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Thermocapillary effect on the dynamics of viscous beads on vertical fiber
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The gravity-driven flow of a thin liquid film down a uniformly heated vertical fiber is considered. This is
an unstable open flow that exhibits rich dynamics including the formation of droplets, or beads, driven by a
Rayleigh-Plateau mechanism modified by the presence of gravity as well as the variation of surface tension
induced by temperature disturbance at the interface. A linear stability analysis and a nonlinear simulation are
performed to investigate the dynamic of axisymmetric disturbances. The results showed that the Marangoni
instability and the Rayleigh-Plateau instability reinforce each other. With the increase of the thermocapillary
effect, the fiber flow has a tendency to break up into smaller droplets.
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I. INTRODUCTION

A liquid film flowing down a vertical fiber has been
extensively studied recently because it is encountered in
many industrial applications, for example, draining, coating
of insulation on a wire, and the protection coating of tube
walls [1]. For cylindrical threads and jets, a Rayleigh-Plateau
mechanism is responsible for the formation of very regular
droplike wave patterns under the action of surface tension
[2]. For the film of thickness h flowing down a slender
cylindrical fiber of radius a, the Rayleigh-Plateau instability is
modified by the presence of flow driven by gravity. Surface
tension acts to destabilize the interface by the Rayleigh
mechanism. At small Reynolds numbers, the film tends to
break up into axisymmetric droplets with the axial length
scale L > 2πR, here R = a + h is the total radius of the fluid
ring.

Experimental investigation on the thin films flowing down
a vertical fiber was performed first by Quéré [3]. The results
showed that two different kinds of behavior can be observed
according to the film thickness: (1) For a thick film on a
slender fiber, drops develop due to the Rayleigh instability
and flow downward. Some of drops grow by swallowing the
other ones, and quickly fall, leaving behind them a thick
film which breaks in turn into droplets. (2) For a thin film
on a large fiber, the instability may be arrested by the mean
flow.

Frenkel has derived a simple Benny-like equations for
the evolution of the film thickness in the case of h � a

[4]. Kalliadasis and Chang [5] solved the evolution equation
derived by Frenkel [4] and showed that the mean flow can
arrest the drop formation process when the thickness of the
film is less than the critical value, hc, observed by Quéré [3]
in which hc ∼ a3H−2, where H = (σ/ρg)1/2. The nonlinear
dynamics of Frenkel’s equation has also been investigated
by Kerchman and Frenkel [6] and Chang and Demekhin
[7].

The above papers deal with the long-wave equations derived
under the assumption that the fiber radius is taken to be much
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larger than the film thickness. Kliakhandler et al. [8] conducted
experiments that revealed the richness of the dynamics of the
flow of a thick film down a vertical fiber. Three qualitatively
different regimes of the interfacial patterns in the form of beads
were observed experimentally. The photos of three distinct
regimes (a), (b), and (c) reported by Kliakhandler et al. in
Fig. 1 in Ref. [8]. In the first case of flow regime (a), the drops
are large and move rapidly and the flow rates are relatively
large. The film between the drops is relatively thick and
practically uniform. The average distance between the drops is
relatively large, though the separation between the individual
drops slightly varies. The large drops sometimes collide very
quickly with each other in an irregular fashion. In the second
case of flow regime (b), the drop train is highly organized.
The speed and size of the drops are substantially smaller than
those in regime (a), and the shape, speed, and distance between
the drops do not change over time. This regime was observed
in a relatively small range of flow rates. For very small flow
rates, the size and speed of the drops in regime (c) are larger
than those in regime (b), though the flow rate in regime (c)
is smaller. Regime (c) is also not steady as the large drop is
actually consuming the much smaller stationary drop ahead in
the experiments.

