equivalent analytical model. The sandwich panel is in the dimension of length a�

width b, and total thickness hp� and the thickness of the core is hc. Because the shear
stiffness of the core is relatively low, and the flexural rigidity of the face sheet is
high, the following assumptions are made:

1. The size of the unit truss cell is small, compared to the size of the sandwich panel,
therefore truss cores are considered as continuous and homogeneous.

2. The truss core is pin-jointed and does not contribute to the overall flexural rigidity.
3. The transverse shear stiffness of the sandwich panel is only contributed by the

truss core.
4. The deformation of the sandwich panel is very small, and straight lines normal to

the middle plane remain straight in distortion, but rotate through a small angle
due to transverse deformation.

Figure 2 Equivalent analytical model.
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1436 W. YUAN ET AL.

The displacement field of the sandwich panel based on the first-order theory
can be expressed as

u�x� y� = −z�x�x� y�

v�x� y� = −z�y�x� y� (1)

w�x� y� = w0�x� y�

where u, v and w are displacements in x, y, and z directions, while �x and �y are
rotations of the normal in the xz and yz planes, respectively. Additionally, w0 is the
displacement of the middle plane.

According to Hooke’s law, stresses in the sandwich panel are expressed as

�x =
E

1− �2

(
�u

�x
+ �

�v

�y

)

�y =
E

1− �2

(
�
�u

�x
+ �v

�y

)
(2)

�xy =
E

2�1+ ��

(
�u

�y
+ �v

�x

)

where E and � are the elastic modulus and Poisson ratio of the panel material,
respectively.

According to assumptions made earlier, equations of internal force can be
derived

Mx = −D

(
��x

�x
+ �

��y

�y

)

My = −D

(
��y

�y
+ �

��x

�x

)

Mxy = −D

2
�1− ��

(
��x

�y
+ ��y

�x

)

Qx = C

(
�w

�x
− �x

)
(3)

Qy = C

(
�w

�y
− �y

)
C = Gchc

D = E�h3
p − h3

c�

12�1− �2�

where C and D are the shear stiffness and flexural rigidity of the sandwich panel,
respectively, and Gc is the equivalent shear modulus of the lattice truss core.

Equilibrium equations of the plate can be expressed as

�Mx

�x
+ �Mxy

�y
−Qx = 0
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THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1437

�Mxy

�x
+ �My

�y
−Qy = 0 (4)

�Qx

�x
+ �Qy

�y
+ Nx

�2w

�x2
+ 2Nxy

�2w

�x�y
+ Ny

�2w

�y2
= 0

When applying a thermal load due to a uniform temperature rise, the bi-axial
compressive in-plane force can be expressed as

Nx = Ny = − E	

1− �
�hp − hc�
T = N

Nxy = 0 (5)

where 	 and 
Tare coefficient of thermal expansion and the temperature rise of the
sandwich panel, respectively.

Substituting Eq. (3) and Eq. (5) into Eq. (4), equilibrium equations of the
sandwich panel with truss cores can be obtained

D

(
�2�x

�x2
+ 1− �

2
�2�x

�y2
+ 1+ �

2

�2�y

�x�y

)
+ C

(
�w

�x
− �x

)
= 0

D

(
�2�y

�y2
+ 1− �

2

�2�y

�x2
+ 1+ �

2
�2�x

�x�y

)
+ C

(
�w

�y
− �y

)
= 0 (6)

D

(
�2w

�x2
+ �2w

�y2
− ��x

�x
− ��y

�y

)
+ N�2 w = 0

Consider the CCCC boundary condition,

x = 0� a � w = �x = �y = 0 (7)

y = 0� b � w = �x = �y = 0

The following virtual displacement mode is assumed [30]:

w =
�∑

m=1

�∑
n=1

Amn sin 	mx sin 
ny

�x =
�∑

m=1

�∑
n=1

Bmn sin 	mx sin 
ny (8)

�y =
�∑

m=1

�∑
n=1

Cmn sin 	mx sin 
ny

where Amn, Bmn and Cmn are Fourier constant coefficients, and 	m and 
n are defined
as m�

a
and n�

b
, respectively.

Substituting Eq. (8) into Eq. (6) yields the following sets of equations:

�∑
m=1

�∑
n=1

(
� − 1
2

DBmn

2
n −DBmn	

2
m − CBmn

)
sin�	mx� sin�
ny�
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1438 W. YUAN ET AL.

