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ABSTRACT: Electrowetting has been used to actuate and control the motion of
droplets on solid surfaces. An analysis based on the theories of thermodynamics and
thermal activation processes is presented for the electrowetting of a conducting droplet
on a dielectric layer. The concept of release rate of electric energy is proposed. The
release rate of electric energy is proportional to the square of the applied electric voltage
and the derivative of electric capacitance with respect to the surface area of the
corresponding electric system. The velocity of a contact line under the action of an
electric voltage is a hyperbolic sine function of the release rate of electric energy. Using
the release rate of electric energy and introducing line tension in the analysis, the contact
angle of a droplet at a stationary state under the action of a constant electric voltage is
found to be a linear function of the release rate of electric energy and the line tension.
The line tension introduces the droplet-size effect on the contact angle. A critical contact
angle as a function of the applied electric voltage, the thickness of the dielectric layer, and
the radius of the contact area is obtained. There exist stable and unstable zones, depending on the relative value of the contact
angle and the critical contact angle. There exists an upper bound of electric voltage with the corresponding contact angle of
65.89° between 60 and 70° of the saturated contact angle reported for electrowetting of conducting droplets. This result suggests
that the saturation of contact angle likely is related to the condition determining the field-induced stability of the contact line.

1. INTRODUCTION

Electrowetting is referred to as the field-induced change of the
wetting of a liquid on a solid. Using electrowetting to control
the shape and motion of liquid droplets has attracted great
attention in microfluidics,1−3 drug delivery,3 and micro-
optics.4−6 Electrowetting is related to electrocapillary, which
was first observed by Lippmann4 in studying the effect of
electric voltage on the capillary rise of mercury. Lippmann4

introduced the concepts that the surface tension is a function of
electric voltage and the change of surface tension with applied
voltage induces surface charges on the surface of a liquid
droplet.
Various approaches have been used to analyze the depend-

ence of contact angle on applied voltage, including thermody-
namics,7−9 energy minimization,10 and electromechanics.11,12

All of these studies have found that the contact angle under the
action of an electric voltage is a linear function of the square of
the applied voltage. Recently, Wang and Zhao13 used the
method of energy minimization to analyze electrowetting on
curved surfaces and discussed the effect of line tension. They
obtained a similar result; i.e., the contact angle is a linear
function of the square of the applied voltage.
Generally, most of the studies have been focused on the

equilibrium state of the contact line under the action of an
electric voltage. There is little study addressing the effect of

electric field on the stability and motion of the contact line. In
this work, the stability of the contact line of a conducting
droplet on a dielectric layer under the action of an electric field
is analyzed. The effect of electric field and line tension on the
spreading parameter is also discussed.

2. RELEASE RATE OF ELECTRIC ENERGY
It is known that one can introduce the potential energy of a
solid body, Π, in the calculation of strain energy release rate14

as

∫ ∫ ∫ ∫∑ σ εΠ = − · Ξ − ·
ε

= Ξ
V Vt u F u( d ) d d d

V i j
ij ij
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3
ij
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where σij and εij are the components of stress tensor and strain
tensor, respectively, t and F are the surface force and body force
applied to the material, respectively, u is the displacement
vector, Ξ is the surface area, and V is the volume of the solid
body. The first term in eq 1 represents the strain energy stored
in the solid, and the second and third terms represent the
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mechanical work done to the solid by the surface force and
body force, respectively. For linearly elastic materials, eq 1 can
be reduced to

∫ ∫ ∫∑ σ εΠ = − · Ξ − ·
= Ξ

V u Vt u F
1
2

d d d
V i j

ij ij
V, 1

3

(2)

Consider a droplet of a conducting liquid placed on a smooth
surface of a linear dielectric solid, as shown in Figure 1. The

droplet is under the action of an electric field with the potential
difference between the droplet and the counter electrode being
φ. The solid is inert and homogeneous, and the mechanical
deformation of the solid under the action of the electric field
and the droplet is assumed to be negligible. Similarly, one can
define a potential energy, Ue, of the electromechanical system
as