In the experiments in Ref. [8], the film is at least twice
as thick as the fiber radius. Therefore, the previously derived
Benny-like equations under the assumption of h � a do not
apply there. The authors also proposed an evolution equation
which does not rely on the previously made lubrication-type
assumptions. Two typical regimes at relatively small flow
rate are described well by their model. However, their model
equation fails to capture a regime that features beads separated
by relatively long flat thin-film regions. Craster and Matar
[9] derived a new evolution equation similar to that used
by Kliakhandler et al. [8] and revisited the same problem
in which the fluid radius is much smaller than its characteristic
length based upon a capillary length scale. The authors showed
that numerical solutions of their model equation yield good
agreement with the experimental observations reported by
Kliakhandler et al. [8]. Until now, this long-wave model
has been extended to study the dynamics of the fiber flow
in more complex physical conditions. Ding and Liu [10]
studied the dynamics of a viscous film flowing on a porous
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cylinder. More recently, Ding et al. [11] investigated the
effect of radial electric field on the dynamics of the fiber
flow.

In many practical situations, fiber-coating processes are
operated in a cooling environment. For example, in glass-
manufacturing process, glass fibers are made by drawing
molten glass through an array of small diameter bushings.
The cooling of the fibers from the glass extrusion tem-
perature (1500 K) to a temperature where the coating can
be applied (below 365 K) is a rate-limiting step. In order
to enhance the heat removal from the fibers, the fiber is
sprayed with water from atomizing nozzles [12]. In the
situation where the fiber flow is cooled by the environment,
the capillary instability is modified by fluid motions induced
by gravity as well as by thermocapillary stress, which is
due to surface tension variations produced by temperature
gradients.

For a planar liquid film bounded by a heated wall, two
mechanisms that are associated with the thermocapillary
forces can lead to instabilities [13]. One mechanism (the P
mode) is associated with the interaction of the basic temper-
ature with the perturbation velocity field. Upon the onset of
instability, the P mode is in the form of static convection cells
with the wavelength of the same order as the layer depth.
This type of instability is first observed by Bénard [14] in
thin liquid layers (≈1 mm deep) heated from below. Block
[15] first recognized that surface tension, instead of buoyancy,
was the source of instability. Pearson [16] performed a linear
stability analysis on this problem and found that this type
of instability can occur in a liquid layer without surface
deformation. The second mechanism is associated with the
modification of the basic temperature at the free surface by the
surface deformation. This long-wavelength instability mode
(the S mode) was first predicted and investigated theoretically
by Scriven and Sternling [17] and Smith [18]. VanHook et al.
[19,20] investigated both experimentally and theoretically on
the long-wave instability of a thin liquid layer heated from
below or cooled from above. In the experiments, the long-wave
instability mode takes the form of a localized depression (“dry
spot”) or a localized elevation (“high spot”), depending on the
thickness and thermal conductivity of the gas layer above the
liquid.

The above works in the preceding paragraph on the stability
problem of surface-tension-driven flow are limited to liquid
layers bounded by a plane plate. However, a careful look at
previous literatures indicates that the studies on the effect
of thermocapillarity on liquid flows with an axisymmetric
free surface, such as jet, liquid bridge, and fiber flows, are
very limited. Xu and Davis [21] have studied the stability of
long axisymmetric liquid zones subjected to axial temperature
gradients which induce steady flows driven by thermocap-
illarity. Chen et al. [22] have studied the effect of thermo-
capillarity on the Plateau-Rayleigh instability of a cylindrical
liquid bridge. It has been shown that the thermocapillarity
induced by axial temperature gradients has a stabilizing effect
[21,22].

In the present paper, we will study the problem of a film
flowing down a vertical fiber with a temperature difference
between the fiber wall and the interface, which is different

from Refs. [21] and [22] where the temperature gradients are
parallel to the axial direction. In our problem, most of the
physical parameters are the same with those of experiments
by Kliakhandler et al. [8]. In their experiments, caster oil
has the density ρ = 0.961 g cm−3, kinematic viscosity ν =
4.4 cm2 s−1, and surface tension σ = 31 g s−2, and the radius
of the fiber a = 0.25 mm. We assume that the environment
is at a room temperature of T0 = 25◦ C, and the temperature
difference between the fiber wall and the fluid interface does
not exceed 100◦ C.

This paper is organized as follows. In Sec. II the math-
ematical formulation of the physical model is presented. In
Sec. III we present the results and discussions. In Sec. IV we
summarize the results and present the conclusions.

