
Commun Nonlinear Sci Numer Simulat 22 (2015) 101–119
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
A new bounding-surface plasticity model for cyclic behaviors
of saturated clay
http://dx.doi.org/10.1016/j.cnsns.2014.10.023
1007-5704/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel./fax: +86 2227401510.
E-mail address: liuhx@tju.edu.cn (H. Liu).
Cun Hu a,b, Haixiao Liu b,⇑
a Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
b School of Civil Engineering, Tianjin University, Tianjin 300072, China
a r t i c l e i n f o

Article history:
Received 24 February 2012
Received in revised form 15 October 2014
Accepted 15 October 2014
Available online 23 October 2014

Keywords:
Bounding-surface plasticity model
Saturated clay
Cyclic loading
Cyclic behavior
Generalized homological center
a b s t r a c t

A new combined isotropic–kinematic hardening rule is proposed based on the concept of the
generalized homological center and the generalization of Masing’s rule. The key point of the
new hardening rule is that the unloading event can be treated as if it were virgin loading
through taking the stress reversal point as the new generalized homological center of the
bounding surface. Therefore, a new simple bounding-surface plasticity model with three
important features for the cyclic behaviors of saturated clay is developed. Firstly, according
to the movement of the generalized homological center, the model can harden not only iso-
tropically but also kinematically to account for the anisotropy and memory the particular
loading events. Secondly, the continuous cyclic loading is divided into the first loading,
unloading and reloading processes and they are treated differently when calculating the
hardening modulus to describe the soil responses accurately. The third feature is taking
the generalized homological center as the mapping origin in the mapping rule to reflect
the plastic flow in the unloading event. The behaviors of saturated clay for the monotonic
and cyclic stress-controlled and strain-controlled triaxial tests are simulated by the model.
The prediction results show an encouraging agreement with the experimental data.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Offshore foundations, such as piles, suction anchors, bucket foundations and drag anchors, are often partially or com-
pletely embedded in seabed soils. The performance of such embedded foundations is strongly dependent upon the response
of the surrounding soils, due to that under cyclic loads caused by waves and currents, significant changes can happen both in
the stiffness and shear strength of soils [1–5]. The cyclic effects should be taken into account in the stability analysis of
offshore foundations [6,7]. Hence, it is essential to develop more reliable and accurate soil models under long-term cyclic
loading to effectively and precisely evaluate the response of embedded offshore foundations in a complicated ocean
environment.

The observed typical response of a real soil undergoing cyclic loading is shown in Fig. 1 [8]. In Fig. 1, upon unloading both
elastic and plastic deformations occur before the stress path is fully reversed, and cyclic loading can lead to a substantial
accumulation in plastic deformation and pore pressure together with even a sudden loss in the shear strength and stiffness
of the soil. Moreover, a natural deposited clay tends to be anisotropic because of the nature of its particles and environmental
conditions, even the isotropic soils may present anisotropic.
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Over the last decades, there have been two remarkable types of plasticity models for cyclic behaviors of soils and other
materials. One is the multi-surface model, which is based on the kinematic hardening plasticity theory [9,10], and the other
is the bounding-surface plasticity theory, including the two-surface model which defines an outer surface termed as a
bounding surface in addition to the inner surface or loading surface [11] and the single-surface model in which the elastic
domain is reduced to a point within the consolidation or bounding surface [12–14]. Based on the two theories, many new
models have been proposed and some successful results have been achieved. Mroz et al. [15] proposed a nesting yielding
surface model, in which an infinite number of nesting yield surfaces within the consolidation surface translate in crowds,
and they also harden isotropically during reverse loading. Li and Meissner [16] proposed a two-surface plasticity model
based on a new kind of kinematic hardening rule, in which a new memory center is introduced to take into account the
memory of the particular loading history, and meanwhile the memory center is considered as the mapping origin to predict
the reversal plastic flow. Similarly, Khalili et al. [17] proposed a two-surface plasticity model for cyclic loading of granular
soils, in which three surfaces are implied and the stress reversal point is taken as the homological center of the loading sur-
face in order to reflect the loading history. However, because of their complicated hardening rules, which need to account for
the evolution of more than two surfaces, it is difficult to be implemented in a numerical simulation or to solve a boundary
value problem especially the ones referring long-term cyclic loading.

