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Abstract Passive flexibility was found to enhance propul-
sive efficiency in swimming animals. In this study, we nu-
merically investigate the roles of structural resonance and
hydrodynamic wake resonance in optimizing efficiency of
a flexible plunging foil. The results indicates that (1) opti-
mal efficiency is not necessarily achieved when the driving
frequency matches the structural eigenfrequency; (2) optimal
efficiency always occurs when the driving frequency matches
the wake resonant frequency of the time averaged velocity
profile. Thus, the underlying principle of efficient propul-
sion in flexible plunging foil is the hydrodynamic wake res-
onance, rather than the structural resonance. In addition, we
also found that whether the efficiency can be optimized at
the structural resonant point depends on the strength of the
leading edge vortex relative to that of the trailing edge vor-
tex. The result of this work provides new insights into the
role of passive flexibility in flapping-based propulsion.

Keywords Flexibility · Propulsive efficiency · Structural
resonance · Hydrodynamic wake resonance

1 Introduction

Wings or fins are the most commonplace structures used by
animals for thrust production. Large passive or active defor-
mation is often borne by these propulsive structures when
they flap in air or water [1–4]. Recently, it has been re-
ported that passive flexibility of wing/fin can result in the en-
hancement of thrust production or propulsive efficiency [5].
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In some works, the optimization of propulsive performance
due to flexibility was rationalized by the occurrence of struc-
tural harmonic or super-harmonic resonance [6]. In this re-
gard, however, conflicting results have been obtained. Other
researchers have found that the optimal performance was
achieved at a much lower flapping frequency than the first
structural eigenfrequency and the beneficial effect of flexi-
bility was explained by the formation of a streamlined foil
shape due to deformation [7].

In the study of flapping wings/fins, another interesting
topic in parallel with the aforesaid one is the connection be-
tween propulsive performance and wake structure. By using
a linear stability analysis of the time averaged wakes behind
a flapping-foil, Triantafyllou [8] proposed that the peak effi-
ciency was achieved when the flapping frequency coincided
with the hydrodynamic wake resonant frequency (i.e., the
frequency for maximum spatial growth of instabilities in the
averaged velocity profile). Under this principle, the Strouhal
number for efficient propulsion was found to lie in the nar-
row range of 0.2–0.4. Recently, the validity of this principle
has also been demonstrated in flapping-foils with prescribed
active deformations [9] and pitching foils with passive flexi-
bility [10]. In this work, we conduct numerical simulation to
compute the propulsive efficiency in a flexible foil which is
driven at its leading edge by a plunging motion and is placed
in a uniform oncoming flow. Linear analysis is conducted to
find the wake resonance frequency. We will show that for a
flexible plunging foil, the wake hydrodynamic resonance is
the underlying principle for efficient propulsion, whereas the
structural resonance is not the necessary condition for opti-
mizing the efficiency.

The rest of the paper is arranged as follows. In Sect. 2,
we introduce the model problem and numerical methods.
In Sect. 3.1, the relation between the structural resonance
and the propulsive efficiency is explored. In Sect. 3.2, we
study the relation between the wake hydrodynamic reso-
nance and the propulsive efficiency. Finally, some conclu-
sions are drawn in Sect. 4.
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2 Model problem and numerical methods

We consider the interaction between an inextensible flexible
filament and a two-dimensional, incompressible and laminar
flow. The leading-edge of the filament is driven by a har-
monic plunging motion and is also clamped (see Fig. 1). The
filament is placed in the free stream with a uniform velocity.

Fig. 1 Schematic depiction of the model problem

2.1 Governing equations

The motions of the fluid and the filament are governed by the
Navier–Stokes equations coupled with a geometrically non-
linear structural equation [11–13]
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where uuu, p, and XXX = (X(1), X(2)) are the fluid velocity, fluid
pressure and displacement of the filament respectively; fff and
FFF are the Eulerian and Lagrangian force densities which rep-
resent the interactions between the fluid and the structure.