II. MATHEMATICAL FORMULATION

As shown in Fig. 1, a Newtonian fluid, of constant viscosity
μ and density ρ, flows down a vertical fiber of radius r = a

under gravity g. The initial radius of the fluid ring measured
from the center of the fiber is r = R. The temperatures of the
fiber wall and the interface of the film are Ta and Ti . We make
an assumption that the flow is axisymmetric.

The dynamics of the flow are governed by the continuity
equation, Navier-Stokes equations and the energy equation

ur + u

r
+ wz = 0, (1)

ut + uur + wuz = −pr

ρ
+ μ

ρ

[
urr + ur

r
− u

r2
+ uzz

]
, (2)

wt + uwr + wwz = g − pz

ρ
+ μ

ρ

[
wrr + wr

r
+ wzz

]
, (3)

z

r
a

R

Ta

Ti

FIG. 1. Sketch of the geometry of a fiber flow.
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Tt + uTr + wTz = κ

[
Trr + Tr

r
+ Tzz

]
, (4)

where t denotes time, u and w denote the radial (r) and
axial (z) velocity components, p denotes the pressure, T

denotes the temperature, and κ denotes the thermal diffusivity.
Note that unless stated otherwise, the subscript denotes partial
differentiation.

At the fiber surface (r = a), no penetration and no slip
conditions for the velocities are

u = w = 0. (5)

The temperature at the fiber wall is prescribed:

T = Ta. (6)

At the free surface r = S(z,t), the shear stress is balanced by
the thermocapillary force,

t·T ·n = t·∇sσ, (7)

and the normal stress is balanced by surface tension times the
curvature,

n·T ·n = 2σH, (8)

here T is the stress tensor, n and t are the unit vectors normal
and tangent to the interface, and 2H is the surface mean
curvature. The surface tension is assumed to be given by the
linear dependence on the temperature,

σ = σ0 − γ (Ti − T0), (9)

where the coefficient γ represents the rate of change of
surface tension with temperature, evaluated at the reference
temperature T0. This assumption is valid when the temperature
difference between Ti and T0 is not large. For most of liquid
interface the surface tension decreases with temperature. For
silicone oil at 25◦ C, the coefficient γ is about 0.5 × 10−4.

In component form, Eqs. (7) and (8) can be expressed as

μ

N

[
2Sz(ur − wz) + (

1 − S2
z

)
(wr + uz)

] = −γ (SzTir + Tiz),

(10)

p + 2μ

N2

[
Sz(uz + wr ) − ur − S2

z wz

] = σ

(
1

NS
− Szz

N3

)
,

(11)

where N = (1 + S2
z )1/2.

The kinematic boundary condition on the free surface is

St + wSz − u = 0, (12)

or in conservative form

St + 1

S

∂

∂z

∫ S

a

wrdr = 0. (13)

The balance between heat supply to and heat loss from the
surface is given by a phenomenological relation referred as

“Newton’s law of cooling,”

−χn·∇T = q(T − T∞), (14)

in which χ is the thermal conductivity of the liquid and q is the
Newton’s heat transfer coefficient describing the rate of heat
transport from the liquid to the ambient gas with temperature
T∞ far away from the interface. This law, which is often
applied in the absence of radiation, is not a rigorous condition
expressing energy conservation through the interface, with
a value of q determined empirically. This relation is not
valid when the boundary possesses a non-negligible thermal
resistance. Moreover, it may not be adequate in describing
cooling due to convection in the gas phase [23].

Scaling and asymptotic reduction

The dimensionless variables are

r = Rr∗, z = Lz∗, p = ρgLp∗, t = LV −1t∗,
(15)

w = V w∗, u = εV u∗, T − T∞ = �T T ∗,

where the star denotes dimensionless variables, and the
velocity scale V ≡ ρgR2/μ. The length scale L is taken to be
the capillary length L = σ/ρgR. We assume that the radius
of the fluid ring, R, is much smaller than the length scale L,
i.e., the parameter ε = R/L is small. The Bond number Bo =
ρgR2/σ naturally appears and in the experiments the Bond
number is small (∼0.3 or so) [9]. This quantity indicates the
dominating effect of gravity over surface tension. Note that
the choice of length scale above sets Bo = ε. This means
that the choice of a low Bond number (surface-tension-
dominated) is consistent with the long-wave theory. We
drop the star and exclusively use dimensionless variables
throughout the subsequent parts of the present paper.

