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a b s t r a c t

A theoretical model has been developed, which reveals the underlying correlation between the strong
extra strain hardening achieved in the nano-grained layers of the grain size gradient structure and the
non-uniform deformation of the lateral surface in surface nano-crystallized materials, based on some
existing experimental observations and the concept of geometrically necessary dislocations. The
proposed model led to the establishment of a simple physical law that can be expressed as Hn ¼ An,
where Hn and An are two dimensionless parameters. The former represents the extra strain hardening,
while the latter characterizes the non-uniform deformation of the lateral surface. The values of these
two parameters can be measured through experiments.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nano-grained metals and alloys are usually strong but brittle.
Generally, their ultra-high strength and hardness (up to several
gigapascals) are achieved at the expense of their ductility, which is
typically less than a few percent in terms of uniform elongation,
due to the suppression of the conventional dislocation slip that
dominates in their coarse-grained (CG) counterparts [1–3]. The
brittleness of nano-grained metals/alloys is a severe setback to
their practical applications. In the past decades, various strategies
have been proposed to enhance the ductility of nano-grained
materials while maintaining their superior strength, which include
growth stimulating of nano-grains by stress [4–8], evoking of
abundant dislocation activities in nano-grains [9], embedding of
high density coherent nanoscale twin boundaries in submicrometer-
sized grains (called nano-twinned metals) [10,11], inserting of
submicrometer-sized grains into nanocrystalline matrix (called
bimodal metals) [12], sandwiching of a CG core by two grain size
gradient (GSG) surface layers (called surface nano-crystallized
(SNC) materials) [13,25,27,29], etc. Note that the grain size in the
GSG layer of SNC materials varies along the thickness dimension

from tens of nanometers in the topmost surface to tens of
micrometers at the core.

SNC materials have attracted intensive scientific interests due
to their cost effectiveness and amenability to large scale produc-
tion methodology, i.e., surface severe plastic deformation (S2PD)
[13,14]. S2PD have many variants, such as shot peening[15],
air blast shot peening [16], sandblasting [17], cryogenic burnishing
[18], particle impact processing [19], surface nano-crystallization
and hardening [20], ultrasonic shot peening [21], surface mechan-
ical attrition treatment (SMAT) [13] and surface mechanical
grinding treatment (SMGT) [14]. The unique GSG structure usually
renders outstanding balance of high strength and ductility in
nanostructured materials. For example, a SNC copper sample
fabricated by SMGT possesses a uniform tensile elongation com-
parable to that of a CG copper sample, and the strength of the
former is double that of its CG counterpart [14]. Another example
is a SNC Ni sample with a Ni–P amorphous coating in which the
amorphous layer gained a 12% uniform tensile elongation [22].
Such high magnitude of tensile ductility is exceptional in metallic
amorphous materials.

In the past decades, most of the works carried out on SNC
materials were mainly focused on the following aspects: (1) grain
refinement mechanism in the GSG structure [23]; (2) mechanical
behavior of materials [24]; (3) major factors that affected mechan-
ical properties [20,25]; (4) optimization parameters for achieving
favorable properties based on surface nanocrystallization techniques
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[26,27]; (5) characterization of the plastic properties in the GSG
layer [28]; and (6) development of quantitative continuum plas-
ticity models for SNC materials [29].

In spite of the above progress, the specific mechanism that
leads to a good balance of strength and ductility in SNC materials
is still not well understood. Most recently, Wu et al. [30] reported
successful fabrication of SNC interstitial free (IF) steel samples that
possessed a tensile ductility comparable to the corresponding CG
samples, and the yield strength of the former was 1.6 times higher
than that of their CG counterparts. Moreover, they observed a
strong strain hardening behavior, which was an additional gain in
the nano-grained layers of the GSG region in the SNC IF steel
sample. They attributed the extra strain hardening to the non-
uniform deformation in the lateral surface. However, the critical
issue of how the non-uniform lateral surface deformation induces
the extra hardening has yet to be addressed. Therefore, in the
present study a physical model will be developed to quantitatively
correlate the non-uniform deformation in the lateral surface of the
SNC sample with the extra strain hardening achieved in the GSG
layer based on the experimental observations made by Wu et al.
[30] and the concept of geometrically necessary dislocations
(GNDs) [31–34].

