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Abstract Because of the interaction between film and sub-
strate, the film buckling stress can vary significantly, depend-
ing on the delamination geometry, the film and substrate me-
chanical properties. The Mexican hat effect indicates such
interaction. An analytical method is presented, and related
dimensional analysis shows that a single dimensionless pa-
rameter can effectively evaluate the effect.

Keywords Buckling · Delamination· Elastic foundation·
Thin film · Compliant substrate

1 Introduction

For a freestanding thin film with clamped-clamped bound-
ary conditions and a length of 2b, the buckling load (Pc−c) is
given as follows [1–3]

Pc−c = 4π2
E∗f I

(2b)2
= π2 E∗f I

b2
, (1)

where E∗f is the effective Young’s modulus of the film;
E∗f = Ef for a beam structure andE∗f = Ef/(1 − ν2f ) for a
thin plate structure [1, 2];Ef and νf are the film Young’s
modulus and Poisson’s ratio.I = ct3/12 (c andt are the film
width and thickness, respectively). Equation (1) corresponds
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to the buckling scenario shown in Fig. 1a, in which there is
no film/substrate interaction. Mathematically, the substrate
Young’s modulus (Es) and Poisson’s ratio (νs) have no role
in the above equation. The studies on a ruck in a rug [4, 5]
and a blister buckling [6] fall into this category, in which
the substrate is (implicitly) assumed rigid and the clamped-
clamped boundary conditions apply. However, recent stud-
ies [1–3] show that the thin film delamination buckling load
can be much lower than what Eq. (1) predicts, especially for
the case of a hard film on a soft substrate. When the elas-
tic deformation of the substrate is taken into account, the
film/substrate bump-like deformation profile, as shown in
Fig. 1b, resembles a Mexican hat and is often analyzed by
the so-called Mexican hat wavelet decomposition [2]. The
boundary conditions at the delamination edges are essential
for the buckling patterns [6]. The clamped-clamped bound-
ary conditions shown in Fig. 1a requires both the displace-
ment and the rotation at the delamination edge to be zero. In
contrast, Yu and Hutchinson’s analysis [3] is based on (the
assumption of) nonzero displacement and rotation at the de-
lamination edge; the clamped-clamped boundary conditions
are thus violated, which leads to a lower buckling load. For a
Mexican hat deformation shape, the atomic force microscope
(AFM) measurement and finite element analysis (FEA) [2]
show that both the displacement and the rotation are nonzero
at the delamination edge. Yu and Hutchinson’s free body
diagram analysis is on the delamination edge and only an
implicit solution can be obtained [3]. Although FEA can
provide an overall analysis on this Mexican hat effect [1, 2],
a great deal of insights can be gained through an analyti-
cal solution. This study shows that a dimensionless number
defined asB = 1.2(b/t)(E∗s/E

∗
f )1/3, which incorporates both

delamination geometry and film/substrate mechanical prop-
erties, is the unique parameter responsible for the Mexican
hat effect on the delamination buckling load. As the elastic
foundation model is used in this study, the limitations on the
model are also discussed.
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Fig. 1 aThe buckling shape of a clamped-clamped beam/plate (2b
is the delamination width);b The Mexican hat buckling shape (δ1
and δ2 are the amplitudes of the delaminated and bonded zones,
respectively);c The concomitant buckling and wrinkling (λ is the
wrinkling wavelength)

2 Model development

As shown in Fig. 1, the film out-of-plane displacement,w, is
divided into the following two parts [7]

w =

w1, −b 6 x 6 b,

w2, |x| > b,
(2)

wherew1 andw2 are the displacements in the delaminated
and the bonded zones, respectively, 2b is the delamination
length, which can be caused by a pre-existing interfacial flaw
or debonding by residual/external loading [1, 8]. The poten-
tial energy of the system is given as follows [9]

U =
∫ b

−b

[E∗f I

2

w′′1
2

1− w′1
2
+ N
(√

1− w′1
2 − 1
)]

dx

+

∫ −b

−∞

[E∗f I

2

w′′2
2

1− w′2
2
+ N
(√

1− w′2
2 − 1
)
+

1
2

kw2
]
dx

+

∫ ∞
b

[E∗f I

2

w′′2
2

1− w′2
2
+N
(√

1− w′2
2−1
)
+

1
2

kw2
]
dx, (3)

where ()′ = d/dx. N is the compression load applied on the
thin film. The interaction between the film and the substrate
is modeled as an elastic foundation andk is the elastic foun-
dation modulus, which is given as follows [10]

k = 0.71E∗s

( E∗sc4

16E∗f I

)1/3
, (4)

whereE∗s is the effective Young’s modulus of the substrate.
Using the following expansions