∫ ∫ ∑φ= − Ω
φ
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i ie
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where Q is the electric charge on the surface/interface of the
droplet, φ is the electric voltage applied to the droplet, Ei and
Di (i = 1, 2, 3) are the components of electric field intensity and
electric displacement vector, respectively, and Ω is the total
volume of the system. Note that there is a sign difference
between eq 2 and eq 3. Obviously, the electric charge is
analogous to mechanical force, and the potential to displace-
ment. The first term on the right side of eq 3 represents the
work done by changing the electric voltage between the droplet
and the counter electrode, and the second term represents the
electric energy stored in the system. There are two limiting
cases for electric loading; one is constant voltage, and the other
is constant charge. The release rate of electric energy can be
calculated as
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For the derivation of eq 4, see the Supporting Information. For
the general case, there is
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where A is the area of the interface between the droplet and the
environment. Obviously, eqs 4 and 5 can be easily derived from
eq 6.

The electric capacitance of an electrical system, C, can be
calculated as

φ
=C

Q
(7)

Substituting eq 7 in eq 6, one obtains

φ= ∂
∂

G
C
A

1
2e

2
(8)

The release rate of electric energy is proportional to the square
of electric voltage and the derivative of the electric capacitance
with respect to the area of interface between the droplet and
the environment.

3. ELECTROWETTING EQUATION
As used by Digilov9 and Wang and Zhao,13 one can
approximate the shape of a droplet on a solid surface as a
spherical cap. The contact line, depicted in Figure 1, can start to
move under the action of an electric voltage. Although the
droplet will retain the shape of spherical cap, the motion of the
contact line leads to the change of free energy and causes the
system to move to the equilibrium state.
For a system which is isolated thermally and mass-

conservatively, chemical potential has no effect on the
equilibrium state of the system. The free energy of the system,
F, with the dimensions of the droplet smaller than the capillary
length is

∫ ∑γ π γ γ πτ= + − + + Ω
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sl sv
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3
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where γ is the surface energy of the liquid/vapor interface, γsl is
the surface energy of the solid/liquid interface, γsv is the surface
energy of the solid/vapor interface, Alv is the area of the liquid/
vapor interface, r is the contact radius between the droplet and
the solid surface, and τ is the line tension of the contact line.
Note that the line tension is the specific free energy of the
three-phase contact line,15,16 as first suggested by Gibbs,15 who
stated that “We may here remark that a nearer approximation
to the theory of equilibrium and stability might be obtained by
taking special account, in our general equations, of the lines in
which surfaces of discontinuity meet. These lines might be
treated in a manner entirely analogous to that in which we have
treated surfaces of discontinuity. We might recognize linear
densities of energy, of entropy, and of the several substances
which occur about the line, also a certain linear tension.”
Using the relation among the droplet volume, the area of the

liquid/vapor interface, the contact angle, and the contact radius
and Young’s relation for the contact angle without the action of
an electric field,16 eq 9 can be rewritten as

∫ ∑γπ
θ

θ πτ=
+

− + + Ω
Ω =

⎜ ⎟⎛
⎝

⎞
⎠F r r E D2

1 cos
cos 2

1
2

d
i

i i
2

0
1

3

(10)

where θ is the contact angle of the droplet under the action of
an electric voltage, and θ0 is the contact angle without electric
field.
Assume that the contribution of viscous dissipation to the

change of the system energy is negligible in the analysis, since
the motion of a contact line generally is much slower. The
change of the free energy of the system then can be calculated
as

Figure 1. Schematic of electrowetting of a conducting droplet on a
dielectric layer.
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If the surface energies and the line tension are independent of
the droplet size, eq 11 can be simplified as