The dimensionless controlling equations become

ur + u

r
+ wz = 0, (16)

ε4Re(ut + uur + wuz) = −pr + ε2

[
urr + ur

r
− u

r2
+ ε2 ∂2u

∂z2

]
,

(17)

ε2Re(wt + uwr + wwz) = 1 − pz +
[
wrr + wr

r
+ ε2wzz

]
.

(18)

ε2Re(Tt + uTr + wTz) = 1

Pr

[
Trr + Tr

r
+ ε2Tzz

]
, (19)

where the Reynolds number is defined as Re = ρV L/μ, and
the Prandtl number is defined as Pr = ν/κ . Assuming ε2 � 1
and Re = O(1) or smaller, we can neglect the contributions of
the inertial terms.

The leading-order Navier-Stokes equation and the energy
equation are given by

wrr + wr

r
= pz − 1, (20)

Trr + Tr

r
= 0. (21)
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The leading-order normal and tangential stress balances at the
surface are

p = 1

S
− ε2Szz, (22)

wr = −εMa(SzTir + Tiz), (23)

where the Marangoni number is defined as Ma = γ�T/μV .
The parameter Ma measures the importance of the tangential
thermocaillary stresses at the free surface.

A notable term which is included in Eq. (22) is the εSzz term,
which involves the highest derivative of S. Strictly speaking,
the inclusion of this term may appear to be ad hoc. A singular
perturbation suggests that the Szz term should be important.
This is reflected in a linear analysis where the inclusion of this
term is vital to ensure the correct cutoff wave number. More
justification of inclusion of this term has been reviewed by
Craster and Matar [9]. In Eq. (23), the reason for including the
first order term of ε is that the Marangoni effect is involved in
this term.

The temperature at r = a is

T = 1, (24)

the relation of Newton’s law of cooling at the surface r = S

Tr + BiT = 0, (25)

where the Biot number defined as Bi = qR/χ measures the
efficiency of heat transfer at the boundary. Bi = 0 corresponds
to the poorly conducting case, while Bi → ∞ corresponds to
a perfectly conducting case.

We obtain the distribution of the temperature as

T = Bi ln r
S

− 1
S

Bi ln a
S

− 1
S

. (26)

At the interface, the temperature is

Ti(z) = −1

BiS ln a
S

− 1
. (27)

The velocity w(r,z,t) is

w = (1 − pz)

[
1

4
(a2 − r2) + 1

2
S2 ln

r

a

]
− εMaTizS ln

r

a
.

(28)

Substituting w to the continuity equation, we obtain the
expression of u,

u = −1

r

{
Az

[
1

2
a2(r2 − a2) − 1

4
(r4 − a4)

]

+Bz

[
1

2
r2 ln

( r

a

)
− 1

4
(r2 − a2)

]}
, (29)

where A and B are

A = 1

4
(1 − pz), B = S2

2
(1 − pz) − εMaTizS, (30)

where

Tiz = BiSz

(
ln a

S
− 1

)
(
BiS ln a

S
− 1

)2 . (31)

We can define a stream function �(r) as

�(r) =
∫ r

a

rudr = (1 − pz)

[
− 1

16
(r4 − a4)

+ 1

4
S2r2 ln

( r

a

)
− 1

8
(S2 − a2)(r2 − a2)

]

− εMaTizS

[
r2

2
ln

r

a
− 1

4
(r2 − a2)

]
, (32)

and the flow rate Q = �|r=S is expressed as

Q(S) = (1 − pz)

[
1

4
S4 log

S

a
+ (3S2 − a2)(a2 − S2)

16

]

− εMaTiz

[
S3

2
ln

S

a
− S

4
(S2 − a2)

]
. (33)

Substituting Q in the kinematic boundary condition yields
an evolution equation for S(z,t) given by

∂tS
2 + 2∂zQ(S) = 0. (34)

III. RESULTS AND DISCUSSIONS

Throughout the present paper, the results are based on the
nonlinear evolution equation (34), which is obtained from
the leading order approximation with respect to ε. In the
experiments in Ref. [8], the Reynolds number of the flow
is very small, typically 10−2. In this case, Eq. (34) is valid for
ε2 � 1.