Equations (1)–(4) are written in a dimensionless form,
which is obtained by scaling space and time with the filament
length L and L/U∞ respectively, where U∞ is the oncoming
flow velocity. The dimensionless numbers in Eqs. (1)–(4)
are: Re = ρfU∞L/μ, γ = B/(ρfU2∞L3), ζ = T/(ρfU2∞L),
β = ρs/(ρfL), which are the Reynolds number, dimension-
less bending rigidity, dimensionless tension and mass ratio,
respectively. Here ρf and ρs are the densities of the fluid and
the filament respectively; μ is the dynamic viscosity of the
fluid; B and T are the dimensional bending rigidity and ten-
sion of the filament.

By following the same scaling procedure, the dimen-
sionless form of the prescribed position of the leading-edge

becomes ȳ(t) =
1
2

A cos(2kt). Here A = A/L is the dimen-

sionless plunging amplitude (with A being the dimensional
plunging amplitude). k = (π f L)/U∞ is the reduced fre-
quency.

2.2 Numerical method for FSI simulation

The simulations are performed by using the immersed
boundary method for the fluid flow and the finite difference
method for the motion of the structure. The inextensibil-
ity condition of the filament is enforced by solving a Pois-
son equation for ζ [11–13]. Extensive validations of the im-
mersed boundary solver can be found in Ref. [14] (on flows
past rigid objects) and [15] (on FSI problems). For the sim-
ulations of this work, a rectangular computational domain of
size 20L × 12L used, with the grid width being 0.02L. The
time steps are chosen such that the maximum CFL number
never exceeds 0.5. Systematic studies have been conducted
to ensure mesh convergence of the solutions obtained.

The boundary and initial conditions for the FSI sim-
ulation are as follows. At s = 0 (the leading-edge of the
structure), a boundary condition which blends the vertically
forced oscillation and the clamped condition is enforced, i.e.,

XXX = (0, ȳ(t))T, (5)

∂XXX
∂s
= (1, 0)T. (6)

At s = 1 (the trailing-edge of the structure), a free-end con-
dition is imposed, i.e.,

∂2XXX
∂s2
= (0, 0)T, (7)

∂3XXX
∂s3
= (0, 0)T. (8)

For the fluid, the zero-velocity condition is enforced at the
four outer boundaries. The motions of the fluid and the struc-
ture are coupled at their interface by the no-slip condition
and the relation between the Lagrangian and Eulerian force
densities, i.e.,∫

V
uuu(xxx, t)δ(xxx − XXX)dxxx = dXXX/dt, (9)

fff (xxx, t) =
∫

s
FFF(XXX(s), t)δ(xxx − XXX(s))ds, (10)

where δ is the discrete delta function. The initial condition
for the structure is

XXX(s, 0) = (s, A)T, (11)

dXXX/dt(s, 0) = (0, 0)T. (12)

A uniform velocity everywhere is the initial condition for the
fluid.

2.3 Numerical method for linear stability analysis

In the linear spatial stability analysis, first an one-
dimensional (locally parallel) base flow, UUU = [U(y), 0], is
identified [8]. Then a small perturbation is superimposed
onto the base flow and the resultant velocity is substituted
into the Navier–Stokes equations. After linearization and as-
suming a travelling wave form for the perturbation, the Orr-
Sommerfeld (O-S) equation for the complex amplitude of the
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velocity perturbation (or equivalently, stream function per-
turbation) can be derived. The O-S equation for the com-
plex amplitude, ϕ(y), of the stream function perturbation,
ψ(x, y, t), can be written as (with D = d/dy)

{(D2 − α2)2 − iRe[(αU − ω)(D2 − α2) − αU ′′]}ϕ = 0, (13)

where

ψ(x, y, t) = ϕ(y)ei(αx−ωt), (14)

u(x, y, t) =
∂ψ

∂y
, (15)

v(x, y, t) = −∂ψ
∂x
. (16)

Here uuu = (u, v) is the velocity perturbation. α = ω/c is
the complex wavenumber, where c is the complex phase ve-
locity. For the spatial stability analysis, the frequency ω is
real [16]. If the imaginary part of the complex wavenumber
becomes negative, the disturbance will grow in space (down-
stream of the perturbations). The spatial stability problem
forms a nonlinear eigenvalue problem (with the eigenvalues
being α and the associated eigenmodes being ϕ).