πγ θ θ πτ= − + −F
r

r G
A
r

d
d

2 (cos cos ) 2
d
d0 e (12)

for the motion of the contact line maintaining the concentricity
of the contact area and the constraint of constant volume. For
the derivation of eq 12, see the Support Information.
At the equilibrium state, there is dF = 0. Equation 12 gives
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The contact angle of the droplet under the action of an electric
voltage is a linear function of the release rate of electric energy.
Substituting eq 8 in eq 13, one has
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The contact angle of the droplet under the action of an electric
voltage is a quadratic function of the electric voltage applied to
the conducting droplet, similar to the results given by Berge10

and Wang and Zhao;13 it is also a linear function of the
derivative of the electric capacitance with the surface area. For
φ = 0, eq 14 reduces to the modified Young’s equation16 of the
equilibrium condition for any point at the three-phase contact
line, which considers the contribution of line tension. The line
tension introduces the droplet-size effect on the contact angle
for the electrowetting of a droplet, which differs from the
typical electrowetting relationship.
It is worth mentioning that, for the electrowetting of a liquid

between two parallel electrodes, the contribution of electric
energy to the equilibrium condition of the contact line, i.e., the
last term on the right side of eq 12, becomes −Ge. Using eq 8
and the definition of z direction (which is the opposite of the
outward normal of the liquid/vapor interface) given by Jones,12

one has
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∂

= ∂
∂

G
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(15)

which gives the same result as eq 5 of Jones’ work12 per unit
length of the contact line. Note that the right side of eq 15
represents the force required to counterbalance the electric
force due to the change of the capacitance.
For a conducting droplet of spherical cap placed on the

surface of a dielectric layer, the electric capacitance consists of
two portions: one is associated with air, and the other is
associated with the dielectric solid. Using the solid angle
corresponding to the surface area of the droplet and the electric
capacitance of a conducting sphere, the electric capacitance, Ca,
associated with air can be approximately calculated as
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θ
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+
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where ε0 is the dielectric constant of air. See the Supporting
Information for the derivation of eq 16.

For the electric capacitance associated with the dielectric
layer, the conducting droplet can be approximated as a circular
disk. Considering the effect of electric fringe field, the electric
capacitance to the second order approximation of h/r for h/r <
1 can be expressed as17
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with ε being the dielectric constant of the dielectric solid and h
being the thickness of the dielectric layer. Thus, the electric
capacitance of the droplet/solid system is
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which is dependent on the contact radius and the contact angle.
For h/r < 1, the contribution of the electric capacitance from

air is much smaller than that from the dielectric solid. The
electric capacitance of the droplet/solid system then can be
calculated from eq 17, and the release rate of electric energy of
the droplet/solid system is
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Substituting eq 19 into eq 13, one obtains the relationship
between the equilibrium contact angle, θeq, and the applied
electric voltage as
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which reduces to

θ θ τ
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r h
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2eq 0
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for h ≪ r. For τ = 0, eq 21 is the same as the result given by
Berge,10 who ignored the effect of the fringe field. The
dimensionless parameter, Θeq, is defined as
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Figure 2 shows the dependence of the parameter of Θeq on
the ratio of h/r. The parameter of Θeq increases with the
increase of the ratio of h/r. This result suggests that the contact
angle of the droplet under the action of an electric voltage is
dependent on the ratio of the film thickness to the contact
radius as well as the dielectric constant of the dielectric
material. There exists a size effect on the behavior of
electrowetting.
Chevalliot et al.18 had examined the thickness effect on the

electrowetting of conducting droplets. The liquid used was 0.02
wt % NaCl aqueous solution with 0.028 wt % Triton X102; the
dielectric film was Parylene C (chlorinated). The film
thicknesses of the dielectric films were 0.43, 1.3, and 5.5 μm.
They coated a Fluoropel film of 50 nm in thickness on the
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surface of the Parylene C films to make the surface
hydrophobic and used a droplet of 1 μL in volume in their
study.
It is assumed that the droplets were in the shape of a

spherical cap. From the volume of the droplets, one can
calculate the contact radius of the droplets with substrates
under the action of electric voltage. Table 1 lists the contact
radius of the droplets on Parylene C films under the action of
electric voltages of 20 and 25 V. Obviously, r > h, which satisfies
the condition of eq 20. χ is defined as

χ
π

π
π

π= + +
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which gives

θ θ εφ
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2eq 0
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for τ = 0. Figure 3 shows the variation of (cos θeq− cos θ0) with
χ/h for the experimental results given by Chevalliot et al.18 For
comparison, the experimental results (χ = 1) are also included
in Figure 3. It is clear that, for the experimental conditions, the
new model of eq 24 gives approximately the same results as the
classical electrowetting relationship because of r ≫ h.