Before we perform a linear stability analysis on the
problem, it is helpful to give a physical interpretation of
the mechanisms of the Marangoni effect on the stability. We
begin by analyzing the dynamics of a small disturbance at
the interface of the film fiber. At the interface, crest and
trough are formed due to the growth of the deflexion driven
by the Rayleigh-Plateau mechanism. When the film is heated
by the fiber, because the trough point is closer to the fiber
wall, the temperature at the trough is higher than that at the
crest. A fluctuation of temperature will result in a local surface
tension gradient. Surface tension gradients at the interface act
as tangential stress on adjacent fluids. The interface relaxes
at the trough point where a positive temperature disturbance
is created and the associated tangential stresses then induce
the fluid flow from the trough towards the crest. Thus, we
conjecture that the Marangoni effect and the Rayleigh-Plateau
mechanism reinforce one another.

A. Linear stability

Let us now consider the linear stability of the problem. The
base state of Eq. (30) is

S̄ = 1. (35)

We use a normal mode approach

S = S̄ + Ŝ exp(λt + ikz). (36)

Where Ŝ is the amplitude of the perturbation, k and λ are
the wave number and the time growth rate. This yields the
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FIG. 2. The dispersion relation of the real growth rate vs the wave number. (a) For various Marangoni numbers at Bi = 1.0, (b) for various
Biot number at Ma = 1.0. Other parameters are ε = 0.2, a = 0.5.

dispersion relation

λ +
[

1

16
k2(k2ε2 − 1)

(
4 ln

1

a
− a4 + 4a2 − 3

)
+ ik

2
(a2 − 1 − 2 ln a)

]
+ ε

4
k2MaBi

(a2 − 1 − 2 ln a)(ln a − 1)

(Bi ln a − 1)2
= 0. (37)

At Ma = 0, this dispersion relation is identical to that of
Craster and Matar for a fiber flow of an isothermal liq-
uid [9]. In Fig. 2 we show the curves of the dispersion
relations obtained from the long-wave theory. At a given
k, it can be seen from Eq. (38) that the time-growth rate
increases with the increase of Ma. The maximum real growth
rate

λm = A

64ε2

(
1 + 4εMa

B

A

)2

(38)

is realized at the wave number

km = 1√
2ε

(
1 + 4εMa

B

A

)1/2

, (39)

in which the coefficients A and B are

A = 4 ln
1

a
− a4 + 4a2 − 3,

B = −Bi
(a2 − 1 − 2 ln a)(ln a − 1)

(Bi ln a − 1)2
. (40)

The cutoff wave number at which the real growth rate is zero
is

kc = 1

ε

(
1 + 4εMa

B

A

)1/2

. (41)

As shown in Fig. 2(a), with the increase of the Marangoni
number, both the wave number of the most unstable mode and
the cutoff wave number increase.
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(b)

FIG. 3. Effect of Bi on the real growth rate and the wave number of the most unstable mode for various a. (a) The curves of λm vs Bi,
(b) the curves of km vs Bi. The other parameters are ε = 0.2, Ma = 1.0.
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TABLE I. The values of α and ε for flow regions a, b, and c.

a b c

a 0.2551 0.2856 0.3262
ε 0.2915 0.233 0.178

The Biot number is an important factor to influence the
growth rate of disturbances. For Bi = 0, the interface is
perfectly insulated from the gas. In that case the temperature
of the film is T = 1. For Bi → ∞, the interface is a perfect
conductor, and the temperature of the interface is identical
to the gas, i.e., Ti = 0. In these two cases, there is no
temperature disturbance at the interface, and the dispersion
relations are identical to the fiber flow of an isothermal liquid.
It can be shown from Eq. (40) that as Bi < 1/ ln( 1

a
), the real

time-growth rate increases with Bi, and as Bi � 1/ ln( 1
a

) it
decreases with the increase of Bi. Figure 2(b) displays the
dispersion relations for various Bi at Ma = 1 for a = 0.5. At
Bi ≈ 1.443, the time-growth rates reach the maximal value at
all wave numbers.

