

超高周疲劳裂纹萌生与初始扩展的特征尺度

洪友士

祝贺郑哲敏先生90华诞学术报告会 2014.9.29

祝贺郑先生九十华诞!

- 郑哲敏,连续介质力学与断裂,力学进展,1982,12(2),133~140
- ★ 分析了材料内部尺度即第二相粒子尺度对断裂行为的影响,结论:
- •"裂缝的扩展受控于和二相粒子等密切相关的裂缝顶端的细观过程,...。"
- •"裂缝顶端的特征尺度是一个很值得研究的问题,...。"
- ★ 特征尺度内涵:

(a) 与材料微结构相关, (b) 对材料力学行为起主控作用, (c) 是物理机制的关键

超高周疲劳裂纹萌生与初始扩展的特征尺度

提 纲

- I. 背景与问题
- II. 特征区与临界值
- Ⅲ. 裂纹萌生机理
- IV. 结语

I. 背景与问题

- ·什么是超高周疲劳?为什么研究超高周疲劳?
- ・传统研究以10⁷为载荷周次上限;10⁷周次载荷循环而不发生破坏的应力为疲劳极限

➤ 超高周疲劳? Very High Cycle Fatigue (VHCF)

10⁷以上甚至10¹¹周次的载荷循环而发生疲劳损伤断裂的过程; 对应的循环载荷低于传统疲劳极限;

亦称 Ultra-high Cycle Fatigue, Ultra-long Life Fatigue, Gigacycle Fatigue

- Natio T, Ueda H, Kikuchi M (1984) Metall Trans A, 15: 1431
- Qian G, Zhou C, Hong Y (2011) Acta Mater, 59: 1321
- Hong Y, Zhao A, Qian G, Zhou C (2012) Metall Mater Trans A, 43: 2753

I. 背景与问题(续)

•为什么研究超高周疲劳?

工程中(飞行器、汽车、铁路、桥梁、船舶等),结构和部件 需10⁸及以上周次的疲劳寿命,甚至要求达到10¹⁰ 周次

载荷频率 1 Hz, 3年2个月 10⁸ 周次 载荷频率 10 Hz, 1年 3.15×10⁸ 周次

发动机叶片: 3000cyc/min, 20年, 10¹⁰

高铁车轴: 6×10⁵ km, 2.22×10⁸ 2.4×10⁶ km, 8.88×10⁸ 桥梁钢索: 1 Hz, 3 年, 108

认识超高周疲劳机理、发展超高周疲劳设计规范

I. 背景与问题(续)

- ・20世纪80年代,Naito等: 渗碳钢的疲劳断裂可发生10⁷ 甚至10⁸ 以上, 且呈现独有特征,萌发了合金材料超高周疲劳新领域
- 超高周疲劳国际学术会议:

98年巴黎: Fatigue Life in the Gigacycle Regime 01年维也纳: Fatigue in the Very High Cycle Regime 04年京都/草津,正式称 International Conference of VHCF (VHCF-3) 07年密歇根: VHCF-4

11年柏林: VHF-5

14年成都: VHCF-6, Oct. 15-18, Co-Chairs: Qingyuan Wang, Youshi Hong

I. 背景与问题(续)

★ 科学问题

- 超高周疲劳裂纹萌生机理及其局域变形和损伤特征
- 材料微结构形态和尺度影响高周、超高周疲劳行为的规律
- 疲劳裂纹从表面起源和从内部起源的竞争机制
- 描述超高周疲劳的预测模型

• Hong Y, Zhao A, Qian G, Zhou C (2012) *Metall Mater Trans A*, 43A: 2753-2762

2.1 特征与图像(续)

• 超高周疲劳的基本特征 ?

GCr15, UL150, $\sigma_{\rm b}$ =2372 MPa: $\sigma_{\rm max}$ =890 MPa, $N_{\rm f}$ =2.97×10⁸

- 应力低于传统疲劳极限,表面微区 塑性变形不易发生
- ➢ 裂纹起源于内部的夹杂物,呈"鱼 眼"和"细晶区"(FGA)
- ▶ 具有阶梯形或双线形S-N曲线特征

• Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Int J Fatigue, 38, 46-56

Aoc.V Spet Magn Det WD ⊨ 15 n kV 3.D 250x - SE 11.2

2.1 特征与图像(续)

▶ 裂纹萌生与初始扩展: 鱼眼 + FGA

Spet Megn Det. WD ______ 100 m *

2*a*_{FGA}=66.3 μm 2*a*_{fisheye}=206.2 μm

15.0 kV 3.0 2000x SE 11.2

1% C, 1% Cr, RB180, $\sigma_{\rm b}$ =1849 MPa $\sigma_{\rm max}$ =808 MPa, $N_{\rm f}$ =1.79×10⁷

• Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

2.1 特征与图像(续)

- > 重要现象与问题:
 - •裂纹源区的变形和损伤特征及其机理(鱼眼, FGA)?
 - ・FGA 对疲劳寿命的贡献 ?
 - •FGA 裂纹的扩展速率?
 - · 疲劳寿命的估计与预测?