4. STABILITY ANALYSIS OF THE MOTION OF
CONTACT LINE

The condition for the onset of the motion of a contact line may
be formulated from the concept of the energy balance. A state
of equilibrium is reached when the total potential energy of the
system has a stationary value with respect to any virtual change
in the contact size between the droplet and the solid surface;
i.e., dF = 0. Define the following quantity, R,

γ γ γ τ= + − +R
A

A A l
d

d
( ( ) )

sl
lv sl sl sv

(25)

which represents the change in the potential energy from the
surface energy and the line energy. Here, Asl is the contact area
between the droplet and the solid surface and l is the perimeter
of the contact edge. The equation at a stationary state is

=R Ge (26)

which is the same as dF = 0. R characterizes the resistance force
associated with the morphological evolution of the droplet. Of
the parameters of R and Ge, only R relates directly to intrinsic
properties of the droplet/solid system. If the electric energy
stored in air is much smaller than that stored in the dielectric
layer, eq 8 can be approximated as
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and eq 26 gives
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for maintaining the concentricity of the contact area at the
stationary state.
Equation 26 can predict the condition for the contact line

being stationary, while it is not a condition for continuous
spreading of the contact line under the action of electric
voltage. For the contact line to continuously move under the
action of an electric voltage, the stationary state must be
unstable; i.e., any small disturbance to the contact line will lead
to the motion of the contact line. To determine the nature, one
needs to consider the second derivative of the free energy: i.e.,
d2F/dr2, for a circular contact area. Whether the system is stable
or unstable under the action of an electric voltage depends on
whether the second derivative is less than or greater than zero.
In terms of R and Ge, one has

> <
G
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G
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d
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d
d
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sl

e
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At the stationary state of dF = 0, one can obtain a criterion by
using the Taylor series expansion to the second term if the
contribution of the electric energy stored in air is negligible.
This criterion can be written as

Figure 2. Dependence of the parameter of Θeq on the ratio of h/r.

Table 1. Contact Radius of Droplets on Parylene C Dielectric Films under the Action of Two Electric Voltages

electric voltage (V) 20 25

thickness of dielectric film (μm) 0.43 1.3 5.5 0.43 1.3 5.5
contact radius (μm) 850 489 390 1022 657 447

Figure 3. Comparison of numerical results with Chevalliot et al.’s
experimental results.18
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Thus, the critical state is determined by the following equation
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Under the condition of constant voltage applied to the droplet,
the critical angle, θcr, can be found from the following equation,
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which reduces to
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for h ≪ r. The line tension has no effect on the stability of the
electrowetting of a conducting droplet on a dielectric layer
under the action of an electric voltage. For h ≪ r, eq 33
suggests that the critical angle is independent of the radius of
the contact area, while it is a linear function of εφ2/2hγ.
Φ is defined as

θ θ θΦ = + +cos (2 cos ) sin2
(34)

For a droplet of spherical cap with a height of H, there is
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Substituting eq 35 into eq 34 yields
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which can be readily calculated from the parameters measured
in electrwetting tests.
Figure 4 shows the variation of Φ with θ. The function of Φ

increases with the increase of θ, reaches the maximum of 2.42 at
θmax = 1.15 (65.89°), and decreases with the increase of θ for θ
in the range of 0 to π. For θeq < θcr < θmax or θmax < θcr < θeq, the
system is unstable. The droplet may spread over the solid
surface and become a thin film under the action of an electric
voltage for θeq < θcr < θmax. For θcr < θeq < θmax or θmax < θeq <