Among the above plasticity models, the bounding-surface plasticity model with vanishing elastic region has particularly
attracted a great deal of interest due to its simplicity and ease of use. However, the conventional models [12–14,18,19] are
usually based on assumptions that the bounding surface hardens isotropically along the hydrostatic pressure axis and the
unloading response is elastic. So they are failed to predict the real cyclic responses of soils such as anisotropy and reverse
plastic flow. By introducing the fabric tensor or a new rotational hardening rule, which consists of both the deviatoric
and volumetric components, the single bounding-surface model can be applied to predict the material anisotropy [20,21].
However, a great number of additional parameters should be introduced into and this increases complexities of the model.
Moreover, some of important features of soils subjected to cyclic loading still cannot be predicted satisfactorily by these
single bounding-surface models.

The aim of the present study is to present a new simple combined isotropic–kinematic hardening rule and to develop a
simple but accurate bounding-surface plasticity model for saturated clay subjected to cyclic loading. A new mapping rule is
established by taking the generalized homological center as a new mapping center. The applicability and veracity of the
bounding-surface plasticity model are demonstrated by comparing with the test results of saturated clay from the literature.

2. The single bounding-surface model based on a new combined isotropic–kinematic hardening rule

For a monotonic loading process, the isotropic hardening plasticity model can be successfully applied in solving boundary
value problems. However, for cyclic loading processes, the classical bounding-surface models based on the isotropic harden-
ing rule are not appropriate for modeling soil behaviors due to the following reasons [22]:

a. Soil exhibits the material anisotropy (analogous to the Bauschinger effect in metals).
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Fig. 1. Typical response observed in cyclic loading of clay.
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b. It is observed in soil experiments that upon unloading, both elastic and plastic deformations occur well before the
stress path is fully reversed so that the stress–strain curve shows obvious hysteresis property. Whereas, the classical
isotropic hardening bounding-surface model regards the unloading process as elastic one.

c. The particular loading events may change the soil structure and have a great influence on the subsequent soil prop-
erties, so the memory of particular loading events should be properly incorporated into the soil model.

2.1. The new combined isotropic–kinematic hardening rule

The present model is based on assumptions that the elastic domain enclosed by the bounding surface is reduced to a
point, plastic flow occurs immediately for any stress increment within the bounding surface, and the degree of consolidation
of a soil is represented by the bounding surface, which is uniquely defined by the irreversible volumetric strain ep

v and rep-
resents the isotropic properties of the material during loading.

The conventional isotropic hardening rule assumes that the yield surface expands radially around a homological center,
i.e., the center of the yield surface. Mroz et al. [15] assumed the stress reversal point as the homological center of the yield
surface in the multi-surface plasticity model. While, Hashiguchi [23] and Lee and Oh [24] assumed that the homological cen-
ter of the yielding surface could be translating and need not be its geometric center. In this paper, a new concept, termed as
the generalized homological center of the bounding surface, is introduced. Its evolution rules are: for the virgin loading, the
generalized homological center locates at the origin of the stress space, and for the nonvirgin loading, it moves to the stress
point where the loading path abruptly changes its direction. Any abrupt changes in the loading direction satisfy the following
condition:
@F
@rij

drij 6 0 ð1Þ
where, rij is the image point corresponding to rij (the details can be seen in Section 2.3). Thus, the generalized homological
center divides the continuous cyclic loading into first loading, unloading and reloading events. It is convenient to consider
the generalized homological center as a discrete internal memory variable whose role is to store up material memory events
associated with abrupt changes of the loading direction. As mentioned above, the isotropic hardening rule can predict rea-
sonable response for monotonic loading. It is expected that if each loading event which is divided from the cyclic loading can
be considered as a proper monotonic loading event, then the cyclic loading could be predicted by a corresponding isotropic
hardening rule. As is known, the isotropic hardening rule is easier to deal with and contains fewer variables than other hard-
ening rules. Actually, it is a generalization of Masing’s rule [25] which assumes that taking the stress reversal point as the
loading origin, the reversed branch of the stress–strain curve can be obtained by magnifying the uniaxial curve by a factor
of two.