2. Experimental review

Fig. 1 presents the variation of microhardness increment ΔH
with respect to sample depth h, which was reported by Wu et al.
[30] after testing the SNC IF steel samples fabricated by SMAT to
various uniaxial tensile strains. The parameter ΔH is defined as the
difference between the hardness along the thickness dimension of
a SNC sample ‘after’ and ‘before’ a tensile test. This parameter is an
indicator for the level of strain hardening retained after unloading.
A strong extra strain hardening ΔHg was observed along the
thickness dimension of the sample, as indicated by the vertical
short dashed lines in Fig. 1 for tensile engineering strain εe ¼ 0:25.
The value of ΔH for a free standing GSG layer of 120 μm thickness
at failure, i.e., εe ¼ 0:05, is also included as a reference to calculate
ΔHg . The maximum value of ΔHg in the GSG layer of a SNC sample
could reach as high as 527.5 MPa at h¼ 93:6 μm for εe ¼ 0:25.
They concluded that the remarkable extra stain hardening in the
GSG structure led to the extraordinary synergy of strength and
ductility in the SNC IF steel sample.

Moreover, it can be seen from Fig. 1 that the trends of the
hardness increment ΔH versus the sample depth h for different
strains ðεe ¼ 0:05;0:1;0:25Þ are identical, i.e., ΔH first increases to a
maximum and then decreases till the appearance of a plateau,
which represents the hardness increment of the CG core. The ΔH

peak gradually moves toward the CG core as the strain increases;
and it eventually enters the CG core and reaches h� 180 μm as the
strain is increased up to 0.25.

These findings indicate that the extra hardening ΔHg occurs not
only in the GSG layer but also in the CG core for all cases of the
applied strain. The ΔHg in the CG core is given by the height
difference between the curve and the horizontal dashed line in the
CG region, as shown in Fig. 1. The appearance of ΔHg in both the
GSG and CG regions has been attributed to the non-uniform
deformation in the lateral surface induced by the mutual con-
straint between the GSG surface layers and the CG core during the
uniaxial tensioning (Fig. 3 in [30]). In this study, a physical model
will be developed to establish a quantitative correlation between
ΔHg and the lateral non-uniform deformation based on the
concepts of GNDs. Indeed, the range of ΔHg tallies exactly to that
of the lateral non-uniform deformation in a SNC sample. For
example, the range of ΔHg is hA 0;340 μm½ � for an applied strain
of 0.25 (Fig. 1), which is approximately identical to that of the
lateral non-uniform deformation (Fig. 5).

3. Model description

In the present study, for clear illustration the SNC sample is
simply modeled as a perfectly bonded multi-layered structure
with various layers of different grain sizes as shown in Fig. 2(a).
The grain size in the same layer is assumed to be homogeneous
according to the experimental observation [30]. The proposed
model consists of two GSG surface layers sandwiching a CG core.
The blue dashed lines indicate the boundaries between the
hypothesized layers. The areas in orange represent two GSG
regions in the model. Fig. 2(b) presents a schematic diagram of
the non-uniform deformation in the lateral surface (vertical to the
x-axis) by maintaining the uniaxial tension at a given strain before
the occurrence of necking, as observed in experiments [30]. The
non-uniform deformation is characterized by a parameter u,
which is defined as the height profile of the lateral surface after
deformation. The rationale for the non-uniform deformation could
be explained by a special stress state in the SNC sample as follows.