θcr, the system is stable. Note that Φ must be positive and there
is a maximum value of Φ. The maximum value of Φ suggests
that there is a maximum electric voltage, corresponding to the
upper bound of electric voltage, below which the system may
reach a stationary electrowetting state. For an electric voltage
larger than the upper bound, there is no solution of eq 32. It is
interesting to note that the value of θmax (65.89°) is between 60
and 70° of the saturated contact angle for electrowetting of
conducting droplets.18 The saturation of contact angle likely is
related to the condition determining the field-induced stability
of the contact line.
Yeo and Chang19 suggested that electrowetting behavior can

be classified into static electrowetting and spontaneous
electrowetting, depending on the electrode configuration
adopted. The preceding analysis provides the possible
condition for the presence of static electrowetting and
spontaneous electrowetting of a conducting droplet on a
dielectric substrate. The static electrowetting corresponds to
the stable state of the contact line, and spontaneous
electrowetting corresponds to the unstable state. Note that
the geometrical configuration of the electric system of Yeo and
Chang20 is different from the one analyzed in this work.

5. FIELD EFFECT ON THE KINETICS OF
ELECTROWETTING

There are two approaches to analyze the motion of a contact
line. One is based on hydrodynamic analysis, and the other is
based on thermal activation processes (molecular kinetic
theory, MKT) as developed by Eyring et al.21−23 Cherry and
Holmes24 were the first to use the MKT theory to analyze the
kinetics of wetting of surfaces and obtained the rate constant
for the wetting process which is related to the change of the
contact angle. Following an approach similar to that of Cherry
and Holmes,24 Blake and Hayes25 derived the velocity of the
contact line which is a hyperbolic sine function of (cos θ − cos
θ0). Their result can reduce to the result of Cherry and
Holmes24 if one uses the Taylor series expansion of hyperbolic
sine function to the first term. Considering the interaction
between liquid molecules and solid molecules and using the
MKT theory, Yang26 found that there exists a critical shear
stress for the onset of slip flow that is dependent upon the
bonding strength between the molecules of liquid and the
molecules of solid. Recently, Yuan and Zhao,27 following the
same approach as Blake and Hayes,25 obtained the wetting rate
under the action of electric voltage simply by adding the
contribution from electric voltage.
Considering the importance of electrowetting in micro- and

nanofluidics, we analyze the field effect on the wetting kinetics
in detail. From a microscopic point of view, the wetting of a
droplet on a solid surface occurs when a molecule jumps from
inside the droplet to outside the droplet. Generally, the energy
state of a molecule inside the droplet is different from that
outside the droplet, as shown schematically in Figure 5. There
exists an energy barrier that molecules need to overcome in
order to escape from the droplet, i.e., desorption. Similarly,
molecules need to overcome an energy barrier for them to
jump into the droplet, i.e., adsorption. The energy barrier for
desorption is different from that for adsorption, and the
difference between the energy barrier of inside the droplet and
the energy barrier of outside the droplet is ΔG0.
The resultant flux for molecules to cross the liquid/vapor

interface on the solid surface can be calculated asFigure 4. Variation of Φ with θ.
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where N− and N+ are the number of molecules per unit volume
on the left and right sides of the liquid/vapor interface,
respectively, ℏ is the Planck constant, ΔGν is the energy barrier
that molecules need to overcome to jump from the vapor phase
to the droplet, k is the Boltzmann constant, and T is absolute
temperature. Assume that the average jump distance of
molecules is λ. The velocity of the contact line, v, is

λ λ= =
ℏ

−+ − Δ +Δ − −Δv J
kT

N N( e e )G G kT G kT( )/ /v 0 v

(38)

At the equilibrium state, there is no change of the droplet
morphology and the contact line is at a dynamic “stick” state,
i.e. v = 0. Equation 38 gives

=− −Δ + − Δ +ΔN Ne eG kT G G kT/ ( )/v v 0 (39)

As discussed previously, the contact line will move when R ≠
Ge. The driving force is related to the magnitude of |R − Ge|,
which results in the change of the energy barrier for the jump of
molecules across the contact line. Under the condition that the
contact area maintains concentricity and the contribution of the
electric energy stored in air is negligible during the motion of
the contact line, the change in the energy barrier can be
calculated as