1

1− w′2
= 1+ w′2 + w′4 + · · · ,√

1− w′2
2 = 1−

1
2

w′2 −
1
8

w′4 − · · · ,

(5)

the above potential energy,U, can be approximated as

U =
∫ b

−b

[E∗f I

2
w′′1

2(1+ w′1
2) − N

(1
2

w′1
2
+

1
8

w′1
4
)]

dx

+

∫ −b

−∞

[E∗f I

2
w′′2

2(1+ w′2
2) − N

(1
2

w′2
2
+

1
8

w′2
4
)

+
1
2

kw2
2

]
dx+

∫ ∞
b

[E∗f I

2
w′′2

2(1+ w′2
2)

−N
(1
2

w′2
2
+

1
8

w′2
4
)
+

1
2

kw2
2

]
dx. (6)

Here the film in-plane displacement, which can have sig-
nificant impacts on the film stretching energy in the post-
buckling region [6, 11], is not included. This study focuses
only on the buckling, on which the in-plane displacement is
shown to have a minor influence [1]. The finite elasticity ef-
fect stands out only in the post-buckling region with (very)
large deformation [12, 13]. By applying the principle of vir-
tual work, i.e.,δU = 0, the following governing equations
are derived

E∗f I [w′′′′1 (1+ w′1
2) + 4w′′′1 w′′1 w′1 + w′′1

3]

+Nw′′1

(
1+

3
2

w′1
2
)
= 0, −b 6 x 6 b,

E∗f I [w′′′′2 (1+ w′2
2) + 4w′′′2 w′′2 w′2 + w′′2

3]

+Nw′′2

(
1+

3
2

w′2
2
)
+ kw2 = 0, |x| > b.

(7)

The linearized form of Eq. (7) is as follows

E∗f Iw′′′′1 + Nw′′1 = 0, −b 6 x 6 b,

E∗f Iw′′′′2 + Nw′′2 + kw2 = 0, |x| > b.
(8)

Here N > 0 indicates compression. The following nondi-
mensionalizaton scheme is introduced

ξ = r/a, W = w/a, B = b/a, ∆2 =
N√

4E∗f Ik
. (9)

Here a = 4
√

4E∗f I/k is called by Biot as “a fundamental
length” for a beam resting on an elastic foundation [10],
which is also the length used to evaluate the effect of beam
bending on the contact [14]. Wagner and Vella [7] defined a
length aslw = 4

√
E∗f I/(ρgc) (ρ, g, andc are the fluid density,

gravity acceleration and rubber sheet width, respectively)
andlw is related with the wrinkling wavelength of an elastic
rubber sheet floating on a fluid. Becauseρgc in the Wagner
and Vella’s model is the effective elastic foundation modulus
k of a liquid [7], lw is different froma only by a factor of

√
2.

By referring to Eq. (4),a is found to be

a =
4

√
4E∗f I

k
≈ 0.83t

(E∗f
E∗s

)1/3
. (10)
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Equation (8) is now nondimensionalized as

1
4

W1ξξξξ + ∆
2W1ξξ = 0, −B 6 ξ 6 B,

1
4

W2ξξξξ + ∆
2W2ξξ +W2 = 0, |ξ| > B,

(11)

where ( ),ξ = d/dξ and∆2 is the dimensionless compression
defined in Eq. (9). The solutions to Eq. (11) are given as fol-
lows [15]

W1 = A1 cos(r1ξ) + B1 sin(r1ξ) +C1ξ + D1,

−B 6 ξ 6 B,

W2 = A2e−|r2ξ| cos(r3ξ) + B2e−|r2ξ| sin(|r3ξ|)

+C2e|r2ξ| cos(r3ξ) + D2e|r2ξ| sin(|r3ξ|),

|ξ| > B.

(12)

Here r1 = 2∆ (∆ > 0), r2 =
√

2(1− ∆2), and r3 =√
2(1+ ∆2). Ai , Bi , Ci , andDi (i = 1, 2) are the constants

to be determined. The above solution forms are based on the
assumption of∆2 < 1, whose validity will be discussed later.
The coordinate system is shown in Fig. 1b. The symmetry
requirement forW1 [1, 7, 16, 17] and the condition thatW2

needs to be finite whenξ approaches infinity give the fol-
lowing solutions

W1 = A1 cos(r1ξ) + D1,

−B 6 ξ 6 B,

W2 = A2e−|r2ξ| cos(r3ξ) + B2e−|r2ξ| sin(|r3ξ|),

|ξ| > B.