The cyclic loading processes can be divided into the first loading, unloading and reloading events. Each of the events can be
depicted by the isotropic hardening of the bounding surface around different generalized homological centers. Furthermore, in
the present work, we assume that the generalized homological center should be on the bounding surface, which implies that
once the new generalized homological center is formed, the bounding surface should translate along the line that connects the
new homological center and the stress reversal point in the stress space to ensure the homological center on it. As a result, the
new proposed hardening rule actually plays two roles. One is the isotropic hardening role, which assumes that the bounding
surface hardens isotropically around a proper invariable generalized homological center for each loading or unloading
sequence without the stress reversal point. The other is the kinematic hardening role, which consists of two parts. First, the
translation of the bounding surface at the stress reversal point as described above. Second, a discrete formation of the general-
ized homological center can be regarded as a discontinuous rule for kinematic hardening. Note that to ensure the continuity of
plastic deformations, the size of the new translating bounding surface is necessarily identical to the old one.

The new hardening rule is schematically represented in Figs. 2 and 3. For example, consider a case of undrained cyclic
loading on a normally consolidated soil, where a bounding surface F0 is defined by the virgin isotropic loading process
OA, as shown in Fig. 2(a). The bounding surface is taken to be the yield surface of Modified Cam-clay, which is a simple
ellipse. For the first shear loading after the initial consolidation, the stress path changes its direction at Point A abruptly
to the interior of F0, as shown in Fig. 3(a). According to the rules mentioned above, the homological center shifts to the
new position A from the initial position O, then the bounding surface should translate along AA first to ensure the homolog-
ical center on the surface. Meanwhile, the new bounding surface F1 is formed and coincides with F0 instantaneously, then it
expands radially around the homological center A in the following loading to form F�1. When the stress path reaches to Point
B and changes its direction, Point B forms the new homological center and the bounding surface F�1 translates along the line
BB to form a new bounding surface F2, as shown in Fig. 3(b), and the size is identical to that of F�1. Within the subsequent
loading, the bounding surface F2 expands radially around the homological center B, as shown in Fig. 3(c). Similarly, when
the stress path goes to Point C, the corresponding homological center C and the bounding surface F3 are formed, as shown
in Fig. 3(d). Fig. 3(e) shows the corresponding stress–strain relations, in which Points A, B, C correspond to those in Fig. 3(a)–
(d). The hardening rule can be regarded as a generalization of Masing’s rule.

It can be seen that the whole bounding surface expands or contracts isotropically and translates with the generalized
homological center in the stress space. This is different from the bounding-surface models which assume that the loading



Fig. 2. Schematic of the bounding surface in the p–q stress space and geometrical interpretation of the radial mapping rule.
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surface hardens kinematically and the bounding surface hardens isotropically or rotationally. However, the behavior of the
bounding surface looks like a yield surface in the conventional theory of plasticity and stores up material memory like a mul-
tisurface model. Besides, the old bounding surface is erased once the new one forms. Therefore, only the evolution of the
bounding surface in the stress space is involved in the new developed model. The corresponding hardening rule is fairly sim-
ple. It is an isotropic hardening rule with translating homological center intrinsically so it is easy to perform through numer-
ical procedures. Also, it can be considered as a discontinuous kinematic hardening rule capable of modeling the soil
anisotropy and remembering the particular loading history.
2.2. The bounding surface

In a critical state, the formulation of the bounding surface is usually assumed to be an elliptic form as:
Fm ¼ p� aðmÞp

� �2
þ q� aðmÞq

M

 !2

� aðmÞF ðep
v ; eAÞ

� �2
¼ 0 ð2Þ
where, p and q represent the invariant components of the image stress which can be determined by the radial mapping rule
(as shown in Fig. 2(b)), aðmÞp and aðmÞq are the coordinates of the center OFðmÞ of the bounding surface, m is the ordinal number
of particular loading events in which the stress path does not change direction, and M is the slope of critical state line and can
be determined by:
M ¼
Mc ¼ 6 sin u

3�sin u for q� aðmÞq P 0

Me ¼ 6 sin u
3þsin u for q� aðmÞq < 0

8<
: ð3Þ
in which u is the angle of internal friction at failure, and Mc and Me are values of M in triaxial compression and extension,
respectively (as shown in Fig. 2).