2.2 特征区参量

• Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

•12

Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

2.2 特征区参量(续)

- ΔK vs σ_{\max} \leftrightarrow $\Delta K = Y \Delta \sigma_a \sqrt{a}$
- ・下界: Δ*K*_{FGA}=4 MPa⋅m^{1/2} 上界: Δ*K*_{FGA}=6 MPa⋅m^{1/2}
- ・FGA: 裂纹内部萌生的内禀特征尺度
- 2a_{FGA} 与 ∆K_{th}相关
 有的情况, 2a_{FGA} 清晰, 如 FGA
 有的情况, 2a_{FGA} 不清晰
 该特征尺度应仍存在

2a_{FGA}可用于估算和预测裂纹萌生寿命和萌生区的裂纹扩展速率

• Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

2.2 特征区参量(续)

对于(平面应变)I型裂纹,裂尖塑性区尺寸:

$$r_{\rm p} = \frac{\left(1 - 2\nu\right)^2}{\pi} \left(\frac{\Delta K}{\sigma_{\rm y}}\right)^2 \approx \frac{1}{6\pi} \left(\frac{\Delta K}{\sigma_{\rm y}}\right)^2$$

材料特征尺度(Nix and Gao, 1998):

$$l_m = b \left(\frac{\mu}{\sigma_y}\right)^2$$

b: Burgers 矢量, μ : 剪切模量, σ_v : 屈服强度

• Nix WD, Gao HJ (1998) J Mech Phys Solids, 46: 411

• Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Int J Fatigue, 38: 46-56

2.2 特征区参量(续)

假定,当萌生裂纹的裂尖塑性区尺寸 = 材料特征尺度, FGA 过程完成,即 $r_p = l_m$.因此

$$\Delta K_{\rm FGA} = \mu \sqrt{6\pi b} \approx 4.342 \,\mu \sqrt{b} \Longrightarrow \Delta K_{\rm th}$$

大量实验值处于该值附近

△K_{FGA}: 材料剪切模量和Burgers 矢量的函数

• Zhao A, Xie J, Sun C, Lei Z, Hong Y (2012) Int J Fatigue, 38: 46-56

2.3 FGA的寿命与速率

★ 裂纹萌生特征区 FGA: 发展速率? 对疲劳寿命贡献?

- ・ ΔK_{FGA} 对应于 ΔK_{th}
- ・ 假定Paris 关系适用于描述
 △K_{th}即△K_{FGA}之后的裂纹问题
- Paris 关系用于计算疲劳寿命:
 从 FGA 到 鱼眼 (N₁)
 从鱼眼到临界尺度 (N₂)

$$\frac{\mathrm{d}a}{\mathrm{d}N} = A\,\Delta K^m \qquad N_1 = \frac{2}{(m-2)AY^m\Delta\sigma^m} \left[\frac{1}{a_{\mathrm{FGA}}^{(m-2)/2}} - \frac{1}{a_{\mathrm{fisheye}}^{(m-2)/2}}\right]$$

 $A=1.03\times10^{-12}$ & m=3.28 for da/dN (m/cycle) & ΔK (MPa·m^{1/2})

・因此,FGA贡献的疲劳寿命,即裂纹萌生寿命(*N*_i):

 $N_{\rm i} = N_{\rm f} - N_1 - N_2$

• Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

2.3 FGA的寿命与速率(续)

- ・N_i/N_f 随N_f急剧增加
- ・*N*_f 小于10⁶, FGA 对应的*N*_i小于70%
- ・N_f 处于10⁶与10⁷之间, N_i/N_f → 70% ⇒ 95%
- ・*N*_f为10⁷以上,即 VHCF, *N*_f/*N*_f 大于95%
- ・*N*_f 为5×10⁷以上, *N_i/N_f* 大于99%
- ・对于包含VHCF的疲劳损伤, 疲劳寿命几乎消耗在裂纹萌生阶段,即 FGA 过程

• Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

Number of Cycles to Failure

- ・FGA裂纹扩展速率, d*a*/d*N* | _{FGA}, 随*N*_f急剧降低
- ・*N*_f: 10⁶ 与 10⁷之间, d*a*/d*N* | _{FGA} 为 10⁻¹¹ 与 10⁻¹² m/cyc量级
- ・*N*_f:10⁷与4×10⁸之间,即VHCF, d*a*/dN _{FGA}为10⁻¹²与10⁻¹³ m/cyc量级

超高周疲劳:萌生阶段10⁷ 周 → 对应100 μm → 0.01 nm/cyc ? 萌生阶段10⁸ 周 → 对应100 μm → 0.001 nm/cyc ?