Generally, the freestanding layers with smaller grain size are
prone to plastic instability (or necking in the lateral direction, i.e.,
x-axis in Fig. 2a) at smaller tensile strain as compared with those
of larger grain size. However, in the case of SNC sample with a
grain size gradient structure, the faster lateral necking of those
layers with smaller grain size (i.e., outer layers) is suppressed by
the higher plasticity of layers with larger grain size (i.e., inner
layers). As a result, the mutual constraints between various layers
of different grain sizes lead to a three-dimensional stress state in

Fig. 1. Variation of hardness increment ΔH of SNC IF steel samples subjected to
various tensile strains (i.e., εe ¼ 0:05; 0.1 and 0.25) with respect to the depth h [25].
The vertical short dashed lines represent the extra hardening (i.e., ΔHg) achieved in
the GSG structure resulting from the non-uniform deformation in the lateral
surface for εe ¼ 0:25.

Fig. 2. Schematic diagram of a SNC sample subjected to a uniform tensile strain εz:
(a) before tensioning and (b) after tensioning before the occurrence of necking. The
SNC sample consists of two grain size gradient (GSG) surface layers sandwiching a
coarse-grained (CG) core. (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article.)
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the gradient structure of the SNC sample subjected to uniaxial
tension.

To achieve a better understanding of the stress state in a SNC
sample during uniaxial tensioning, a representative unit layer in
the GSG structure is selected for analysis, as shown in Fig. 3(a). The
stress states in all unit layers are identical except the outermost
layers with a free surface. Due to the fact that the capacity to resist
lateral instability is different from one layer to another, the shear
stresses in the upper surface of the unit layer considered point
toward the symmetrical plane (indicated by the dashed line) and
those in the lower surface point outward (Fig. 3a). Moreover, the
shear stress is non-uniformly distributed along the x-direction.
The shear stress should be zero at the symmetrical plane as well as
at the lateral surface, and it approaches a maximum at some
location between the symmetrical plane and the lateral surface
according to the results of some shear-lag and finite element
analysis for multilayered structures [35,36]. The values of the
shear stress along the assumed layer interfaces are denoted by
the length of the arrows in Fig. 3(a). The above stress state
ultimately leads to a non-uniform deformation in the lateral
surface along the sample depth h, as schematically indicated by
the curved boundary in Fig. 3(a). Thus, we may infer that the
adoption of a gradient structure leads to the conversion of stress
state from one dimension (uniaxial tension along z direction) in a
homogeneous sample to three dimensions (simultaneous exis-
tence of tensions in z and x directions and pure shear in the xy
plane) in a SNC sample, as shown in Fig. 3(b).

It has been widely accepted by researchers that nonuniform
deformation is usually accommodated by GNDs [31–33]. In this
section, we will develop a physical model to correlate the non-
uniform deformation in the lateral surface (Fig. 3 in [30]) with the
extra strain hardening (ΔHg in Fig. 1) achieved in the GSG layer of
the SNC sample based on the concept of GNDs. Fig. 4(a) presents a
schematic diagram of the GNDs induced by the non-uniform
deformation near the lateral surface of the GSG layer. A unit layer
of thickness Δh is selected for analysis. The value of Δh is assumed

to be small enough such that the deformed lateral surface can be
approximated as a straight plane, that is, ‘AB’ can be viewed as a
straight line. It is assumed that the GNDs are spaced equally along
the sample depth h near the deformed lateral surface in the unit
layer. Thus, we have

tan θ¼ a
Δh

¼ b
s

ð1Þ

where θ is the angle created by the non-uniform deformation
between two adjacent unit layers, a is the height difference along
the x-axis between two adjacent deformed unit layers, as shown in
Fig. 4(b) ða40Þ; b is the magnitude of Burger's vector of the GNDs,
and s is the spacing between individual slip steps near the lateral
surface, which is given by

s¼ b
a
Δh ð2Þ

In the present analysis, the dislocation line of each GND is
idealized as a straight line running through the entire sample
along the tensile direction. Therefore, the total length of the
injected GNDs due to the non-uniform lateral deformation, i.e., λ,
in the unit layer with thickness Δh can be expressed as

λ¼ lΔh
s

¼ la
b

ð3Þ

where l is the total length of the tensile SNC sample, as shown in
Fig. 2(a). To calculate the density of GNDs in the deformed SNC
sample, we assume that all GNDs are uniformly distributed in a
localized cuboidal region near the deformed lateral surface in a
unit layer. The dimensions of the localized region are approxi-
mated as Δh� l� Δh, which leads to a volume V given by