To solve the nonlinear eigenvalue problem, the O-S
equation is expanded in powers of α and then discretized.
The discretized nonlinear eigenvalue problem can be casted
into the companion matrix form [17, 18] to form a linear
eigenvalue problem which can be solved using standard tech-
niques. The resulting eigenvalue problem for α is then solved
by choosing ω to be real numbers. Two hundred evenly
spaced points were used to represent the velocity profile
U(y). Horizontal velocities at these points were computed
by interpolations. No significant difference in the solution of
the Orr-Sommerfeld equation was found by using 400 points.

We validate our O-S solver with a benchmark Poiseuille
flow calculated by Bridges and Morris [18]. By choosing
ω = 0.26 and Re = 6 000, we plot the eigenvalues of α in
Fig. 2, which agree very well with the results in Ref. [18].
The most unstable seven modes are listed and compared in
Table 1.

Fig. 2 Eigenvalues on complex α plane for a Poiseuille flow

Table 1 Seven most unstable modes compared with
Bridges and Morris [18]

Mode Bridges and Morris [18] Present

1 1.004 70+0.000 86i 1.004 70+0.000 86i

2 0.283 23+0.025 38i 0.283 23+0.025 38i

3 0.301 65+0.048 86i 0.301 65+0.048 86i

4 0.319 75+0.075 32i 0.319 75+0.075 32i

5 0.337 45+0.104 92i 0.337 45+0.104 92i

6 0.354 56+0.137 82i 0.354 56+0.137 82i

7 0.370 90+0.174 25i 0.370 90+0.174 25i

3 Result and discussions

There are five control parameters in this problem: Re, A, k,
β, and γ. In this work, simulations are conducted by fixing
the Reynolds number to 200 while choosing different com-
binations of relative amplitude and mass ratio.

Some important physical quantities used to character-
ize the propulsive performance and vortex shedding of the
plunging filament are defined as follows. The effective am-
plitude Aeff is defined as the peak-to-peak amplitude mea-
sured at the trailing-edge and the amplitude ratio is defined
as Aeff/A. The (dimensionless) averaged thrust F̄T is defined
as the average thrust evaluated when periodicity is reached

F̄T =
1
T0

∫ T0

0
F(1)dt, (17)

where T0 = π/k is the (dimensionless) period of the plung-
ing motion. The Strouhal number based on the leading-edge
amplitude is defined as

S tA = ( f A)/U∞ = (kA)/π. (18)

Similarly, the Strouhal number based on trailing-edge ampli-
tude is defined as

S t∗A = ( f Aeff)/U∞ = (kA/π)(Aeff/A). (19)

The time-averaged power input Pin (which is needed for ac-
tuating the plunging motion), can be computed by

Pin =
1
T0

∫ T0

0
F(2)ẏ(t)dt, (20)

where F(2) is the total vertical force exerted on the filament.
Lastly, the propulsive efficiency in the filament is defined as

η = F̄T U∞/Pin. (21)

The values of the some parameters used in the simulation
are listed in Table 2. In this work, the Strouhal number is
set to 0.2, which lies in the region of optimized efficiency
for rigid flapping foils. It should be noted that the current
stability analysis can only be applied to one-dimensional
base flow. This selection of Strouhal number also avoids the
occurrence of oblique wakes (which are intrinsically two-
dimensional) [13].
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Table 2 Values of some parameters used in the simulations

Series Re A β γ k S tA

A 200 0.2 2.0 10−1–104 π 0.2

B 200 0.4 0.2 10−2–104 π/2 0.2

3.1 Role of structural resonance in optimizing efficiency

In this section, we will explore the role of structural reso-
nance (between the forcing and the natural frequency) in op-
timizing efficiency.

First, we define the first frequency ratio, ω = ωf/ω1 =

2π f /ω1, where ωf is the driving angular frequency at the
leading edge and ω1 is the first natural angular frequency
of the system. For the cases of large mass ratios (where
the influence of outside fluid can be neglected), the natu-
ral frequencies of the system are approximated by those of
a clamped-free elastic sheet in vacuum [12]. For such cases
(e.g. those in series A), ω1 is calculated analytically by

ω1 = k2
1

U∞
L

(
γ

β

)1/2
, (22)

with

1 + cosh k1 cos k1 = 0. (23)

Thus, the reduced frequency becomes

ω =
2π

k2
1

f L
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(
β

γ
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=

1

k2
1

1

A

(
β

γ

)1/2
. (24)

However, for the cases of small mass ratios (such as those in
series B), the natural frequencies of the system can be signif-
icantly modified due to the presence of outside flow. In this
work, we use the first natural frequency of a passive elastic
sheet in axial flow as a better approximation to that of the
current system. An inviscid “vortex sheet” representation of
the wake is then used to compute the natural frequencyω1 of
the system [12].