• • Hong Y, Lei Z, Sun C, Zhao A (2014) Int J Fatigue, 58, 144–151

Ⅲ. 裂纹萌生机理

裂纹萌生特征区如何形成?

- 3.1 他人观点
 - Murukami等认为氢的作用, 导致 ODA
 - Shiozawa等提出: 球状碳化物离散剥离模型

Fatigue crack growth without assistance of hydrogen ODA (Optically Dark Area) Hydrogen assisted discrete fatigue crack growth Inclusion varea (A₀)

Critical size of ODA, Varea

➢ Sakai 提出"细晶区"模型 FGA (Fine Granular Area)

Stage B: Nucleation and coalescence of micro-debonding

Stage C: Completed formation of fine granular area (FGA)

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理

- (a) FGA示意图: FGA 具有厚度 h
- (b) 大夹杂物周围的 FGA (UL150, σ =860 MPa, N=2.81×10⁶)
- (c) 小夹杂物周围的 FGA (UL150, σ =860 MPa, N=1.43×10⁸)

• Lei Z, Hong Y, Xie J, Sun C, Zhao A (2012) Mater Sci Eng A, 558: 234-241

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续)

截面离子抛光制作FGA剖面

RB180-15#, 775 MPa, 2.40×10⁷

截面离子抛光制作FGA剖面

FGA剖面形貌:细颗粒层状结构

RB180-15#, 775MPa, 2.40×10⁷

Focused Ion Beam (FIB) 方法制备FGA表层剖面试样

 128/2012
 HV
 WD
 mag
 mode
 Sum

 **
 128/2012
 HV
 WD
 mag
 mode
 Sum

RB180-15#, 775 MPa, 2.40×10⁷ TEM样品取自FGA内,研究FGA内细颗粒层的微结构,样品: 5µm×10µm×80nm^{●24}

Focused Ion Beam (FIB) 方法制备FGA表层剖面试样

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续)

细晶层即纳米晶层衍射环标定

细晶层的环状衍射谱标定

晶面 (hkl)	110	200	211	220	310	222
PDF#06-0696, Iron (Å)	2.0268	1.4332	1.1702	1.0134	0.9064	0.8275
实验测量 di=1/Ri (Å)	2.02	1.44	1.16	1.01	0.91	0.82

明场像

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续) FGA:纳米晶层

平均晶粒尺度: 48 nm

RB180-4#, 850 MPa, 9.64×10⁶

TEM样品尺寸: 5 µm×10 µm×80 nm

同一试样的两个断面上对应位置取样: FGA与外鱼眼交界

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续)

10

8

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续)

实验研究揭示:

- FGA 为层状纳米晶微结构
- 断面两侧均为纳晶层
 提出:裂纹萌生特征区纳晶层机理
- ・ 高强钢的FGA(单边)层厚为650 nm
- ・ FGA纳米晶尺度约 50 nm
- 提出"剧烈往复挤压"的FGA机制 Severely Cyclic Pressing (SCP) induced grain refinement at crack tip

推论(预测):形成FGA的倾向与应力比成反比(低R高倾向,高R低倾向)

R=-1, σ_{max}=989 MPa, N=1.51×10⁸, 高循环周次, 内部萌生具有 FGA

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续) *R*=-1

R=-1, σ_{max}=1029 MPa, N=1.28×10⁵, 低循环周次, 内部萌生无 FGA

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续) *R*=-0.5

B 面

A 面

R=-0.5, σ_{max}=844 MPa, N=4.81×10⁸, 高循环周次, 内部萌生具有 FGA (双面)

3.2 FGA机理 - 裂纹萌生特征区纳晶层机理(续) *R*=0.3

R=0.3, σ_{max}=1206 MPa, N=9.76×10⁷, 高循环周次, 内部萌生无 FGA

IV. 结语

・合金材料发生VHCF(>10⁷周次)不可避免,10⁷疲劳极限概念必须改变!

IV. 结语(续)

 > 往往存在对应于裂纹扩展阈值 的特征尺度
 > FGA, 裂纹萌生特征尺度: 20~100 µm
 > FGA颗粒: 50 nm, 层厚: 1300 nm

▶∆K_{FGA} ↔ ∆K_{th} ▶10⁷, FGA寿命比:95% ▶5×10⁷, FGA寿命比:99%

▶ 周次10⁷ 至 4×10⁸, FGA 裂纹的延伸速率: da/dN _{FGA}: 10⁻¹² – 10⁻¹³ m/cyc

▶ 揭示FGA为纳米晶层,提出"剧烈往复挤压"的微观机制