In Eq. (2), eA ¼
R
jdep

v j is the cyclic degradation parameter, and aðmÞF is the semidiameter of the ellipse in p direction and can
be interpreted by:
aðmÞF ¼ aðep
vÞ

1þ eA
ð4Þ
Degradation of soft clay, which can be found in many marine deposits during cyclic loading at high stress level, has been
well documented in numerous studies [26,27]. This effect is associated with the increase in pore pressure and remodeling of
the soil structure during cyclic loading. It can be seen from Eq. (4) that aðmÞF depends on the value of eA. The degradation effect
can be modeled by shrinking of the bounding surface with increasing value of eA.
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Fig. 3. Evolution of the bounding surface in the p–q stress space.
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2.3. Mapping and flow rules

In the present work, the form of the radial mapping rule proposed by Dafalias and Herrmann [12] is adopted. As shown in
Fig. 2(b), any current stress state rij is associated with an image stress point rij, which is the intersection of the bounding
surface with the straight line that passes the current stress state and the mapping origin. The key point of the mapping rule
here is taking the generalized homological center (i.e., the stress reversal point) as the mapping origin. Correspondingly, the
mapping origin can move in the stress space. The movement of the mapping origin plays two key roles: one is to make the
model capable of appropriately describing the reverse plastic flow by obtaining a positive loading index during unloading
events (details can be seen in Section 2.5); the other is to keep a large stiffness for the initial part of discrete loading or
unloading events to avoid large deformation for small cycles (details can be seen in Section 2.6).

The associate flow rule is adopted in the present model. The direction of plastic loading Lij at the current stress state rij,
which is in line with the direction of plasticity flow, is defined as the gradient of F at the image stress rij, i.e.,
Rij ¼ Lij ¼
@F
@rij

ð5Þ
2.4. The evolution of the bounding surface

According to the new hardening rule, the bounding surface evolves in the stress space, and its size and location can be
identified by the following methods.

The semidiameter aðmÞF can be formulated as:
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aðmÞF ¼
að0ÞF exp v0 ðe

p
vÞm � ðe

p
vÞ0

� �� �
1þ eA

ð6Þ
in which
v0 ¼
1þ e0

k� j
ð7Þ
where, e0 denotes the void ratio after consolidation, ðep
v Þ0 and ðep

v Þm are plastic deformations corresponding to consolidation
and current loading events respectively, k and j are model constants, and að0ÞF is the semidiameter of the initial bounding
surface and mainly depends on the initial confining pressure.

When determining the coordinates of the center of the bounding surface, two cases should be noticed:

a. When the stress path changes the direction, Fm translates along a particular path to form Fm+1 (as shown in Fig. 3(b)).
The center of the active bounding surface Fm+1 is written as:
aðmþ1Þ
p ¼ aðmÞp þ ðp� pÞ

aðmþ1Þ
q ¼ aðmÞq þ ðq� qÞ

(
ð8aÞ
b. Upon the (m + 1)th loading event in which the stress path does not change direction, from the ith to (i + 1)th loading
substep, Fm+1 expands or contracts isotropically (as shown in Fig. 3(c)). The center of the active bounding surface Fm+1

is written as:
aðiþ1Þ
pðmþ1Þ ¼ opðmþ1Þ þ aðiÞpðmþ1Þ � opðmþ1Þ

� � aðiþ1Þ
Fðmþ1Þ

aðiÞ
Fðmþ1Þ

aðiþ1Þ
qðmþ1Þ ¼ oqðmþ1Þ þ aðiÞqðmþ1Þ � oqðmþ1Þ

� � aðiþ1Þ
Fðmþ1Þ

aðiÞ
Fðmþ1Þ

8>>><
>>>:

ð8bÞ
In Eqs. (8a) and (8b), ðpqÞ and ðpqÞ are the current and image stress states respectively, aðmþ1Þ
p ;aðmþ1Þ

q

� �
; aðiÞpðmþ1Þ;a

ðiÞ
qðmþ1Þ

� �
and aðiþ1Þ

pðmþ1Þ;a
ðiþ1Þ
qðmþ1Þ

� �
denote the centers of bounding surfaces of the 0th, ith and (i + 1)th loading substeps in the (m + 1)th

loading event respectively, aðiÞFðmþ1Þ and aðiþ1Þ
Fðmþ1Þ are the semidiameters of bounding surfaces of the ith and (i + 1)th loading sub-

steps in the (m + 1)th loading event respectively, and opðmþ1Þ; oqðmþ1Þ� 	
is the homological center of Fm+1, i.e., the coordinates

of the stress reversal point.