V ¼ l Δhð Þ2 ð4Þ
Thus, the density of GNDs resulting from the non-uniform

deformation that occurs in a grain size gradient structure is given
by

ρGSG ¼ λ

V
¼ a

b Δhð Þ2
ð5Þ

By using Taylor's relation to correlate the shear strength τ with
the total dislocation density ρT in a unit layer, we obtain

τ¼ αμb
ffiffiffiffiffi
ρT

p ¼ αμb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsþρGBþρGSG

p ð6Þ
where ρs, μ and α are the density of the statistically stored
dislocations, the shear modulus of the material and an empirical
constant that could be taken as 0.2–0.5, respectively; ρGB is the
dislocation density arising from the strain gradient due to a
sharply increased volume fraction of the GB region as grain size
approaches nanoscale. The value of ρGB is proportional to 1=d,
where d is the grain size [37,38].

Von Mises flow rule is then employed to correlate the equiva-
lent flow stress σ with the shear strength τ. The material in one
layer can be viewed as homogeneous since the grain size in the
same layer of a SNC sample is identical as observed in existing
experiments [30]. Therefore, it is deemed reasonable to take
Tabor's factor as 3 for the material in each layer for converting
the equivalent flow stress σ to hardness H along the sample depth
h after tensioning:

σ ¼
ffiffiffi
3

p
τ; H¼ 3σ ð7Þ

in which the values of σ and H depend on the sample depth. By
inserting Eqs. (5) and (6) into Eq. (7), we obtain

H¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

0þμ2
a
an

r
ð8Þ

where H0 ¼ 3
ffiffiffi
3

p
αμb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρsþρGB

p
is the hardness of a homogeneous

sample after tensioning without non-uniform deformation; and

Fig. 3. Stress state of a SNC sample during uniaxial tensile deformation: (a) shear
stress state in a unit layer and (b) 3-D stress state in the gradient structure.

Fig. 4. The geometrically necessary dislocations (GNDs) in a SNC sample subjected
to uniaxial tension. (a) GNDs near the deformed lateral surface in the GSG region;
(b) GNDs in a unit layer (gray area in (a)), whose thickness Δh is assumed to be
small enough such that the deformed lateral surface can be approximated as a
straight plane, that is, ‘AB’ can be viewed as a straight line. The GNDs in (b) are
assumed to be uniformly distributed in a cuboidal region adjacent to the deformed
lateral surface in the unit layer with an equal spacing s; and the dislocation line of
GNDs is idealized as a straight line running through the entire sample along the
tensile direction.
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an ¼ Δhð Þ2= 27α2b
� �

is a length parameter depending on the mag-
nitude of Burger's vector of GNDs and the value of Δh. On the other
hand, the extra hardening ΔHg can be expressed as (see the
vertical dashed lines in Fig. 1):

ΔHg ¼ΔHSNC�ΔHf ree GSG ð9Þ

where ΔHSNC ¼Ha
SNC�Hb

SNC and ΔHf ree GSG ¼Ha
f ree GSG�Hb

f ree GSG in
which ΔH is the hardness enhancement during deformation
(Fig. 1). The subscripts ‘SNC’ and ‘free GSG’ represent SNC sample
and free standing GSG layer, respectively, while the superscripts ‘a’
and ‘b’ denote after and before tensile deformation, respectively.
Note that an approximation has been adopted in Eq. (9) to
calculate ΔHg . The ΔH values of various free standing layers with
different grain sizes have been replaced by those of the layers in a
free standing GSG sample at εe ¼ 0:05, i.e., ΔHf ree GSG, due to the
impossibility of measuring the ΔH value of the free standing
layers. The approximation would not produce significant errors
in calculating ΔHg since the thickness of GSG region is very small
as compared with that of the whole SNC sample. By ignoring the
effect of residual stresses on the hardness of SNC sample, i.e.,
Hb