(13)

At ξ = B, the following matching conditions need to be sat-
isfied [7, 17–19], which is required to ensure the continuity
of displacement, slope, and moment.

W1(B) =W2(B),

W1ξ(B) =W2ξ(B),

W1ξξ(B) =W2ξξ(B).

(14)

Actually the matching conditions should also contain the
continuity of shear force, i.e.,W1ξξξ(B) = W2ξξξ(B) [7, 17–
19]. However, as the film is modeled as an infinite one,
two terms inW2 which result in infinite displacement are
tossed away. Therefore, only three matching conditions are
required [20]. Furthermore, it is not difficult to verify that
once those matching conditions of Eq. (14) are satisfied, the
shear force is continuous. By applying the above matching
conditions, Eq. (13) now becomes

W1 = A1[cos(r1ξ) + f7],

−B 6 ξ 6 B,

W2 = A1e−r2|ξ|[ f8 cos(r3ξ) + f9 sin(|r3ξ|)],

|ξ| > B.

(15)

Now there is only one unknown constant,A1, f7, f8, and

f9 are the parameters given in Appendix. By substituting
Eq. (15) into Eq. (6) and using the symmetry condition, the
system potential energy is now given as follows

Π =
Ua
E∗f I
= A4

1(R1 + R2) + A2
1(S1 + S2), (16)

whereΠ is the dimensionless potential energy.R1, R2, and
S1, S2 are the parameters given in Appendix.A1 is deter-
mined by the energy minimization, i.e.,∂Π/∂A1 = 0 [17],
which leads to the following equation for the buckling anal-
ysis

A1[2(R1 + R2)A2
1 + S1 + S2] = 0. (17)

When (S1 + S2)/[2(R1 + R2)] > 0, A1 = 0 is the only
solution in the real domain; (S1+S2)/[2(R1+R2)] < 0 corre-
sponds to three solutions. (S1 +S2)/[2(R1 +R2)] = 0 is thus
the equation for us to tell whether the buckling occurs. For a
given B, R1, R2, andS1, S2 are dependent only on∆, as in-
dicated in Appendix. Therefore,B is the only dimensionless
parameter which has impacts on the dimensionless buckling
load (∆2

c). From Eqs. (9) and (10),B is derived as

B =
b
a
=

b
0.83t

(E∗f
E∗s

)−1/3

= 1.2
b
t

(E∗s
E∗f

)1/3
. (18)

3 Results and discussion

The dimensionless buckling load of a clamped-clamped thin
film is given as follows

∆2
c−c =

Pc−c√
4E∗f Ik

=
π2

4B2
, (19)

Pc−c is the (dimensional) buckling load as given in Eq. (1).
The dimensionless buckling load (∆2

c) is derived from
Eq. (17) by setting (S1 + S2)/2(R1 + R2) = 0. Figure 2 plots
the variation of ratio∆2

c/∆
2
c−c as a function ofB. As B in-

creases, the ratio monotonically approaches to 1. In Parry’s
FEA computation [2], a Nickel film withEf = 204 GPa and
νf = 0.312 was deposited on a substrate, whose mechanical
properties varied from a polycarbonate withEs = 2.4 GPa
and νs = 0.37 to a rigid one withEs = ∞. For a rigid
substrate, the film buckling stress on a rigid substrate can
be derived from Eq. (1) asσc−c = π

2E∗f (t/b)2/12. For
σc−c = 0.82 GPa [2], we can find thatb/t ≈ 15. For this
fixedb/t = 15, Parry et al. [2] used the first Dundurs’ elastic
mismatch parameter defined asαD = (E∗f − E∗s)/(E∗f + E∗s),
which varies from 0.98 (Nickel film on polycarbonate sub-
strate) to−1 (rigid substrate), to study the buckling stress
variation. As the first Dundurs’ parameter varied from
αD = 0.98 to −1, which corresponds toB varying from
4.2 to infinity, Parry et al. showed a monotonic increase of
the buckling stress, which also asymptotically approached
σc−c. Particularly, atαD = 0.98 andb/t = 15 (correspond-
ing to B = 4.2), Parry’s buckling stress ratio is found to be
0.5/0.82 ≈ 0.6 and ours is∆2

c/∆
2
c−c ≈ 0.608. Here the buck-

ling load ratio is equivalent to the buckling stress ratio for
a fixed cross-section. Compared withB, αD only indicates
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the mechanical difference between the film and the substrate.
Yu and Hutchinson’s method [3] is essentially to model the
film/substrate interaction at the delamination edge by three
coupled springs [1, 21]. The spring stiffnesses are dependent
on b/t and two Dundurs’ parameters [3]. Because the sec-
ond Dundurs’ parameter plays a less important role than the
first one [8, 21] andE∗s/E