2.5. Elastoplastic incremental relations

In bounding-surface plasticity, as in classical plasticity, the increment of strain is the sum of elastic and plastic strain
increments and can be obtained by:
deij ¼ dee
ij þ dep

ij

dee
ij ¼ 1

9B dijdrkk þ 1
2G drij

dep
ij ¼ hLiRij; L ¼ 1

Kp
Lijdrij ¼ 1

Kp
Lijdrij

8>><
>>: ð9aÞ
in which, dij is the Kronecker’s symbol, Kp and Kp are the plasticity moduli of the current and image stress states respec-
tively, L is the loading index, and Macauly brackets hi is defined as: hLi ¼ L if L > 0, and otherwise hLi ¼ 0. It should be noticed
that Macauly brackets in Eq. (9a) ensures that nonpositive values of loading index L lead to dep

ij ¼ 0.
The bulk modulus B is usually assumed as:
B ¼ 1þ e0

j
rii=3 ð9bÞ
The shear modulus G is related to the bulk modulus through a constant Poisson’s ratio m and can be formulated as:
G ¼ 3ð1� 2mÞ
2ð1þ mÞ B ð9cÞ
For the triaxial test condition, the effective stress state of a soil element can be described by two stresses and their cor-
responding strains:
p ¼ 1
3 ðr1 þ 2r3Þ; q ¼ r1 � r3

ev ¼ e1 þ 2e3; eq ¼ 2
3 ðe1 � e3Þ

(
ð10Þ
The total stresses can be represented by pt ¼ pþ u and qt ¼ q, where u is the pore pressure.
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From Eqs. (5), (9) and (10), it can be obtained:
dee
v ¼

dp
B ; dee

q ¼
dq
3G

dep
v ¼ hLinp; dep

q ¼ hLinq

(
ð11aÞ
with
np ¼
@F
@p

; nq ¼
@F
@q



ð11bÞ
in which np and nq denote the components of the gradient Lij of F at the image stress point. It should be emphasized that
taking the generalized homological center as the mapping origin ensures the positive value of the loading index L for the
unloading event. As shown in Fig. 4, during the m + k loading event, the stress path DE changes its direction and turns to
the interior of the bounding surface at point E. Then, for the m + k + 1 unloading event, the generalized homological center
E is taken as the mapping origin. Obviously, the positive value of L can be obtained so that the plastic deformation in the
reversal loading can be possibly simulated by the new model.

Because no volume change occurs during undrained deformation, the plastic compaction and elastic swelling must follow
the relation:
dev ¼ dee
v þ dep

v ¼ 0 ð12Þ
From Eqs. (2), (11) and (12), the undrained effective stress path and the pore pressure can be represented by:
dp
dq
¼ �4r2Bðq� aqÞðp� apÞ

Kp þ 4Bðp� apÞ2
ð13Þ

du ¼ 1
3

dqþ BhLinp ð14Þ
2.6. Hardening plastic modulus

A specific feature of bounding-surface plasticity is that the plastic modulus Kp is not only dependent on the surface evo-
lution but also an adjustable function of the distance between the current stress point and its image point on the bounding
surface with the following requirements:
Kp ¼ 1 if d ¼ d0 ð15aÞ

Kp ¼ Kp if d ¼ 0 ð15bÞ
The consistency condition is adopted here, as follows:
@Fm

@p
dpþ @Fm

@q
dqþ @Fm

@ep
v

dep
v ¼ 0 ð16Þ
Applying Eqs. (2), (6) and (11) to Eq. (16), leads to the expression of the hardening plasticity modulus on the bounding
surface:
Kp ¼ 4aðmÞF p� ap þ aðmÞF

� �
ðp� apÞ

v0ð1þ eAÞ � 1

ð1þ eAÞ2
ð17Þ
where, +1 is used if dep
v < 0, otherwise �1 is used.
Fm+k+1

o

q

p

CSL

Lij

dσij

Lij

F*(m+k)

E

E

D

Fig. 4. Gradients of the plastic potential for the unloading event.



Fig. 5. Parameter calibration and sensitivity of monotonic shearing simulations to c.

1

H resilient

St
re

ss

Strain

Fig. 6. Typical stress–strain curve of soil under cyclic loading.

108 C. Hu, H. Liu / Commun Nonlinear Sci Numer Simulat 22 (2015) 101–119



Fig. 7. Effects of parameters on the resilient hardening modulus Hresilient: (a) 1r; (b) g.
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The hardening plasticity modulus of the current stress state can be obtained by employing the interpolation rule:
Kp ¼ Kp þ Hðp; q; ep
vÞ

d
d0 � d

� �c

ð18Þ
where, H p; q; ep
vð Þ is the shape hardening function, d0 and d are the distances from the image point ðp; qÞ to the mapping origin

ðop; oqÞ and the current stress point ðpqÞ, respectively (as shown in Fig. 2(b)). c is a positive model constant which typically
lies in the range of 1.0–2.0. If c = 1, Eq. (18) coincides with the interpolation rule adopted by Dafalias and Herrman [12].