SNC ¼Hb
f ree GSG, we obtain

ΔHg ¼Ha
SNC�Ha

f ree GSG ¼H�H0 ð10Þ

By inserting the above expression into Eq. (8), we have

ΔHg 2H�ΔHg
� �

μ2
¼ a
an

ð11Þ

Note that the free standing GSG layer fails at 5% strain, thus the
value of ΔHf ree GSG approaches maximum at this strain, which can
be used as a reference value to calculate ΔHg for various strains.
Specifically, in the present analysis, the value of ΔHg can be
calculated as follows using the case of εe ¼ 0:25 as an example:
ΔHg εe ¼ 0:25; hð Þ ¼ΔHSNC εe ¼ 0:25; hð Þ�ΔHf ree GSG εe ¼ 0:05; hð Þ
(refer to the vertical short dashed lines in Fig. 1). The values of H,
ΔHg and a depend on the distance between the unit layer
considered and the top surface, i.e., the sample depth h; these
three values can be measured through experiments. The above
equation can be written in a simple form as follows:

Hn ¼ An ð12Þ

where Hn ¼ΔHg 2H�ΔHg
� �

=μ2 and An ¼ a=an are two dimension-
less parameters, which represent the extra strain hardening
achieved in the GSG region and the non-uniform lateral surface
deformation, respectively. In the following calculations, the shear
modulus is set as a constant along the sample depth, as observed
in the experiments for a SNC copper sample [39], i.e., μ¼ 77 GPa
for SNC IF steel. The value of α and b are set as 0.3 and 0.25 nm,
respectively. The value of Δh can be determined by fitting the
values of the two parameters.

4. Results and discussion

All the experimental data for height profiles in the range of
hA 0;50 μmð Þ were significantly influenced by noise and some
were unavailable due to the roughness of the lateral surface and
the limitation of the instrument. A Matlab function, i.e., fnval, was
used to smoothen the eight measured height profiles in the range
of hA 50;300 μmð Þ in order to facilitate the derivation of the
parameter a (see the short dashed lines for each profile in
Fig. 5). The red solid line in Fig. 5 represents the arithmetic
average of the eight smoothened height profiles for calculating
the value of parameter a. As a result, parameter a becomes the
product of the slope of u versus h and the thickness of one unit
layer as shown in Fig. 5, i.e., a¼ du=dh

� �
Δh.

Fig. 6 presents the variation of two dimensionless parameters
derived from the proposed model, i.e., Hn ¼ΔHg 2H�ΔHg

� �
=μ2 and

An ¼ a=an, with respect to the sample depth h for a SNC IF steel
sample at εe ¼ 0:25 in the GSG region. In view of the fact that the
measured ΔHg was available in the range of hA 0;120 μmð Þ, i.e.,
within the thickness of the GSG region, and u was not available in
the range of hA 0;50 μmð Þ, only the results of An in the range of
hA 50;120 μmð Þ are presented. The results show that the values of
both parameters first increase to a maximum value and then
decrease, and they are comparable in magnitude. The influence
of Δh is also studied by varying its value, i.e., Δh¼
0:2; 0:314 and 0:6 μm. The smaller the value of Δh, the larger the
parameter An. The value of An at Δh¼ 0:314 μm is in good
agreement with that of Hn at large h, i.e., hA 80;120 μmð Þ, and
they approximately approach an equal maximum value at the
same sample depth h, i.e., the value of Hn reaches a maximum (i.e.,
Hn

max ¼ 22:64� 10�5) at h¼ 82:3 μm, while that of An reaches a
maximum (i.e., An

max ¼ 22:62� 10�5) at h¼ 89 μm, see the crosses
in the figure.