In Fig. 3(a) and 3(b), the time-growth rate and the corre-
sponding wave number of the most unstable mode versus the
Bi are plotted for various a. At each Bi, both the time-growth
rate and the wave number decrease with the increase of a. For a
given a, both the time-growth rate and the wave number reach
their maximum values as Bi = 1/ ln( 1

a
).

B. Nonlinear evolution

In this subsection we will study the effect of thermo-
capillarity on the nonlinear evolution of small disturbances.
Equation (34) subject to periodic boundary conditions will
be numerically simulated. We now examine the nonlinear
evolution initiated by small disturbances of the most unstable
modes with wavelength λ = 2π/km. The initial condition is a
simple harmonic disturbance superimposed on the interface

S0 = S̄ + ε cos(kmz), (42)

where ε is a small number. The computational domain is set
to be the interval [−π/km,π/km]. A Fourier pseudospectral

method is used to provide the discretization in space. The
second-order Runge-Kutta method for stiff problems was used
for the time advance.

Next, we will examine how the thermocapillarity influences
the flows in these typical regimes. The parameters a and ε for
different flow regimes are listed in Table I. In order to know the
effect of thermocapillarity on the characteristics of the flow,
we will examine how the Marangoni number influences the
profiles of the interface of the nonlinear state.

In Fig. 4 we plot the profiles of the saturate state of the
nonlinear evolution initiated by small disturbances of the most
unstable modes with wavelength λ = 2π/km. At the saturate
state, the evolution is in the form of a traveling wave. In
these figures, the small amplitude initial disturbances give
similar periodic structures at Ma = 0. With the increase of
Ma, the hight of the beads increases and the gap between
drops becomes flatter. As Ma increases to 2, the gaps between
the drops become virtually uniform interfaces.

Figure 5 shows the evolution of the most unstable mode by
plotting a sequence of snapshots of the free-surface profiles
at fixed time increments. As shown in Fig. 5, the perturbed
interface becomes unstable and the disturbance saturates with
small-amplitude waves. Comparing Fig. 5(a) with Fig. 5(b), we
found that at large Marangoni number Ma = 2 the disturbance
grows more rapidly into traveling waves than at Ma = 0.

The saturate states of the most unstable mode are clearly
families of the steadily propagating solutions. In order to know
the properties of the solutions which are naturally selected, we
perform numerical simulations on relatively long domains.
Starting from a fiber flow of uniform radius seeded with
random disturbance in the range 0 to 10−3 on a spatial domain
of l = 15, the solutions are plotted in Figs. 6–8. As shown
in Figs. 6(a), 7(a), and 8(a) for Ma = 0, the beads with
similar structures coexist and the lengths of gaps between
beads are different. In Figs. 6(b), 7(b), and 8(b) for Ma = 1,
in comparison with the case of Ma = 0 the width of each
bead decreases and more beads appear in the region. As Ma
increases from 0 to 1, the height of each bead increases and the
thicknesses of the gaps between different “families” decrease.
As Ma increases to 2, Figs. 6(c) and 8(c) present the profiles
of breakup of the film. In these two figures, a noticeably large
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3
Ma=0
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(c)

FIG. 4. Effect of Ma on the profiles of the interface via numerical simulations for the most unstable disturbances. (a), a = 0.2551, ε =
0.2915, k = 2.47, 2.78, 3.09 for Ma = 0, 1, 2; (b), a = 0.2856, ε = 0.233, k = 3.09, 3.47, 3.73 for Ma = 0,1,2; (c), a = 0.3262, ε = 0.178,
k = 4.045, 4.3820, 4.8876 for Ma = 0,1,2.
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FIG. 5. Time snapshots showing the evolution of the most unstable mode in a periodic domain of 2π/km from t = 0 to 20 for a = 0.2551,
ε = 0.2915. Interfacial profiles S are shown at time intervals �t = 0.2. (a) k = 2.47, Ma = 0; (b) k = 3.09, Ma = 2.