+
�∑

m=1

�∑
n=1

CAmn	m cos�	mx� sin�
ny�

+
�∑

m=1

�∑
n=1

1+ �

2
DCmn	m
n cos�	mx� cos�
ny� = 0

�∑
m=1

�∑
n=1

(
� − 1
2

DCmn	
2
m −DCmn


2
n − CCmn

)
sin�	mx� sin�
ny�

+
�∑

m=1

�∑
n=1

CAmn
n sin�	mx� cos�
ny� (9)

+
�∑

m=1

�∑
n=1

1+ �

2
DBmn	m
n cos�	mx� cos�
ny� = 0

�∑
m=1

�∑
n=1

�−�C + N��Amn	
2
m + Amn


2
n�� sin�	mx� sin�
ny�

−
�∑

m=1

�∑
n=1

CCmn
n sin�	mx� cos�
ny�

−
�∑

m=1

�∑
n=1

CBmn	m cos�	mx� sin�
ny� = 0

To solve Eq. (9), cos�	mx�, cos�
ny� and cos�	mx� cos�
ny� are expanded into the
following forms:

cos�	mx� cos�
ny� =
�∑
r=1

�∑
s=1

hrmhsn sin��rx� sin��sy�

0 < x < a� 0 < y < b

cos�	mx� =
�∑
r=1

hrm sin��rx�

0 < x < a (10)

cos�
ny� =
�∑
s=1

hsn sin��sy�

0 < y < b

where

hrm = 4m
��m2 − r2�

(11)

hsn = 4n
��n2 − s2�

and

�r =
r�

a
� �s =

s�

b
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THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1439

Introducing Eq. (10) and Eq. (11) into Eq. (9), one yields

�∑
m=1

�∑
n=1

(
� − 1
2

D
2
n −D	2m − C

)
Bmn +

�∑
r=1

hrmCArn�r

+
�∑
r=1

�∑
s=1

hrmhsn

1+ �

2
DCrs�r�s = 0

�∑
m=1

�∑
n=1

{
�
� − 1
2

D	2m −D
2
n − C�Cmn +

�∑
s=1

hsnCAms�s

+
�∑
r=1

�∑
s=1

hrmhsn

1+ �

2
DBrs�r�s

}
= 0

�∑
m=1

�∑
n=1

{
− �C�Amn	

2
m + Amn


2
n��

−
�∑
s=1

hsnCCms�s −
�∑
r=1

hrmCBrn�r

}
− N

�∑
m=1

�∑
n=1

��Amn	
2
m + Amn


2
n�� = 0 (12)

SOLUTIONS

To solve Eq. (12), we cast it in a form of eigenvalue solution that can be
written as [

K∼
+�K∼ G

][
u
∼

]
= 0 (13)

where K∼
contains coefficients related to geometry generated from Eq. (12), and

K∼ G contains coefficients related to thermal effects. �u∼� contains unknown constant

Fourier coefficients, � represents the critical buckling temperature. A computer
program called “Thermal buckling” in FORTRAN code was developed to solve
Eq. (13) by calling the subroutine GVCRG of IMSL, which is used to solve
eigenvalue problems. Table 1 gives geometric parameters and material properties
used to calculate the critical buckling temperature according to the present theory.
The material properties are based on stainless steel, which has a maximum usage
temperature of 750�. To study the convergence of double Fourier expansions, the
critical buckling temperature is computed with m = n� Figure 3 shows the variation
of calculated critical buckling temperatures as m and n increases. A reasonable
convergence is reached after m = n ≥ 10.

Table 1 Parameters used to obtain the theoretical prediction of the critical buckling temperature

hc (mm) hp (mm) E (GPa) � 	 (×10−6� a (mm) b (mm)

8 10 200 0.3 16 300 300
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1440 W. YUAN ET AL.

Figure 3 Convergence of critical buckling temperature with m and n.

NUMERICAL MODELING

To verify the accuracy of the theoretical prediction, a 3D full-size finite
element model was also established to solve the critical buckling temperature by
using the commercial code ABAQUS. The sandwich panel is loaded in a uniform
temperature field, and the critical buckling temperature can be obtained through
solving the eigenvalue of the stiffness matrix of the sandwich panel. Due to the
symmetrical characteristics of the sandwich panel and boundary conditions, a one-
quarter model is adopted.