The significant quantitative difference between the two para-
meters at small h might be due to several reasons as explained
below. Firstly, there was a significant influence of noise on the
height profile data, as indicated by the symbols in Fig. 5 in the
range of around hA 0; 80 μmð Þ, due to the lateral surface rough-
ness [30]. Secondly, the outermost surface (i.e., xz plane at h¼0 in
Fig. 2) could affect the measurement of the height profile near the
said surface due to the surface effect. Thirdly, it can be seen from
Fig. 5 that the eight height profiles differ from each other, which
indicates that the height profile was not uniform along the tensile

Fig. 5. Height profiles (u versus h) used in the present analysis. The eight height
profiles were measured across the lateral surface (vertical to the x-axis, see Fig. 2)
within the uniform deformation section after applying tensile strain of 0.25 [30].
The eight profiles were smoothened and averaged arithmetically to calculate the
value of parameter a, see the red solid line. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Comparison of two sample depth-dependent dimensionless parameters, i.e.,
Hn ¼ΔHg 2H�ΔHg

� �
=μ2 and An ¼ a=an for a SNC IF steel sample at εe ¼ 0:25 for

three cases of Δh, i.e., Δh¼ 0:2; 0:314 and 0:6 μm. ‘� ’ denotes the maximum point.
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direction (i.e., z axis in Fig. 2) while in our model the height profile
is assumed to be uniform and the GNDs are also assumed to be
uniformly distributed in a localized region near the lateral surface.
The non-uniformity of the measured height profile could be
caused by the non-uniform peening of steel balls on the outermost
surface in the SMAT process. Furthermore, the extra hardening
ΔHg was expressed as ΔHSNC�ΔHf ree GSG

� �
in which the ΔH values

of various free standing layers with different grain sizes have been
approximated as those of the layers in a free standing GSG sample,
i.e., ΔHf ree GSG, due to the impossibility of measuring the ΔH value
of the free standing layers. Finally, the effect of the compressive
residual stresses in the surface layer generated in the process of
SMAT [40] on the hardness of SNC materials was ignored in our
model. Actually, existing investigations have shown that compres-
sive residual stresses would enhance hardness, whereas tensile
residual stresses would decrease hardness [41,42]. Therefore,
the maximum compressive residual stresses of around 500 MPa
in a SNC steel sample [40] could produce a maximum hardness
enhancement of around 10% in the top surface layer.

The first three reasons could produce errors in measuring
height profiles (i.e., the value of An) while the last two could
produce calculation errors for Hn. It is important to note that a
small error in u, especially the noise (zigzag in Fig. 5), could
generate a significant error in calculating its slope, i.e., the value of
parameter a (a should be larger than zero, see Fig. 4b), due to the
limited experimental data for smoothening at small h, i.e.,
hA 50;60 μmð Þ. Consequently, the slopes of the eight height
profiles near the surface, which are critical in determining the
value of An, are not accurate and in some cases negative slopes
occur at small h in some height profiles even though the measured
data have been carefully smoothened using the fnval Matlab
function (see the short dashed lines in Fig. 5). This explains the
presence of the negative values of An in the approximate range of
hA 50;60 μmð Þ, and the obvious quantitative difference between
Hn and An at small h, i.e., hA 50;80 μmð Þ, as shown in Fig. 6.

In view of the above reasons, the two parameters are deemed
in agreement with each other at least qualitatively. This agreement
validates the proposed law on correlation of the extra strain
hardening achieved in the GSG structure with the non-uniform
deformation resulting from the GSG structure. In other words, the
extra strain hardening ΔHg can be quantitatively determined by
the height profile u, which could be measured from experiments.
The proposed law has also demonstrated the success of adopting
the concept of GNDs in describing the remarkable extra hardening
in the GSG layer due to the presence of the gradient structure.
Indeed, Wu et al. [30] observed a dislocation density up-turn at
strain εeA 0:015;0:05ð Þ in a stress relaxation experiment for a SNC
IF steel sample, as shown in their Fig. 4(b). A combination of the
above observations and our model predictions has demonstrated
that the injections of GNDs into the SNC IF steel sample, which are
induced by the non-homogeneous deformation in the lateral
surface, are due to the existence of the special gradient structure.