γ θ θ τΔ = − Ξ = − + − Ξ⎜ ⎟⎛
⎝

⎞
⎠G R G

r
G( ) (cos cos )e 0 e

(40)

where Ξ is the activation area for the rate process. The energy
barriers become ΔGv + ΔG for the jump to the droplet and
ΔGv + ΔG0 − ΔG for the jump to outside the droplet, and the
velocity of the contact line becomes

λ

λ γ θ θ τ

=
ℏ

−

=
ℏ

− + − Ξ

+ − Δ +Δ −Δ − − Δ +Δ

+ − Δ +Δ ⎜ ⎟
⎛
⎝

⎞
⎠

v kT N N

kT N
r

G
kT

( e e )

e sinh (cos cos )

G G G kT G G kT

G G kT

( )/ ( )/

( )/
0 e

v 0 v

v 0

(41)

which is similar to the result given by Blake and Hayes25 for τ =
0 and Ge = 0.
The diffusivity of molecules, D, in an isotropic liquid can be

calculated as

λ=
ℏ

+ −Δ *D N
kT1

6
e G kT2 /

(42)

with ΔG* being the energy barrier (activation energy) for the
diffusion of molecules. The diffusivity and the viscosity, η, of a
liquid can be correlated with the diffusivity by Einstein’s
relation,28,29

η
π

=
Ω̃

⎜ ⎟⎛
⎝

⎞
⎠

D
kT

1
2

1 1/3

(43)

where Ω̃ is the molecular volume. Substituting eqs 42 and 43
into eq 41, one obtains

πηλ

γ θ θ τ

=
Ω̃

× − + − Ξ

Δ *− Δ +Δ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v
kT

r
G

kT

3 1
e

sinh (cos cos )

G G G kT
1/3

( ( ))/

0 e

v 0

(44)

The value of ΔG* − (ΔGv + ΔG0) (≡−ΔG±) represents the
difference of the energy barrier between the diffusion inside the
droplet and the desorption from the droplet. For [γ(cos θ −
cos θ0) + τ/r − Ge]Ξ ≪ kT, eq 44 simplifies to

πηλ
γ θ θ τ=

Ω̃
− + − Ξ−Δ ±

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠v kT

r
G

kT
3 1

e (cos cos )G kT
1/3

/
0 e (45)

The velocity of the contact line is a linear function of cos θ and
Ge. If [γ(cos θ − cos θ0) + τ/r − Ge]Ξ ≫ kT, there is

πηλ
γ θ θ τ=

Ω̃
Ξ − + −−Δ ±

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎧⎨⎩
⎛
⎝

⎞
⎠
⎫⎬⎭v kT

kT r
G3 1

e exp (cos cos )G kT
1/3

/
0 e

(46)

which gives

πηλ
γ θ θ τ=

Ω̃
− Δ + − + − Ξ±
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⎡
⎣
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The logarithm of the velocity of the contact line is a linear
function of cos θ and Ge.
Substituting eq 19 into eq 44 for a conducting droplet of

spherical cap on the surface of a dielectric layer, one obtains

πηλ
γ θ θ τ
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which simplifies to

πηλ
γ θ θ τ εφ=

Ω̃
Ξ − + −−Δ ±
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for h ≪ r. The velocity of the contact line is dependent on the
size of the droplet and the thickness of the dielectric layer and
is a function of the electric voltage applied to the droplet.
Considering the effect of disjoining pressure for a thin liquid

film of nanoscale, Yuan and Zhao27 modified the equation of
Blake and Hayes25 by adding the related terms. The effect of
disjoining pressure represents the contribution of intermolec-
ular interaction. For the wetting/dewetting of ultrathin films,
the contribution of intermolecular interaction can be included
in the difference of the energy barrier between the adsorption
to the film and the desorption from the film. Accordingly, one

Figure 5. Energy diagram of a molecule near the contact line: (a)
without the action of an electric voltage and (b) with the action of an
electric voltage.
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obtains the wetting/dewetting rate with an exponential
dependence instead of the hyperbolic sine dependence.