One issue might draw our attention after giving the hardening rule. Even for a very small loading–unloading cycle, the
bounding surface also translates suddenly in the stress space. Will this cause a significant change in response? After giving
the mapping rule and the hardening modulus, the question can be clarified. From Eq. (18), it is known that the plastic hard-
ening modulus at the current stress state Kp is related with the distance function. For a small loading or unloading event, the
loading or the unloading point is taken as the mapping center, which implies that d is quite near to d0 and leads the value of
the distance function to be very large. As a result, the discrete translation of the bounding surface can not cause large defor-
mation for small loading–unloading cycles.

By introducing discrete generalized homological centers, the continuous cyclic loading process is divided into three types
of loading events, namely the first loading, unloading and reloading processes. In a conventional elastoplastic model,
unloading and reloading processes are considered as one in terms of calculating the hardening modulus. However, in the



Fig. 8. Effects of parameters on the accumulation of permanent strain: (a) 1r; (b) g.
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present model, in order to predict the accumulation of permanent strain and pore pressure, the hardening modulus of the
three loading events are treated differently by using different shape hardening functions, as follows:
Hðp; q; ep
vÞ ¼

jKm � Kpj for first loading

j1uKm � Kpj for unloading

j1rKm � Kpj for reloading

8><
>: ð19Þ
with
Km ¼ 8v0 aðmÞF

� �3
and

1u

1r
¼ Mc

Me

� �2

ð1þ np=gÞ ð20Þ
in which 1r and g are new model parameters. Eq. (20) enables no strain accumulation when the soil reaches the shake-
down state. Details are presented in Section 4.3.
3. Parameter calibration

The proposed model requires eight material parameters as well as the initial stress state (e0,p0). The parameters are
related to the critical state soil mechanics (k, j, Me, Mc , G or m) and the hardening modulus (c, 1r , g). The first five can be



Table 1
Values of model parameters.

Parameters Weald clay Kaolin Clay Soft clay in the East Sea of China Grenoble Kaolin clay

Cases

1 2 3 4 5 6 7 8

Traditional
p0 (kPa) 207 500 450 100 100 100 100 50 50 50 50 395
qd (kPa) — — 116 38 32.9 25 17 22.8 20 15 5 e1d ¼ 1:0%

G (kPa) — 12,000 340,000 — 8000
e0 0.632 1.02 1.099 0.782
m 0.3 — 0.25 —
Me — 0.614 0.93 0.5
Mc 0.95 0.772 1.29 0.74
j 0.025 0.034 0.05 0.05
k 0.093 0.173 0.25 0.2

Hardening
c 1.5 1.2 1.5 1.5 2
1r — — 3.5 25 22 20 15 16 15 7 4 7
g — — 20 3.5 5 6 15 1 3 10 15 50
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Fig. 9. Comparison of undrained monotonic responses of Kaolin clay between the predicted and measured data.
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Fig. 10. Comparison of stress–strain relations between the predicted and measured data.
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evaluated directly from in situ and laboratory tests and the remaining three must be obtained indirectly via trial-and-error
simulations of laboratory tests. In the following sections, the roles of the eight parameters and the possible methods for
determining their values are briefly discussed.

k and j are the slopes of the initial loading and unloading curves in the e-lnp, and can be obtained from the isotropic con-
solidation tests. Me and Mc are the slopes of the critical state lines as usual, whose values can be indirectly estimated from
the angle of internal friction /. The calibration of their values requires monotonic element tests that approach the critical
state. Elastic Poisson’s ratio m affects the value of the elastic bulk modulus B, and is typically in the range of 0.15–0.35 for clay.

c can be deduced through simple trial and error simulations of undrained monotonic shearing, and the trial and error sim-
ulation just refers to c and the critical-state parameters. Test data from the classic series of tests, which were performed on
normally consolidated remoulded Weald clay at Imperial College of London [28], were taken as the target responses. Several
researchers have used the results for verifying the constitutive models [24,29]. In the investigation, the values of the tradi-
tional critical-state parameters are from Yu [29]. For Weald clay c = 1.5 was estimated in this manner. Fig. 5 shows the effects
of c on the shearing response. It can be seen that the response is not dramatically affected by the changing values of c until
the stress state approaches the bounding surface.