The evolution of the normalized efficiency with increas-
ing reduced forcing frequency is shown in Fig. 3. It is found
that the optimal efficiency is not necessarily achieved at the
place where the driving frequency matches the first natural
frequency. More specifically, in series A (where the mass ra-
tio is larger and the flapping amplitude is smaller), the opti-
mal efficiency occurs at the resonant point; whereas in series
B (where the mass ratio is smaller and the flapping amplitude
is larger), the optimal efficiency occurs at the first frequency
ratio 0.54, which is much lower than the resonant point.

It is well known that the propulsive performance of a
flapping foil is closely associated with the strength of the
vortices shed into the wake. To rationalize the phenomenon
above, we investigate the variation of vortex strength with
increasing reduced forcing frequency. The vortex strength is
quantified by using the circulation [13]. First, the center of
vortex is defined as the location of maximum vorticity mag-
nitude. The circulation is then calculated by using the vor-
ticity area integration in a rectangular area surrounding the

vortex center. The size of the integration is determined by
using Gaussian fits e(−x2

i /σ
2
i ) along the vertical and horizontal

axes centered at the positions of the maxima vorticity mag-
nitude. The size of the vortex along the x- and y-direction
are then defined as 2σi.

Fig. 3 The normalized efficiency as a function of the first frequency
ratio. The efficiency is normalized by the value obtained in the cor-
responding rigid foil

The vortex strength as a function of the first frequency
ratio is plotted in Figs. 4 and 5, for series A and B, respec-
tively. From the simulations we know that the two major
contributions of the vorticity shed into the wake are the lead-
ing edge vortex and the trailing edge vortex. Later, we will
show that whether the optimal efficiency occurs at the reso-
nant point depends on the strength of the trailing edge vortex
relative to that of the leading edge vortex. Since the trail-
ing edge amplitude is a good indicator of strength of trail-
ing edge vortex, for reference purpose, the variation of the
trailing edge amplitude with increasing reduced forcing fre-
quency is also plotted in these two figures.

From Fig. 4, it is found that in series A, both the vortex
intensity and the trailing edge amplitude reach their peaks
at the structural resonance point. For this series of cases, the
dominating effect of increasing flexibility is the enhancement
of trailing edge flapping amplitude. The increase in trailing
edge flapping amplitude results in the increase of vorticity
contribution from the trailing edge vortex to the wake vortex
intensity. (For series A, the comparison of two wake vor-
tex structures, one produced by a very rigid filament and the
other produced by a filament at the optimized flexibility, is
shown in Fig. 6.) Since the contribution from the trailing
edge vortex dominates the wake vortex intensity, the wake
vortex intensity is maximized at the resonant point, where
the trailing edge amplitude is maximized. Higher vortex in-
tensity in the wake can induce higher jet velocity, which, in
turn, increases the thrust and the efficiency.
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Fig. 4 The normalized trailing edge amplitude and vortex intensity
as a function of the first frequency ratio for series A. All quantities
are normalized by the values obtained in the corresponding rigid
foil

Fig. 5 Wake vortex structures for two cases in series A. a γ = 1 000
(very rigid filament); b The flexibility which optimizes the effi-
ciency

Fig. 6 The normalized trailing edge amplitude and vortex intensity
as a function of the first frequency ratio for series B. All quantities
are normalized by the values obtained in the corresponding rigid
foil

