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Abstract. By means of finite element method which is based on the conventional theory of 
mechanism-based strain gradient plasticity, cohesive interface model is used to study the 
intergranular fracture in polycrystalline metals with nanoscale and ultra-fine grains. A systematical 
study on the overall strength and ductility of polycrystalline aggregates which depend on both grain 
interiors and grain boundaries for different grain sizes is performed. The results show that the overall 
strength and ductility of polycrystalline aggregates with nanoscale and ultra-fine grains are strongly 
related to the competition of grain boundaries deformation with that in grain interiors. Finally, the 
deformation and failure behavior of nanocrystalline nickel are described by using the computational 
model. 

Introduction 

Mechanical behaviors of polycrystalline metallic materials with grain sizes typically less than 100nm 
(nanocrystalline (nc) metals) or within 100-1000nm (ultra-fine crystalline (ufc) metals) have 
undergone the intensely worldwide attention over the past two decades. Relative to bulk case, the 
nc/ufc metals exhibit high yield stress, tensile strength, and hardness, but the lower tensile ductility. 
Although the micromechanisms governing the macroscopic mechanical behavior of polycrystalline 
aggregates were documented [1-3], very few direct experimental evidence exists to show the fracture 
and failure processes in nc and ufc metals, especially the competition of grain interior and grain 
boundary inelastic deformation. Recently Shan et al. [4] reported that grain boundary–mediated 
processes dominate the nc metal deformation through observation for the nc nickel films using the 
transmission electron microscope (TEM). Moreover, many molecular dynamics (MD) simulations 
also presented that grain boundary related slip and separation phenomena plays an important role in 
the overall inelastic response of a polycrystalline material with decreasing the grain-size [5-9]. Due to 
the limitation of time and dimensional scale in the MD simulations, that is too large computational 
cost to simulate the mechanical behaviors of the nc/ufc metals with realistic experiment sample sizes, 
boundary conditions, strain rates and impractical to compare with experimental results, several 
continuum constitutive methods have been presented to explore the effect of grain boundary in the 
plastic deformation and failure response of the nc materials [3, 10-16]. Studies using the 
high-resolution transmission electronic microscopy (HRTEM) show that the nature of intercrystalline 
grain-boundary regions strongly depends on how the material has been processed. Many grain 
boundaries appear sharp, well-defined and no distinct grain boundary phases, the others show 
considerable disorder in grain boundary regions [2, 17]. Considering the inherently characteristic of 
grain boundaries in the nc/ufc metals, both the grain boundary affected zone (GBAZ) model [3, 
11-13] and the traction-separation cohesive interface model [14,15] were proposed to represent the 
grain boundary response in polycrystalline aggregates. 

Despite that the comprehensive computational analyses of the deformation in the nc/ufc materials 
using above mentioned continuum-level models were carried out recently, it is difficult to 
unambiguously define the interfacial properties of grain boundaries, and the conventional 
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elastic-plastic theory is also difficult to characterize the size effects of intragranular inelastic 
deformation with various grain sizes in nano/ultra-fine grain sizes regime. In the present research, the 
conventional theory of mechanism-based strain gradient plasticity (CMSG) [18] is used to simulate 
the strengthening response and size effects of the inelastic deformation in grain interiors, and a 
cohesive interface model is used to simulate both the grain-boundary separating and the intergranular 
fracture process. Particular attention is focused on the influence of both grain interiors and grain 
boundary properties on the overall strength and ductility of the nc/ufc metals. Finally, applications of 
the model to describe the deformation and failure response of nickel polycrystalline with various grain 
sizes are carried out. 