1r and g are the material parameters related to reloading and unloading events, which control the steepness of the cyclic
response in the q–eq plane and are strongly influenced by the cyclic stress level and the history of consolidation. It is best to
use the stress–strain relation of the first unloading–reloading cycle to obtain 1r and g. The higher the value of 1r is, the stiffer
the stress–strain curve becomes. 1r is expected to be a function of the resilient hardening modulus Hresilient whose definition is
given by Yu [19] and shown in Fig. 6. Figs. 7 and 8 present the roles and calibrations of 1r and g based on the tests on the soft
clay from the East Coast of China [18], which were also used for assessing the model performance in Section 4.3. Taking the



(a) 

0 5 10 15 20
450

500

550

600

Po
re

 w
at

er
 p

re
ss

ur
e 

u 
(k

Pa
)

Number of cycles

   Model simulation

(b) 

 450 

 500 

 550 

600

0  5 10 15 20 

Experimental data Po
re

 w
at

er
 p

re
ss

ur
e 

u 
(k

Pa
) 

Number of cycles

Fig. 11. Comparison of pore pressure between the predicted and measured data.
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case (p0 = 100 kPa and qd = 38 kPa) for example, Fig. 7 shows the effects of 1r and g on the resilient hardening modulus
Hresilient . It can be seen that Hresilient is determined by 1r whereas g has little effect on it. Fig. 8 shows the effects of 1r and g
on the accumulation of permanent strain. Contrarily, it can be seen that the accumulation of plasticity strain is determined
by g whereas 1r has little effect on it. For different soft clays, Hresilient and the hysteresis property change with different cyclic
stress levels and consolidation histories. The values of 1r and g can range from several to several tens.
4. Verification of the model

The performance of the proposed model to simulate the measured undrained response of saturated clay for monotonic
and cyclic stress-controlled tests and strain-controlled triaxial tests was investigated by comparing the numerical simulation
with the experimental results from the literature. The parameters used for the study are presented in Table 1.

4.1. Monotonic tests on Kaolin clay

Li and Messiner [16] conducted a series of undrained shearing tests on isotropically consolidated specimens with OCR = 1
and OCR = 1.6. The initial conditions for the samples were p0 = 500 kPa and e0 = 1.02. The test results and the numerical sim-
ulation are shown in Fig. 9. For normally consolidated Kaolin clay, the parameter c was identical to that of the Weald clay.
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While for the lightly overconsolidated one, the value of c was a little smaller. Fig. 9(a) presents the comparison of the devi-
atoric stress–strain relations between the tests and the model simulation. The comparison of the corresponding excess pore
pressure versus the deviatoric strain is shown in Fig. 9(b). It can be seen that the predicted results generally agree well with
the measured data, in spite of little overestimating the pore pressure in the early loading stage (u 6 0) for the lightly over-
consolidated sample.

4.2. Undrained cyclic triaxial test at short-term higher stress level

In this section, some experimental results of commercially available Kaolin clay [16] continued to be used to assess the
present model. In the experiments, the saturated clay specimen was isotropically consolidated to 450 kPa. The following cyc-
lic test was stress-controlled, using the sinusoidal wave form with the wave frequency of 0.1 Hz and the magnitude of
116 kPa. The test program focused on the development of hysteretic loops, the accumulated plastic deformations and excess
pore pressures under undrained conditions.

The predicted and measured stress–strain behaviors of clay subjected to a one-way undrained cyclic loading are pre-
sented in Fig. 10. It is seen that, the plastic strain of unloading part of a cycle, the accumulated plastic deformation and
the evolvement of hysteretic loops are successfully reproduced by the present model. The comparison of the measured
and predicted pore pressures is presented in Fig. 11. Although the predicted pore pressure is a little higher than the mea-
sured data, the general agreement is satisfactory. These figures demonstrate that behaviors of the undrained saturated clay
subjected to cyclic loading at short-term high stress level can be predicted quantitatively by the present model.
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4.3. Undrained cyclic triaxial tests at long-term lower stress level

The response of soft clay in the East Coast of China subjected to cyclic loading at long-term lower stress level [18] was
simulated by the present model, and compared with the experimental results. The soil samples used in the tests were iso-
tropically consolidated under two different confining pressures, p0 = 50 and 100 kPa. The following cyclic tests were stress-
controlled, using the sinusoidal wave form with the same wave frequency of 1 Hz but different magnitude qd. The value of qd

was in the range of 5–22.8 kPa for p0 = 50 kPa and in the range of 17–38 kPa for p0 = 100 kPa.
The comparison of the accumulation of permanent strain between the measured and predicted data is presented in