∗
f = (1− αD)/(1+ αD), the dimen-

sionless parameterB as given in Eq. (18) is in fact a com-
bined parameter of the geometry parameter ofb/t and the
elastic mismatch property of the first Dundurs’ parameter.
Mei et al. [8] usedb/t and E∗s/E

∗
f as two independent pa-

rameters to study the buckling stress of a delaminated thin
film, which shows the same asymptotic trend of the buckling
stress approachingσc−c. Here the amplitude ratio ofδ2/δ1
is used to characterize the Mexican hat effect. As shown in
Fig. 1b,δ1 andδ2 are the amplitudes of the delaminated and
the bonded parts, respectively. Figure 3 presents the ampli-
tude ratio ofδ2/δ1 as a function ofB, in which the buckling
shapes atB = 2 andB = 40 are also plotted for a compari-
son. The buckling shape is obtained from Eq. (13) by setting
∆ = ∆c. The ratio decreases rapidly and monotonically from
1/22 atB = 2 towards 0 asB increases. In comparison, the
AFM measurement yields a ratio of about 1/24 for the post-
buckling shape of a Nickel film on a polycarbonate substrate
(theB = 4.2 case) [2].

There is an important issue needed to be addressed
concerning the results presented above. As noticed in both
Figs. 2 and 3,B starts from 2. Because∆2 < 1 covers most
of practical problems in the buckling analysis [15], the solu-
tion form of Eq. (13) is derived by assuming∆2 < 1. How-
ever, Eq. (13) is incapable of analyzing the buckling of a
very hard film with a chunky delamination geometry on a
very soft substrate, i.e., the very smallB case. For exam-
ple, whenE∗f /E

∗
s = 1 000 andb/t = 10 [1], which corre-

sponds toB = 1.2, we can not find∆2
c in the load range of

0 < ∆2 < 1. According to the Yu–Hutchinson model [3], the
upper limit of the buckling load is∆2

c−c, which has already
been shown in Fig. 2. As the constraints at the delamination
edges relax from the clamped ones (zero displacement and
rotation) to the hinged ones (zero displacement and bend-
ing moment), the buckling load reaches the lower limit of
∆2

c−c/4 [8]. In Fig. 2, the buckling load is 42% of∆2
c−c at

B = 2. Our computation can not reach this lower limit of
∆2

c−c/4 because there is no solution for smallerB. The so-
lution form of Eq. (13) implicitly assumes that only delami-
nation buckling occurs and there is no wrinkling. However,
Mei et al. [8] showed that whenE∗s/E

∗
f is very small (less

than 10−3) with relatively smallb/t ratio (b/t = 5, 10, and
20, respectively), which corresponds to theB < 2 scenario,
the wrinkling load/stress is smaller than that of delamination
buckling. Therefore, wrinkling occurs before the delamina-
tion buckling, and the Yu-Hutchinson model becomes inap-
plicable [8], which implies that the lower limit is unphysical.
This is the reason why Eq. (13) fails to compute the delami-
nation buckling load whenB is very small.

Fig. 2 The critical loads ratio (∆2
c/∆

2
c−c) as a function ofB (∆2

c−c is
the dimensionless buckling load of a clamped-clamped beam/plate)

Fig. 3 The amplitude ratio (δ2/δ1) as a function ofB. The buckling
shapes atB = 2 andB = 40 are also plotted