Constitutive laws and computational model 

The CMSG constitutive law for intragranular inelastic deformation. To model intragranular 
inelastic deformation of polycrystalline aggregates at small scales approaching the nanoscale, due to 
the grain size effect, the mechanical behaviors of the grain interiors can not well be described by using 
the classical elastic-plastic theory. So in the present research, the CMSG theory presented by Huang et 
al [18] will be used. Unlike the general strain gradient plasticity theories[19, 20], the CMSG theory is 
a lower-order theory which does not involve high-order stresses or additional boundary conditions, 
and therefore preserves the same theoretical structure as the classical theory except including a partial 
hardening due to strain gradient effect. Here a brief description of the CMSG constitutive relations 
and the corresponding finite element analysis are provided as follows. 

The CMSG constitutive relations incorporate Taylor dislocation model through the effective 
strain rate. For small dislocation density, Taylor dislocation model [21-22] gives the shear flow stress 
in terms of the dislocation density ρ by 

 

S Ga b bτ µ ρ αµ ρ ρ= = +  ,                                                                                                    (1) 

 
where µ is the shear modulus;b is the magnitude of the Burgers vector;α is an empirical coefficient 
around 0.3 depending on the material structures and characteristic. Sρ and Gρ are densities of 
statistically stored dislocations(SSD) and geometrically necessary dislocations (GND) [23-25], 
respectively. The former is accumulated by trapping each other in a random way, while the latter is 
introduced by Nye to ensure the compatibility of the nonuniform plastic deformation. The GND 
density is related to the effective plastic train gradient pη by 
 

p

G r
b

ηρ = .                                                                                                                               (2) 

 
where r is the Nye-factor to reflect the effect of crystallography on the distribution of GNDs and is 
around 1.90 for face-centered-cubic (fcc) polycrystals. While pη is effective plastic strain gradient. 

The tensile flow stress flowσ is related to the shear stressτ by 
 

p

flow SM M b r
b

ησ τ αµ ρ= = +
,                                                                                              (3) 

 
where M is Taylor factor which acts as an isotropic interpretation of the crystalline anisotropy at the 
continuum level, and M is about 3.06 for fcc metals [26-28]. Since the effective plastic strain 
gradient pη vanishes and flow stress p

flow Y ( )fσ σ ε= in uniaxial tension, the SSD density Sρ is 
determined from (3) as 
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Then the flow stress accounting for the nonuniform plastic deformation becomes  
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is the intrinsic material length in strain gradient plasticity, Yσ is the initial yield stress, and f is a 

non-dimensional function of plastic strain pε which takes the form 
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for a power-law hardening solid, E is the Young’s modulus, and � is the plastic work hardening 
exponent ( 0 1�≤ < ). 

Huang et al. (2004) [18] demonstrated that the power law visco-plastic model [29, 30] 
incorporating the strain gradient effects can be applicable to conventional power-law hardening if the 
rate-sensitivity exponent m is large ( 20m ≥ ). Then the plastic strain rate is expressed as 
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where 
2
3 ij ijε ε ε′ ′=& & &  is the effective strain rate and ijε ′& is the deviatoric strain rate.  

The constitutive relation in CMSG, which involves the conventional stress and strain only, can be 
expressed as give the stress-rate ijσ& in terms of the strain-rate as follows 
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where K is the bulk modulus of elasticity, ijε ′& is the deviatoric strain rate, e
3

2 ij ijσ σ σ′ ′= is the Von 

Mises effective stress, kkε& is the bulk strain rate, and ijδ is the Kronecker delta tensor. The effective 
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plastic strain gradient pη in CMSG is define in the same way as that in the higher-order MSG theory 
[31], and is given by 
 

p pdtη η= ∫ & , p p p1
4 ijk ijkη η η=& & & , p p p p

, , ,ijk ik j jk i ij kη ε ε ε= + −& & & & ,                                                            (10) 

 
where p

ijε& is the tensor of plastic strain rate. Since the CMSG theory does not involve the higher-order 

stress, equilibrium equations and traction boundary conditions remain the same as the conventional 
theories. 

 Observing (9), since the CMSG theory does not involve the higher-order stress, equilibrium 
equations and traction boundary conditions remain the same as the conventional theories. 