Figs. 12 and 13, which shows a better agreement. It can be seen that the soil response in the eight cases reaches the state
of shakedown after a certain number of loading cycles. Figs. 14 and 15 show the predicted developments of transient and
residual pore pressures, respectively. It can be seen that the pore pressure develops quickly in the earlier cycles, and the
higher the stress level is, the more the accumulation of pore pressure becomes. After a certain number of cyclic loading,
the development of pore pressure reaches a stable state. The evolutions of hysteretic loops and the corresponding effective
stress path in the case (p0 = 50 kPa, qd = 15 kPa) during cyclic loading are presented in Figs. 16 and 17, respectively. We can
see from Fig. 17 that during the cyclic loading process, the proposed hardening rule (Section 2.2) enables the bounding sur-
face to move towards the stress path. Finally, the minor axis of the bounding surface coincides with the stress path. As for the
associated flow rule, there is no more plastic volumetric strain along the axis and the shakedown state is reached. Typical
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hysteretic loop when the clay stays in the shakedown state is presented in Fig. 18, we can see that the deformation induced
by the unloading part of the cycle is equal to that induced by the loading part of the cycle, and that there is no more accu-
mulation of plastic strains. In this case, the ultimate response of clay is purely elastic and the soil will not fail under such a
cyclic loading.
4.4. Undrained cyclic strain-controlled test on Kaolin clay

The application to simulation of strain-controlled cyclic behaviors of saturated clay was demonstrated using the test data
reported by Kuntsche [30]. The test with the axial strain amplitude e1d ¼ 1:0% was performed on the specimen, which was
isotropically consolidated with p0 = 395 kPa and e0 = 0.782. The critical-state parameters adopted here are from Liang and
Ma [21].

Figs. 19 and 20 show the comparisons of the effective stress path and stress–strain relations of strain-controlled cyclic
triaxial test between experimental results and model predictions. We can see from Fig. 19 that the effective stress path
moves towards and finally reaches the critical state line (CSL), and the effective mean stress and the maximum deviatoric
stress decrease with the increasing number of cycles. It can also be observed from Fig. 20 that the soil stiffness (i.e., the
secant shear modulus) degrades during cyclic test. Apparently, the behavior of the clay under strain-controlled cyclic loading
can be reasonably captured by the present model.
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Fig. 20. Stress–strain relations of strain-controlled cyclic test on Kaolin Clay.
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5. Concluding remarks

A bounding-surface plasticity model for simulating the behavior of undrained saturated clay under cyclic loading is pre-
sented. A new concept, termed as the generalized homological center, is introduced to discrete the cyclic loading into first
loading, unloading and reloading events. As a generalization of Masing’s rule, unloading and reloading events are treated as if
they were monotonic loading events if taking the stress reversal point as the generalized homological center. Hence, each
loading event is described by the isotropically hardening rule with a proper homological center. Beside that the new devel-
oped model is fairly simple to perform, there are three important features of the model. First, according to the movement of
the generalized homological center, the developed model can harden not only isotropically but also kinematically in order to
account for the evolution of clay anisotropy and to store up the particular loading events just like a multi-surface model.
Second, the continuous cyclic loading is divided into the first loading, unloading and reloading processes, which are treated
differently when calculating the hardening modulus in order to accurately describe the soil response for each loading event.
The third feature is that the generalized homological center is taken as the mapping origin in order to depict a more realistic
response during unloading and reloading.

To some extent, the present model contradicts the traditional single bounding-surface model where the bounding surface
hardens isotropically or rotationally. However, the bounding surface in the new developed model can move in the stress
space like a classic yield surface. It is a sort of link between the bounding-surface model and the conventional plasticity
model. The simplicity and veracity of the present model have been verified by the comparative analysis on clays subjected
to monotonic loading, stress-controlled cyclic loading at different stress levels and strain-controlled cyclic loading. The new
developed model is able to capture the essential features of behavior in saturated clay, including the reverse plastic flow, the
evolution of hysteretic loops, the development of pore pressure, the accumulation plastic deformations, the shakedown
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behavior as well as the soil stiffness degradation. Since the triaxial tests were used for calibration and validation, additional
work should be conducted to verify the model with more general loading conditions, and also with the boundary-value
problems.
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