6. SUMMARY

Electrowetting has the potential of controlling the motion of
liquid droplets and fluid flow for the applications of “lab-on-a-
chip”. Considering the important role of electric energy and
electric work in manipulating the motion of droplets on solid
surfaces, the concept of the release rate of electric energy was
proposed in this work. For a conducting droplet on the surface
of a dielectric solid layer under the action of an electric voltage,
the release rate of electric energy was found to be proportional
to the square of the applied voltage and the derivative of
electric capacitance with respect to the surface area of the
droplet, which is independent of the condition of electric
loading. Under the action of electric loading, the contact angle
of a conducting droplet at the equilibrium state is a linear
function of the release rate of electric energy.
The stability analysis of the wetting of a droplet on a

dielectric layer under the action of an electric voltage was
analyzed. A critical contact angle as a function of the applied
electric voltage, the thickness of the dielectric layer, and the
radius of the contact area was obtained. There exist stable and
unstable zones, i.e., static electrowetting and spontaneous
electrowetting, and there exists an upper bound of electric
voltage with the corresponding contact angle of 65.89° between
60 and 70° of the saturated contact angle for electrowetting of
conducting droplets on dielectric films.18 The saturation of
contact angle likely is related to the condition determining the
field-induced stability of the contact line.
Using the theory of thermal activation processes, the velocity

of a contact line under the action of an electric voltage was
found to be a hyperbolic sine function of the release rate of
electric energy. The velocity of the contact line is dependent on
the size of the droplet and the thickness of the dielectric layer
and is a function of the electric voltage applied to the droplet.
For the radius of the contact area much larger than the
thickness of the dielectric layer, the velocity of the contact line
is dependent on εφ2/2h.

■ ASSOCIATED CONTENT

*S Supporting Information
Text describing the derivation of the release rate of electric
energy for the condition of constant charge, the derivation of
the change of the free energy of the system as a function of the
release rate of electric energy, and the calculation of the electric
capacitance of the droplet associated with air and a figure
showing the potential difference−charge curves under varying
conditions. This material is available free of charge via the
Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author
*Phone: 859-257-2994. E-mail: fyang2@uky.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is supported by the “Opening fund of State Key
Laboratory of Nonlinear Mechanics (LNM)”.