The dimensionless parameter Hn of SNC samples for other
strain values (i.e., εe ¼ 0:05, 0.10) is presented in Fig. 7, which
shows that the trend of Hn versus h is similar to that of εe ¼ 0:25
but the former Hn has smaller values. In general, the higher the
strain, the larger the value of Hn is. The value of An is unavailable
due to the difficulty of measuring the lateral surface topography
accurately at smaller tensile strains. Nevertheless, based on the
above results it is reasonable to infer that the variation of height
profile u at a smaller strain is similar to that at εe ¼ 0:25 but with a
smaller slope, which leads to a smaller a and An. Moreover, it is
interesting to note from Fig. 7 that the Hn maximums for all the
applied strains are reached at approximately the same sample
depth, i.e., h� 80 μm, which reveals the depth where the maximum
strain gradient occurs in the SNC sample. In other words, unlike ΔH or

ΔHg , the position of the Hn peak is independent of the applied strain;
and it only depends on the specific GSG structure.

5. Concluding remarks

Based on the concept proposed by Gao et al. [43] that GNDs
were generally correlated with strain gradient, we found that the
density of GNDs (Eq. (5)) induced by the GSG structure can be
recast as a function of strain gradient, i.e., ρGSG ¼ a=½b Δhð Þ2� ¼
ηGSG=b, where ηGSG ¼ a= Δhð Þ2 is the strain gradient in a unit layer
and its value depends on the height profile and thus varies from
the topmost surface to the interior. The mentioned value is also
dependent on the magnitude of the tensile strain, as shown in
Fig. 7. Moreover, the maximums in Figs. 6 and 7 indicate where the
maximum strain gradient occurs in a SNC sample. By modifying
our previous plasticity model for SNC materials [29], it is likely
that a continuum plasticity model for SNC materials can be
developed to quantitatively describe the GSG-dependent extra
hardening and ductility in SNC materials, which would be bene-
ficial in optimizing their strength and ductility balance.

Although the quantitative correlation between the extra hard-
ening and the non-uniform deformation in the lateral surface of a
SNC sample has been clearly identified by the proposed physical
law in a simple form, the developed model has some limitations
due to the assumptions and approximations adopted. For example,
the predictions of the proposed model would be inaccurate when
the material in the same layer is heterogeneous or when the non-
uniform deformation in the lateral surface along the tensile
direction is not uniform. Moreover, we were compelled to adopt
an approximated expression for the extra hardening ΔHg due to
the difficulty encountered in measuring the hardness increments
ΔH of free standing layers with different grain sizes. The proposed
model is thus prone to some errors in quantitatively correlating
ΔHg and the non-uniform deformation in the lateral surface of a
SNC sample. Therefore, some other models should be established
to circumvent the above limitations. For example, by combining
the continuum plasticity model for SNC materials developed by
some of the authors [29], a three-dimensional shear-lag model
[35,36] or a crystal plasticity model [44] with the activity of GNDs
incorporated [45] could be a feasible choice for quantitatively
predicting the lateral non-uniform deformation, the hardness
increments of the free standing layers with different grain sizes
and, hence the macro mechanical behavior of the SNC samples.
The GSG structure could then be tailored to tune the lateral non-
uniform deformation such that the extra hardening grains in the
SNC sample is optimized, which could in return enhance the
synergy of high strength and high ductility in the SNC samples.

Fig. 7. Variation of dimensionless parameter Hn ¼ΔHg 2H�ΔHg
� �

=μ2 of a SNC IF
steel sample with respect to the sample depth h at various tensile strains (i.e.,
εe ¼ 0:05, 0.1 and 0.25).
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In summary, we have developed a physical model to correlate
the strong extra strain hardening achieved in a grain size gradient
structure with the non-uniform deformation in the lateral surface
of a SNC material based on the existing experimental observations
and the concept of GNDs. The above model resulted in a physical
law in the simple form of Hn ¼ An, where Hn ¼ΔHg 2H�ΔHg

� �
=μ2

and An ¼ a=an are two dimensionless parameters that can be
measured from experiments. The former parameter represents
the extra strain hardening and the latter characterizes the non-
uniform deformation in the lateral surface embodied by its height
profile.
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