Generally speaking, when the strain gradient effect is considered, the conventional finite element 
method fails [20]. However the CMSG theory is a lower-order theory which does not involve the 
higher-order stress such that the governing equations are essentially the same as those in the classical 
plasticity. One can easily modify the existing finite element program to incorporate the plastic strain 
gradient effect approximately [32]. In the present research, we have implemented a 0C  
three-dimensional solid element incorporating the CMSG theory in the ABAQUS finite element 
program via its User-Material subroutine UMAT.   

Finite element method (FEM) and boundary conditions. To particularly study the mechanical 
behaviors of the nc/ufc materials, as shown in Fig.1(a), and to investigate how the competition of 
grain-boundary deformation with that in the grain interiors determines the observed macroscopic 
stress-strain response and the overall ductility of polycrystalline aggregates by various properties of 
grain boundaries and grain interiors. A regular quasi-three-dimensional representative volume 
element with taking into account of three dimensional effects is presented here. Fig.1(b) shows the 
schematic drawing of representative calculation model. The calculation model is consisted of seven 
idealized hexagon grains, and the diameter d of grain is the diameter of circumcircle of hexagon. As 
displayed in Fig.1(b), periodic boundary conditions are enforced along the four sides 
in 1 2y y coordinate plane[33]: 

 

4 112 11v v− = −u u u u                                                                                                                   (11) 

1 222 21v v− = −u u u u                                                                                                                   (12) 

3 2 4 1v v v v− = −u u u u                                                                                                                   (13) 
 

Here, iju is the displacement vector for any material point on the corresponding boundary ijΓ , and 

ivu the displacement vector for each vertex iv . Rigid body motions can be eliminated by requiring 

that 0
kv =u , for either { }1,2,4k ∈ . Otherwise, a displacement boundary condition Zu which considers 

the third dimensional effect is enforced in the 3y coordinate direction perpendicular to 1 2y y coordinate 
plane, assuming that the material geometry in z direction is also a periodic structure which has a 
finite-thickness.  

The cohesive interface model used in describing grain boundary fracture. The intergranular 
fracture process is described by using the cohesive interface model. Cohesive interface model was 
presented early in the literature of Barenblatt [34] and Dugdale [35] to model fracture more than 40 
years ago. In recent years, numerous cohesive interface model formulations have been widely 
presented and used to simulate fracture initiation and propagation [36-38], and the traction-separation 
relations of cohesive interface are extended to represent grain boundaries modeling the phenomena of 
grain-boundary sliding and separation [14, 15, 39]. In the current numerical study, a mixed-mode  
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Fig. 1 (a) A representative cell photo of ultra-fine polycrystalline metal [3]; (b) Computational 
model and periodic boundary conditions 
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Fig. 2 (a) Illustration of mixed-mode response in cohesive interface model; (b) 
Traction-separation relation for a mixed mode loading situation 

  
cohesive interface model developed by Turon et al. [40] has been used to describe the initiation and 
evolution of intergranular cracks without arbitrarily introducing initial cracks. In which the normal 
and shear components of traction or displacement across the interface are combined based on a certain 
mixed mode behavior. The schematic representation of the dependence of damage initiation and 
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evolution on the mode mix, for a traction-separation response with isotropic shear behavior is shown 
in Fig.2(a). The figure shows the traction on the vertical axis and the magnitudes of the normal and the 
shear separations along the two horizontal axes. The unshaded triangles in the two vertical coordinate 
planes represent the response under pure normal and pure shear deformation, respectively. All 
intermediate vertical planes (that contain the vertical axis) represent the damage response under 
mixed mode conditions with different mode mixes. To describe the evolution of damage under a 
combination of normal and shear deformation across the interface, it is useful to introduce an effective 
displacement defined as 
 

2 2 2
m n s tδ δ δ δ= + + .                                                                                                           (14) 