bead accompanied with a series of smaller droplets appears in
the region, and the minimum thickness of the film is close to
zero. In Fig. 7(c) for Ma = 2, the width of each bead and the
thickness of the gap between different “families” decreases
further. In this figure, the breakup of the film has not occurred
as that shown in Figs. 6(c) and 8(c). From the discussion
above, the results in Figs. 6–8 indicate that the fiber flow has
a tendency to break up into smaller beads under the effect of
thermocapillarity.

IV. TRAVELING WAVE SOLUTIONS

Experiments have shown steadily propagating droplet or
beadlike solutions separated by long gaps of constant radius
[8]. In this subsection, we will examine the influence of
effect of thermocapillarity on the structures of traveling wave
solutions. We solve the governing equations by moving to a
traveling wave coordinate, ξ = z − ct , where c is a constant
wave speed to be determined. The nonlinear equation (34)
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FIG. 6. The profiles of the interface via transient numerical simulations for various Marangoni numbers. Other parameters are l = 15,
a = 0.2551, ε = 0.2915. Ma = 0, 1, 2 for (a), (b), and (c).
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FIG. 9. Traveling wave solution: spacings l and propagating
speeds c for various a and Ma at ε = 0.2.

becomes

− c∂ξS
2 + 2∂ξQ(S) = 0. (43)

Integrating this equation, we have

− cS2 + 2Q(S) = q. (44)

Equation (44) subject to periodic boundary conditions will be
solved in the region of −l/2 < ξ � l/2, where l is the length
of the computational domain. In order to fix c, we impose a
constraint condition on the fluid mass:

∫ l/2

−l/2
(S2(ξ ) − a2)dξ = l(1 − a2). (45)

Equation (44) becomes a nonlinear differential eigenvalue
problem where the unknown variables are the fluid radius
S(ξ ), q, and c.

A Newton-Kantorovich approach with a Fourier expansion
is used to solve the nonlinear eigenvalue problem. We begin
with a reasonable guess obtained from direct simulation for
the wave speed c and profile S(ξ ). The traveling wave solution
can be rapidly converged via Newton iterations. We should
note that the steadily propagating solution may be obtained by
direct simulation on the initial problem. For each point in the
curve, an independent simulation is needed. The procedures
are highly time consuming.
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FIG. 10. The profiles of the interface and the isostreamlines for a = 0.25. Other parameters are (a) Ma = 0, l = 2, (b) Ma = 0.8, l = 2,
(c) Ma = 0, l = 20, (d) Ma = 0.8, l = 20. Negative and positive values of the stream function are denoted by dashed and solid lines.
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Figure 9 displays the variation of the wave speed c with
the domain length l for various a and Ma. In this figure the
structure of each curve is similar, i.e. the solutions with smaller
l travel slower than those with larger l. This implies that the
droplets of relatively long waves eventually catch up with,
coalesce and consume those of shorter wavelength. The wave
speed c asymptotes to a certain value, c∞, as l increases to a
large value. For a given l, it is clear that the wave speed of
a = 0.5 is much lower than that of a = 0.25. This means that
the thinner layer of fluid gives rise to droplets propagating more
slowly than that of the thicker layer. Comparing the curves of
Ma = 0 with Ma = 0.8 for a = 0.5, we found that with the
increase of Ma the droplets propagate faster for almost all
values of l. Comparing the curves of Ma = 0 with Ma = 0.8
for a = 0.25, at small l the wave speed of Ma = 0 is faster
than that of Ma = 0.8. However, at large l the wave speed of
Ma = 0 is slower than that of Ma = 0.8.