In-plane and out-of-plane motions of two edges of the sandwich panel are
constrained to make the fully clamped boundary conditions, and the in-plane
motion and rotation are restricted at the other two edges to make the symmetrical
boundary conditions. Figure 4 shows the finite element model and the buckling
mode. The face sheet and truss cores are modeled with shell and beam element,
respectively. The relative density of truss cores can be varied by changing the cross-
sectional area of the beam element:

�tet =
2
√
3A sin�
h2
c

�pyramid = 4A sin�
h2
c

(14)

�Kagome =
3A

h2
d sin�

where A is the cross-sectional area of the beam element, and hd is the distance
between unit truss cell of the Kagome configuration, see Figure 1b.
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THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1441

Figure 4 Finite element models and buckling modes of sandwich panels with truss cores, 1/4 model:
(a) Finite element models: pyramidal, tetrahedral, and Kagome configurations; (b) buckling modes:
pyramidal, tetrahedral, and Kagome configurations.

RESULTS AND DISCUSSIONS

Comparison between Theoretical Prediction and Numerical Analysis

Figure 5 shows the comparison between the theoretical prediction and
numerical analysis. The critical buckling temperature of sandwich panels obtained
by theoretical prediction is in good agreement with the result from the finite element
analysis, which is a reasonable validation for the analytical model.

Figure 5 Comparison between theoretical prediction and finite element analysis.
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1442 W. YUAN ET AL.

Effects of Boundary Conditions

For the thermal buckling of sandwich panels with truss cores under SSSS
conditions, the boundary condition can be written as

x = 0� a � w = �x = 0

y = 0� b � w = �y = 0 (15)

and the following virtual displacement modes are assumed:

�x = u0 cos 	kx sin 
ly

�y = v0 cos 
ly sin 	kx (16)

w = w0 sin 	kx sin 
ly

Substituting Eq. (16) into equilibrium equation Eq. (6), the critical buckling
temperature of sandwich panels with truss cores under SSSS conditions can be
obtained:

Tcr =
�1− ��N

E	�hp − hc�
(17)

where

N = DC�2�a2l2 + b2k2�

Ca2b2 +D�2�a2l2 + b2k2�

The comparison of critical buckling temperature between SSSS and CCCC
conditions is shown in Figure 5. Under CCCC conditions, not only in-plane and
out-of-plane motions but also rotations at edges are restricted. Therefore, the
stability of the sandwich panels under CCCC conditions is significantly improved.
As a result, critical buckling temperatures under CCCC conditions are much higher
than those under SSSS conditions.

Effects of Truss Configuration

For sandwich panels with truss cores subjected to out-of-plane compression,
buckling of the elements of the truss is the most common failure mode. In the
present thermal buckling analysis, the panel is subjected to in-plane compression,
and the in-plane loads are mainly carried by the face sheets whereas the truss
elements mainly bear the shearing force. The axial compressive force applied to the
truss elements is small and can be neglected. Therefore, the buckling of the elements
of the truss is not likely happen in the thermal buckling analysis.

For the three types of sandwich panels illustrated in Figure 1, the shear
stiffness can be derived:

Cpyramid = Gpyramidhc =
1
8
�Ehc

Ctet = Ckagome = Gtethc =
1
9
�Ehc (18)
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THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1443

Figure 6 Comparison of critical buckling temperature and shear stiffness of different cell
configurations.

Eq. (18) was obtained from relations between the shearing force and the displacement
as described in the Appendix. According to Eq. (18), the shear stiffness of the
pyramidal truss core is greater than that of the Kagome and tetrahedral core, when
they are in the same relative density. The theoretical analysis shows that the stability
of sandwich panels is directly related to the shear stiffness. Therefore, critical
buckling temperatures of sandwich panels with pyramidal truss cores should be
greater than those of the other two configurations. Figure 6 shows that both
theoretical predictions and finite element results are both in accordance with this
tendency. Critical buckling temperatures of pyramidal configurations are slightly
higher than the other two configurations.

Effects of Relative Density and Facesheet Thickness

As shown in Figure 5 and Figure 6, the critical buckling temperature of the
sandwich panel increases as the relative density grows, whereas the tendency become
stable when the relative density is greater than 0.1. This means, for a sandwich
panel, the resistance to thermal buckling can be improved by using higher relative
density truss cores, whereas it maybe not as efficient when the relative density is
higher than 0.1. As shown in Figure 7, the ratio of critical buckling temperature to
the volume of truss core, Tcr/V (representation of specific stiffness per unit volume)
is introduced to denote the thermal buckling load per unit volume. As the relative
density grows, the specific stiffness of the sandwich panel climbs to the top when
the relative density is about 0.08, and then drops.

Figure 8 shows the influence of the face sheet thickness. In-plane load increases
when the thickness of the face sheet grows, whereas the shear stiffness of the truss
core is still weak, and an increase in thickness may result in decrease in the critical
buckling temperature.
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1444 W. YUAN ET AL.