 
Where the represents the Macaulay bracket, is used to signify that a pure compressive deformation 

does not initiate damage. nδ , sδ and tδ represent the relative displacements when the deformation is 
either purely normal to the interface or purely in the first or the second shear direction respectively. 
The mixed-mode traction-separation relations with a linear damage evolution are illustrated in 
Fig.2(b). HereT is traction, 0

mδ is the critical separation effective displacement at damage initiation 

and 1T is corresponding critical traction, f
mδ is separation effective displacement at complete failure 

and cK is the initial separation stiffness of cohesive element. As shown in Fig.1(b), the separation 
process of grain boundaries between two hexagon grains is modeled by using the cohesive interface 
layers with zero thickness. 

Results and discussion 

Intergranular fracture affected by intragranular and interfacial material paramters. In this 
section, the comparative parameter studies of the overall strength and ductility of polycrystalline 
aggregates affected by the material parameters of grain boundaries and grain interiors with different 
grain sizes are performed. The overall stress-strain relation with parameter dependence normalized by 
the intragranular initial yield stress yσ and intrinsic material length l of grain interior can be expressed 

as follows 
 

f 0
c m m

y y y y

, , , ; , , ;
KE d T

F �
l l

δ δσ
ν ε

σ σ σ σ

 −
=   

 
,                                                                             (15) 

 
where the intragranular material parameters are Young’s modulus E , Poisson’s ratioν , initial yield 
stress yσ and plastic work hardening exponent � respectively. The interfacial parameters of grain 

boundary are traction T , initial separation stiffness cK , and the effective damage evolution 

displacement f 0
m m( )δ δ− of cohesive interface model. Here d is the grain diameter.  

The stress-strain curves of polycrystalline aggregates having various intragranular material elastic 
moduli E  with two grain sizes 00.1d l= and 0d l= (Here 0l is the intrinsic material length of grain 

interior when the intragranular elastic modulus 0E E= ) are presented in Fig.3. A clear dependence on 
the grain sizes and intragranular elastic modulus of overall strength and ductility was observed. As 
shown in Fig.3, the ultimate tensile stresses of polycrystalline aggregates increase with the 
intragranular elastic modulus increasing, whereas the global ductility is decreased simultaneously. 
And this phenomenon is more obvious with the grain size decreasing.   
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Fig. 3 The dependence of the stress-strain relations on different elastic moduli ( E ) of grain 
interior with several grain sizes ( 0/d l ) 

 
Fig.4 shows the dependence of the stress-strain relations on the intragranular plastic work 

hardening exponent �  for different grain sizes 0.1d l= and d l= .  From Fig.4, the overall ductility 
and strength of polycrystalline are sensitive to plastic work hardening exponent. When the exponent 
�  is small, the occurrence of intergranular fracture will be deferred greatly, but the effect of work 
hardening is not obvious. Furthermore, the grain size effect will be decreased while the grain interiors 
have bigger plastic work hardening exponent.  
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Fig. 4 The dependence of the stress-strain relations on different plastic work hardening exponent 
( � ) of grain interior with several grain sizes ( /d l ) 
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Fig. 5 The dependence of the stress-strain relations on variation ratio ( 1 / yT σ ) with several grain sizes 

( 0/d l ) 

 
Fig.5 shows the dependence of the stress-strain relations on ( 1 / yT σ ) with various grain sizes 

( 0.1d l= , l and10l ). Here ( 1 / yT σ ) is the ratio of critical separation stress of cohesive interface to 

initial yield stress of grain interior. The results show that the global strength and ductility of 
polycrystalline aggregates are very sensitive to the ratio ( 1 / yT σ ). The macroscopic ultimate tensile 

strength and ductility of polycrystalline greatly increase when the ratio 1 / 1.5yT σ = respect to 

1 / 0.5yT σ = , while the moderate strength and ductility are shown with 1 / 1.0yT σ = . Additionally the 

grain size effects in inelastic deformation are more obvious with the value of ratio 1 / yT σ  increasing. 