From Fig. 6, it is found that in series B, the trailing edge
amplitude still reaches its peak near the structural resonance
point, however, no such behavior is observed in the wake
vortex intensity. For this series of cases, the dominating
effect of increasing flexibility is the weakening of leading
edge separation. This can be explained by the formation of
a streamlined foil shape as a result of deformation [13]. The
weakening of leading edge separation results in the reduction
of vorticity contribution from the leading edge vortex to the
wake vortex intensity. (For series B, the comparison of two
wake vortex structures, one produced by a very rigid filament
and the other produced by a filament at the optimized flex-
ibility, is shown in Fig. 7.) Due to the fact that the trailing
edge flapping velocity in Fig. 7b increases slightly if com-
pared with that in Fig. 7a, it can be inferred that the decrease
of wake vortex intensity in Fig. 7b can not be linked with the
vorticity production near the trailing edge and must be asso-
ciated with the decrease of vorticity production at the leading
edge. From this figure, we also found that at the reduced fre-
quency of 0.54, where the optimized efficiency is achieved,
the vortex intensity is minimized. The connection between
the minimization of vortex intensity and the optimization of
efficiency can be rationalized by the fact that the weakening
of leading edge separation results in the reduction in input
power. Although the decrease of wake vortex intensity may
also reduce the thrust production (the thrust for the case in
Fig. 7b is only 80% of that in Fig. 7a), since in series B the
former effect is dominating, the efficiency is still enhanced.

Fig. 7 Wake vortex structures for two cases in series B. a γ = 500
(very rigid filament); b The flexibility which optimizes the effi-
ciency

3.2 Role of wake resonance in optimizing efficiency

We define the wake resonance frequency as ωwake, which is
determined from the most unstable spatial mode for the av-
erage horizontal velocity profiles. These velocity profiles
are calculated at one chord length downstream of the trail-
ing edge, where the vertical velocity components are negli-
gibly small. First, the spatial growth rate of the most unstable
mode (the most negative imaginary part of the wave number)
is computed as a function of real frequency. The frequency
corresponding to the maximum spatial amplification is then
determined. Figure 8 shows the relationship between the sec-
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Fig. 8 The normalized efficiency as a function of the first frequency
ratio and wake resonance frequency. The efficiency is normalized
by the value obtained in the corresponding rigid foil

ond frequency ratio,ωf/ωwake, and the normalized efficiency,
for each case in series A and B.

From Fig. 8, it is found that for both series A and series
B, a local peak in efficiency occurs when the driving fre-
quency matches the wake resonance frequency. Thus we be-
lieve that the underlying principle for efficient propulsion in
flexible plunging foil is the hydrodynamic wake resonance,
rather than the structural resonance. This finding is consis-
tent with that in the experimental study on flexible pitching
foils [10]. The present study provides a further support that
the wake resonance principle is valid for both rigid and flex-
ible propulsors.

It was also reported in Ref. [10] that there exists an opti-
mal flexibility which globally maximizes the efficiency. This
optimal flexibility can be reached by tuning the structural
resonant frequency to the wake resonant frequency. In other
words, the globally optimized efficiency can be achieved
when ωf = ωwake = ω1. In the present study, we confirm
that the maximal efficiency for series A (where the aforesaid
condition is met) is higher than that for series B (where the
aforesaid condition is not met). However, further investiga-
tion is still needed to verify whether the optimal flexibility
for series A is indeed the flexibility which globally maxi-
mizes the efficiency.

4 Conclusions

To investigate the influence of structural resonance and hy-
drodynamic wake resonance on the efficiency of a flexible
propulsor, we consider a simplified problem in which the
two-dimensional laminar flow interacts with a plunging fil-
ament. The control parameters in the model problem are:
the flapping Reynolds number Re, the dimensionless oscil-
lating amplitude A , the mass ratio β, the dimensionless driv-
ing frequency k and the dimensionless bending rigidity γ. In
this study, we fix the Reynolds number to 200 and consider
two different combinations of dimensionless oscillating am-
plitude, mass ratio, and dimensionless driving frequency. For

each combination aforesaid, we perform a series of simula-
tions by varying the dimensionless bending rigidity within a
certain range while keeping other parameters unchanged.

It is shown that for the two series of cases studied, the
optimal efficiency is not necessarily achieved when the driv-
ing frequency matches the structural resonance frequency.
When there is little leading edge separation, the optimized
efficiency occurs at the structural resonant point. However,
when there exists substantial leading edge separation, the
optimized efficiency can occur when the driving frequency
is much lower than the structural resonance frequency. On
the other hand, for both series of cases, it is found that the
optimal efficiency is always achieved when the driving fre-
quency is close to the wake resonance frequency. This result
provides the further support that the hydrodynamic wake res-
onance principle is also valid in flexible propulsors.
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