Figure 7 Thermal buckling load per unit volume versus relative density.

Figure 8 Critical buckling temperature versus relative density of various face sheet thicknesses.

CONCLUSIONS

An analytical model for the thermal buckling of fully clamped sandwich panels
with truss cores subjected to a uniform temperature rise was developed by using
the Reissner model. Critical buckling temperatures of sandwich panels under CCCC
conditions are obtained through numerical iterative approaches. Theoretical results
are in good agreement with those of finite element analysis. According to the
theoretical analysis, the influence of boundary condition, truss core configuration,
relative density and thickness of face sheet to the critical buckling temperature is
also discussed.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 2

1:
52

 2
6 

N
ov

em
be

r 
20

14
 



THERMAL BUCKLING OF TRUSS CORE-SANDWICH PANELS 1445

The stability of the sandwich panel under CCCC conditions is significantly
improved, and the critical buckling temperature is much higher, when compared
with that under SSSS conditions. The resistance to thermal buckling of the sandwich
panel can be improved using higher relative density truss cores. However, when the
relative density is greater than 0.08, increase in the relative density demonstrates
low efficiency. The shear stiffness of pyramidal truss cores is greater than that
of Kagome and tetrahedral cores; therefore, the critical buckling temperature of
sandwich panels with pyramidal truss cores is the highest of the three configurations.
In addition, increase in plate thickness may result in decrease in critical buckling
temperature.

The metallic sandwich panel with truss core may demonstrate multiple failure
mechanisms under various loadings. For metallic sandwich panels subject to
bending, Rathbun et al. [31] summarized four possible failure modes: face yielding,
face buckling, core yielding, and core buckling. There are competitions between
different failure mechanisms. In the present study, local face yielding (or facings
losing strength), and overall panel buckling are the two most likely failure modes
for sandwich panels. This article provides a tool to predict at which temperature
level buckling may occur. Whether local face yielding happened before overall panel
buckling should be examined through future experimental study.

APPENDIX

The shear stiffness of the sandwich panel is derived by considering the
deformation of one unit cell. When applying a shear force Fon one side of the panel,
the displacement of the three configurations can be expressed as


pyramid = Fhc

2EA sin3 �


tet =
4Fhc

3EA sin3 �
(A.1)


Kagome =
4
√
3Fhc

6
√
2EA cos2 �

The shearing strain can be derived:

�pyramid = 


hc

= F

2EA sin3 �

�tet =



hc

= 4F

3EA sin3 �
(A.2)

�Kagome =



hc

= 4
√
3F

6
√
2EA cos2 �

Then the shear modulus can be obtained:

Gpyramid = EA sin3 �

h2
c
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Gtet =
EA sin3 �√

3h2
c

(A.3)

GKagome =
6
√
2EA cos2 �

4
√
3h2

d

For the pyramid, tetrahedral, and Kagome configurations, � are 45�, 55�7�,
and 55�7�, respectively. According to Eq. (14), the shear stiffness of the sandwich
panel with pyramid configuration cores can be expressed as

Cpyramid = Gpyramidhc =
hc�̄E

2
sin4 � = 1

8
�̄Ehc

Ctet = Gtethc =
√
2�̄Eh2

c

4
√
3

sin3 � = 1
9
�̄Ehc (A.4)

CKagome = GKagomehc =
�E cos2 �

3
= 1

9
�̄Ehc

NOMENCLATURE

Amn = Fourier constant coefficients
a = Sandwich panel length
Bmn = Fourier constant coefficients
C = Shear stiffness of sandwich panels
Cmn = Fourier constant coefficients
D = Flexural rigidity of sandwich panels
E = Modulus of the material
Gc = Equivalent shear modulus of the lattice truss core
hc = Core thickness
hp = Sandwich panel thickness
K = Matrix of constant coefficients related to geometry
KG = Matrix of constant coefficients related to thermal effects
m = Number of expansion
Mx = Bending moment in x-direction
Mxy = Torsional moment
My = Bending moment in y-direction
n = Number of expansion
Nx� Ny� Nxy = Compressive in-plane force
Qx�Qy = Shear force
t = Thin plate thickness
u = Displacement in x-direction
�u� = Matrix of Fourier constant coefficients
v = Displacement in y-direction
w = Displacement in z-direction
w0 = Displacement at the middle-plane
KG = Matrix of constant coefficients related to thermal effects
	 = Coefficient of thermal expansion of the sandwich panel
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Tcr = Critical temperature
� = Poisson’s ratio
�x� �y = Rotations of the normal in the xz and yz planes
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