Furthermore, when the grain diameter d l≥ , the dependence of intergranular fracture on the grain size 
is gradually diminished, such as shown in Fig.5 with / 1.0d l =  and 10. While the ratio / 0.1d l = , the 
grain size effects in plastic flow can be observed obviously. All above means that the ratio 1 / yT σ is a 

critical control parameter for the competition of grain-boundary deformation with that in the grain 
interiors to define the global strength and ductility of polycrystalline aggregates. The intragranular 
elastic-plastic deformation would be dominant and the polycrystalline materials will present good 
ductility and high strength when 1 yT σ≥ . Otherwise the grain boundaries related slip and separation 

phenomena maybe begin to play an important role in the overall inelastic response of a polycrystalline 
material and a brittle fracture would be appearance for 1 yT σ< . In the nc/ufc metals, the 

dislocation-based slip processes in the grain interiors are restrained gradually while the intragranular 
initial yield stresses are getting higher with decreasing grain sizes. So improving the resistance of 
grain boundaries to intergranular fracture may be an effective method to improve the bulk properties. 
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Fig. 6 The dependence of the stress-strain relations on variation of damage evolution range 

(
f 0
m mδ δ− ) with several grain sizes ( /d l ) 

 

Fig.6 shows how the variation of damage evolution range (
f 0
m mδ δ− ) of cohesive interfacial 

model influences the overall mechanical response for a series of grain sizes. From Fig.6, the overall 
ductility and strength are both increased with increasing the damage evolution range. The contribution 
to overall ductility decreases with decreasing the grain sizes.  
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Fig. 7 The dependence of the stress-strain relations on different initial stiffness ( CK ) with uniform 

fracture energy release rate ( CG ) and invariable critical separation stress ( 1T ) of grain boundary 
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Fig. 8 The dependence of the stress-strain relations on several initial separation stress ( 1T ) with 

uniform fracture energy release rate ( CG ) and initial stiffness ( CK ) of grain boundary 
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Fig. 9 Schematic drawing of representative calculation model and boundary conditions of polycrystalline 
aggregates with initial microstructure 
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In Fig.7 and Fig.8, a uniform energy release rate of grain boundary fracture is considered with 

initial separation stress 1T  (Fig.7) and initial stiffness (Fig.8) fixed, respectively. The results show 

that the stress-strain relations are sensitive to the initial separation stress 1T  when the energy release 
rate of grain boundary fracture is fixed. From Fig.8, the intergranular fracture is greatly delayed with 
increasing initial separation stress 1T . When the 1T and energy release rate are fixed, different initial 
stiffness of grain boundaries hardly influence the strength and ductility (Fig.7). 

An application to nanocrystalline nickel. In a realistic physical sample of polycrystalline 
aggregates there are many factors which are relate to the initiation and propagation of intergranular 
fracture. The distribution of grain geometry and grain property is also an important factor. However, 
the geometry topology and material parameters of realistic polycrystalline are too complexity to be 
confirmed correctly. For the reasons of computational efficiency, a quasi-three-dimensional 
polycrystalline aggregate model which includes ten polygon grains is constructed by Voronoi 
tessellation method as shown in Fig.9. Periodic assumption is used to ensure the grain geometry is 
continuum and material parameters of grain interiors are uniform in the grains of each boundary of the 
opposite edges pair. Periodic boundary conditions taking into account the three dimensional effects 
are enforced on the cell mode.  
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Fig. 10 Comparison of experimental and computational results for uniaxial tension boundary 
condition with average grain size of 20nm.  

 
Once the geometry of representative cell model is generated, the material parameters of grain 

interiors and grain boundaries are assigned necessarily. In polycrystalline aggregates, upon being 
subjected to external tractions, develops a highly inhomogeneous state of internal stresses and 
additional stresses in the regions adjoining the grain boundaries specially, due to the elastic anisotropy 
of the individual grains. In the present study, the intragranular properties are allowed to vary from 
grain to grain but the individual grain is taken to be isotropic with different Young moduli, and 
parameters of cohesive interfacial model are the same for all grain boundaries in the sample.  