■ REFERENCES
(1) Prins, M. W. J.; Welters, W. J. J.; Weekamp, J. W. Fluid Control
in Multichannel Structures by Electrocapillary Pressure. Science 2001,
291, 277−280.
(2) Satoh, W.; Hosono, H.; Suzuki, H. On-Chip Microfluidic
Transport and Mixing Using Electrowetting and Incorporation of
Sensing Functions. Anal. Chem. 2005, 77, 6857−6863.
(3) Pollack, M. G.; Parnula, V. K.; Srinivasan, V.; Eckhardt, A. E.
Applications of Electrowetting-Based Digital Microfluidics in Clinical
Diagnostics. Expert Rev. Mol. Diagn 2011, 11, 393−407.
(4) Lippmann, G. Relation Entre Les Phenomenes Electriques Et
Capillaries. Ann. Chim. Phys. 1875, 5, 494−549.
(5) Im, M.; Choi, K.; Kim, D. H.; Lee, J. H.; Yoon, J. B.; Choi, Y. K.
Adhesion Force Change by Electrowetting on a Polymer Microlens
Array. J. Adhes. Sci. Technol. 2012, 26, 2079−2086.
(6) Im, M.; Kim, D. H.; Lee, J. H.; Yoon, J. B.; Choi, Y. K.
Electrowetting on a Polymer Microlens Array. Langmuir 2010, 26,
12443−12447.
(7) Sondaghuethorst, J. A. M.; Fokkink, L. G. J. Potential-Dependent
Wetting of Electroactive Ferrocene-Terminated Alkanethiolate Mono-
layers on Gold. Langmuir 1994, 10, 4380−4387.
(8) Welters, W. J. J.; Fokkink, L. G. J. Fast Electrically Switchable
Capillary Effects. Langmuir 1998, 14, 1535−1538.
(9) Digilov, R. Charge-Induced Modification of Contact Angle: The
Secondary Electrocapillary Effect. Langmuir 2000, 16, 6719−6723.
(10) Berge, B. Electrocapillarity and Wetting of Insulator Films by
Water. C. R. Acad. Sci., Ser. II: Mec., Phys., Chim., Sci. Terre Univers
1993, 317, 157−163.
(11) Jones, T. B.; Fowler, J. D.; Chang, Y. S.; Kim, C. J. Frequency-
Based Relationship of Electrowetting and Dielectrophoretic Liquid
Microactuation. Langmuir 2003, 19, 7646−7651.
(12) Jones, T. B. On the Relationship of Dielectrophoresis and
Electrowetting. Langmuir 2002, 18, 4437−4443.
(13) Wang, Y.; Zhao, Y. P. Electrowetting on Curved Surfaces. Soft
Matter 2012, 8, 2599−2606.
(14) Zehnder, A. T. Fracture Mechanics; Springer: New York, 2012;
Vol. 62, p 37.
(15) Gibbs, J. W. The Scientific Papers; Dover: New York, 1961; Vol.
1, p 288.
(16) Boruvka, L.; Neumann, A. W. Generalization of Classical-
Theory of Capillarity. J. Chem. Phys. 1977, 66, 5464−5476.
(17) Sloggett, G. J.; Barton, N. G.; Spencer, S. J. Fringing Fields in
Disk Capacitors. J. Phys. A: Math. Gen. 1986, 19, 2725−2736.
(18) Chevalliot, S.; Kuiper, S.; Heikenfeld, J. Experimental Validation
of the Invariance of Electrowetting Contact Angle Saturation. J. Adhes.
Sci. Technol. 2012, 26, 1909−1930.
(19) Yeo, L. Y.; Chang, H. C. Static and Spontaneous Electrowetting.
Mod. Phys. Lett. B 2005, 19, 549−569.
(20) Yeo, L. Y.; Chang, H. C. Electrowetting Films on Parallel Line
Electrodes. Phys. Rev. E 2006, 73, No. 011605.
(21) Eyring, H.; Cagle, F. W. The Significance of Isotopic Reactions
in Rate Theory. J. Phys. Chem. 1952, 56, 889−892.
(22) Eyring, H.; Smith, R. P. Some Recent Developments in Reaction
Rate Theory. J. Phys. Chem. 1952, 56, 972−976.
(23) Eyring, H. Viscosity, Plasticity, and Diffusion as Examples of
Absolute Reaction Rates. J. Chem. Phys. 1936, 4, 283−291.
(24) Cherry, B. W.; Holmes, C. M. Kinetics of Wetting of Surfaces by
Polymers. J. Colloid Interface Sci. 1969, 29, 174−176.
(25) Blake, T. D.; Haynes, J. M. Kinetics of Liquid/Liquid
Displacement. J. Colloid Interface Sci. 1969, 30, 421−423.
(26) Yang, F. Q. Slip Boundary Condition for Viscous Flow over
Solid Surfaces. Chem. Eng. Commun. 2009, 197, 544−550.
(27) Yuan, Q. Z.; Zhao, Y. P. Topology-Dominated Dynamic
Wetting of the Precursor Chain in a Hydrophilic Interior Corner. Proc.
R. Soc. A 2012, 468, 310−322.
(28) Yang, F. Q.; Li, J. C. M. Fick’s Law for Self-Diffusion in Liquids.
J. Appl. Phys. 1996, 80, 6188−6191.
(29) Li, J. C. M.; Chang, P. Self-Diffusion Coefficient and Viscosity in
Liquids. J. Chem. Phys. 1955, 23, 518−520.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp509116g | J. Phys. Chem. C 2014, 118, 26859−2686526865

http://pubs.acs.org
mailto:fyang2@uky.edu