In order to know more about the influence of thermocap-
illarity on the traveling wave solution, we plot the structures
of the streamlines of the traveling waves in the moving frame
of reference for several cases in Figs. 10 and 11. In Fig. 10,
the figures of the case of a = 0.25 are presented for various
wavelengths and Marangoni numbers. In each figure, the

dashed lines indicate that in the moving frame the fluid moves
upwards underneath the waves. In Fig. 10(a) for l = 2, at
Ma = 0 the maximum height of the film is about 1.7. A small
capillary ripple exists in the region wherein the droplet adjusts
onto the preceding flat region. The thickness of the gap region
varies smoothly. As shown in Fig. 10(b), the increase of Ma
results in a more pronounced peak with the height of about
2 and a less pronounced adjustment region. As Ma increases
from 0 to 0.8, the thickness of gap region decreases from
about 0.25 to 0.06. As shown in Fig. 10(a) for Ma = 0, the
streamlines in the moving frame reveal a large recirculation
zone inside the bead. For Ma = 0.8, the structure of the
streamlines is significantly different from that in Fig. 10(a).
In Fig. 10(b), two circulations rotating in opposite directions
are formed under the Marangoni effect. The streamlines in
Fig. 10(b) reveal that fluid particles move from the peak into
inner region of the bead.

For l = 20, in Figs. 10(c) and 10(d) the traveling wave
solutions are in the form of pulse-like waves. In each figure the
negative isostreamlines indicate that in the moving frame the
fluid moves upwards underneath the waves. The height of the
peak slightly increases with the increase of Ma. In Figs. 10(c)
and 10(d), there is no circulation inside the beads for both
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cases. For Ma = 0.8, the streamlines in Fig. 10(d) show that
near the peak region there are fluid particles flowing from the
interface into the bead.

In Fig. 11 we plot the profiles of the interface and
streamlines for the case of a = 0.5 for various Ma and l. In
each figures, a noticeable capillary ripples present in front of
the beads. Comparing Fig. 11(a) with 11(b) and Fig. 11(c) with
11(d), we found that the increase of Ma results in the increase of
the height of the beads. In Fig. 11(a) and 11(c) for l = 5 and 20,
in the absence of the Marangoni effect there is no circulation
inside the beads, and there are no fluid particles flowing from
the interface into the beads. However, for Ma = 0.8 as shown
in Figs. 11(b) and 11(d) there are fluid particles flowing from
the interface into the beads.

V. CONCLUSIONS

This paper investigates the dynamics of a fiber flow driven
by the gravity combined with thermocapillarity induced by
a temperature gradient in the radial direction. The evolution
equation for the interface is obtained via long-wave theory.
The parameters a, ε, Ma, and Bi are involved in the evolution
equation.

We studied the linear stability of small axisymetric distur-
bances. We focus on the Marangoni effect on the stability of
the fiber flow. The results show that both the time growth rate
and the wave number of the most unstable mode increase with
the increase of Ma. This means that the Marangoni effect and
the Rayleigh-Plateau mechanism reinforce each other.

We performed numerical simulations on the nonlinear
evolutions of most unstable disturbance. At the saturate state

of the most unstable disturbances, with the increase of Ma
the heights of the beads increase and the gap between the
beads becomes flatter and the thickness of the gap decreases.
We also performed a transient simulations of random small
disturbances over relatively long flow region. In the absence
of thermocapillarity, the structures of the profiles of the
interface of flow regime (a), (b), (c) are noticeably different.
However, with the increase of Ma, the profile of the interface
consists of series of smaller beads. As Ma increases further,
the thicknesses of the gap between the beads decrease and
breakup of the interface may occur. The results of the transient
simulations show that with the increase of Ma the fiber flow
has a tendency to breakup into smaller droplets.

The traveling wave solutions are investigated by a Newton-
Kantorovich approach. The results show that the solutions with
smaller l travel slower than those with larger l. This implies
that the droplets of relatively long waves eventually catch up
with, coalesce and consume those of shorter wavelength. For
smaller a, with the increase of Ma the droplets propagate
faster for almost all values of l. For larger a, at small l

the wave speed decreases with Ma. However, at large l

the wave speed increases with Ma.
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[1] D. Quéré, Annu. Rev. Fluid Mech. 31, 347 (1999).
[2] L. Rayleigh, Phil. Mag. 34, 145 (1892).
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