The values of the elastic stiffness parameters for FCC metal nickel are taken as [41] 

11 247GPaC = , 12 147GPaC = , 44 125GPaC = . 
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Thus the value of E  of each grain interiors is allowed to vary from the smallest elastic stiffness 
parameter 44C to the biggest 11C in the current calculation. When the grain diameter cd d≥ ( cd is a 
critical grain size below which the dislocations or partial dislocations dominated intragranular 
deformation mode are vanished, in nickel metals the value of cd is about ten nanometers [42]), the 
initial yield stresses of grain interiors are assumed to satisfy the formula [14] 

 

y

b
d

µσ ≈ ,                                                                                                                                (16) 

 
in which the ( )11 12 44 / 2C C Cµ = −  denoting the shear modulus, b is the magnitude of burgers 

vector, d is the grain diameter. Additional each of the yield stresses is allowed to vary 50MPa± in 
different grain interiors. The value of plastic work hardening exponent � is allowed to vary from 0.1 
to 0.2 in different grain interiors. The critical separation nominal stresses of grain boundaries are 
assumed to be same with the biggest initial yield stress of grain interiors, and the elastic stiffness 
parameters are assumed to be the same as the elastic properties for grain interiors. The damage 
evolution range is specified as several nano-meters. All these material parameters of each grain 
interiors and grain boundaries are listed in Table1 and Table2.  
 

Table 1. Material parameters of grain interiors in each grain of representative calculation model. 
 

 Grain1 Grain2 Grain3 Grain4 Grain5 Grain6 Grain7 Grain8 Grain9 Grain10 

E (GPa) 125 147 247 125 147 247 125 147 247 125 

yσ (MPa) 1150 1200 1250 1200 1250 1150 1250 1150 1200 1150 

� 0.1 0.15 0.2 0.1 0.15 0.2 0.1 0.15 0.2 0.1 

 
Table 2. Material parameters of cohesive interface model representing grain boundaries. 

 

1T  n
cK  s

cK  f 0
m mδ δ−  

1250 (MPa) 247 (GPa) 95 (GPa) 3 (nm) 

 
The comparison between numerical results and experimental data [43] with average grain 

diameter 20 nm  is shown in Fig.10. From Fig.10 the stress-strain curves calculated by finite element 
method agree well with the experimental data in trend. Although the real failure process in 
electro-deposited nickel polycrystalline with nano-scale grains is complicated. The computational 
model can characterize the experimentally observed failure trend to some extent [43-45].  

Conclusion remarks 

By using both the finite element method based on the CMSG theory and the cohesive interface 
constitutive relation, we have displayed the micro-scale plastic deformation characteristics in 
polycrystalline aggregates with nc/ufc grains. A systematically parametrical studies on the overall 
strength and ductility of polycrystalline aggregates considering both grain interiors and grain 
boundaries for different grain sizes have been performed. The interaction between intragranular 
plasticity and grain boundary separation has been investigated.  

It is worth noting that in the present research, several assumptions and simplifications are adopted, 
which should cause the deviation between calculation model result with experimental measurement. 
Firstly, the calculation model is a quasi-three-dimensional cell model and is assumed periodic 
structures in both y1y2 plane and normal direction (z-direction). Secondly, the distributions of the real 
grain sizes are very complicated, while in the present calculation model the distributions are assumed 
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regularly. Thirdly, in the present model, the selections of the input parameters for the grain boundary 
cohesive model and interiors are difficult to be defined correctly due to lacking of experimental data. 
Moreover, in order to understand the grain boundary behaviors which are usually characterized by the 
cohesive constitutive model, more efforts are still needed. 
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