It is also necessary for us to have some discussion on
the assumptions and limitations of the model. Firstly, the
reaction of substrate to thin film is modeled by the elastic
foundation model, which is dependent only on the local dis-
placement. In reality, the reaction depends on all displace-
ments inside the substrate as indicated by the integral equa-
tion of the half space model [22]. In other words, the thin
film geometry and buckling shape can influence the substrate
reaction and thusk [22]. For example, the elastic foundation
modulusk given in Eq. (4) is actually the one for a concen-
trated force acting on a substrate modeled as an elastic half
space [10]. When the film wrinkles with a sine shape shown
in Fig. 1c, the (effective) elastic foundation modulus is given
as follows [10, 17]

kw = πE∗s
c
λ
, (20)

whereλ = 2πt 3
√

E∗f /(3E∗s) is the wrinkling wavelength [1].
Compared with Eq. (4),k/kw ≈ 0.9, there is 10% difference.
There is some (minor) difference between the surface dis-
placements in the concentrated force loading case and the
Mexican hat deformation profile given by Eq. (13), and thus
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the elastic foundation modulus given by Eq. (4) is expected
to have some deviation from the exact one. Because an ar-
bitrary and continuous surface displacement can be decom-
posed into Fourier series and each Fourier term has an ef-
fective foundation modulus as described by Eq. (20), a more
accurate effectivek for the Mexican hat deformation profile
can be obtained by the method given by Biot [10]. However,
the foundation modulus difference is expected to be minor,
as corroborated by the excellent agreement of our computed
buckling loads with those computed by FEA [2]. As noticed
above, the foundation modulus difference between two sig-
nificantly different buckling shapes is relatively small. Fur-
thermore, the surface displacement due to a concentrated
load bears some resemblance to the Mexican hat shape: Both
decay rapidly with a rate proportional to e−x/a [10]. Sec-
ondly, if the compressive load increases further (in the post-
buckling region),∆2 can be larger than 1. When∆2 > 1, the
following solution form holds [15]

W1 = A1 cos(r1ξ) + B1 sin(r1ξ) +C1ξ + D1,

−B 6 ξ 6 B,

W2 = A2 cos(r2ξ) + B2 sin(|r2ξ|)

+C2 cos(r3ξ) + D2 sin(|r3ξ|),

|ξ| > B.

(21)

Now r1, r2, andr3 change accordingly tor1 = 2∆ (∆ > 0),

r2 =

√
2∆2 + 2

√
∆4 − 1 andr3 =

√
2∆2 − 2

√
∆4 − 1. As

for B = 1.2, which is the case where Eq. (13) fails to com-
pute the delamination buckling load as discussed above, FEA
gives the buckling shape of the Mexican hat and then the
shape of concomitant wrinkling and delamination buckling
in the post-buckling region [1]. In the concomitant scenario,
the Mexican hat deformation shape and sine wrinkling shape
coexist as shown in Fig. 1c. Clearly, the solution form of
Eq. (21) can not capture either of the buckling shapes. The
possible reason is the nonlinearities of the substrate, which
are mainly caused by the following three mechanisms. (1)
The nonlinear strain-displacement relation. Even before the
film buckling load is reached, the nonlinear Green-Lagrange
strain tensor due to the finite deformation effect needs to be
considered for a very soft substrate [2, 23]. (2) The nonlinear
stress-strain relation of the substrate, which is characterized
by the neo-Hookean constitutive law [23] or the bilinear [24]
and exponential [25] elastic foundation models. (3) The fact
that the substrate responds differently to tension and com-
pression [20, 26, 27]. With an increase of compression in
the post-buckling region, the nonlinear reaction of the sub-
strate can stand out and even become dominant on the for-
mation of buckling patterns [28, 29]. The elastic foundation
model adopted here is linear and fails to incorporate these
nonlinearities, which is responsible for the incapability of
Eq. (21) to capture either of the shapes in the post-buckling
region. Thirdly, because the elastic foundation model is in-
troduced to study the response of the foundation surface to

loads, it has the problem of accurately describing stresses
[26, 30, 31]. The post-buckling stresses around the delami-
nation edge are complex and have abrupt changes [1, 2]. Al-
though the model includes geometrical nonlinearity of the
film, it may become less accurate in the post-buckling re-
gion where there is a large compression, which requires an
elastica model [7]. In the post-buckling region, the film de-
formation and compression can drive further delamination of
the film, and mixed mode analysis of fracture mechanics is
required [3, 21]. Therefore, the model is advised not to be
used for the post-buckling analysis.

4 Conclusion

A model, which treats the delaminated and the bonded parts
of a film as a whole, is presented to study the delamina-
tion buckling. The dimensionless parameterB is the key
to analyze the delamination buckling behavior. The Mexi-
can hat deformation shape gives a vivid image of how the
film and the substrate interact, which is fully characterized
by the parameterB in certain range. WhenB is (very)
small, wrinkling may occur together with buclking; when
B is (very) large, a buckling-driven delamination of film can
occur, which makesB an increasing variable. The model
can not handle these two scenarios. Although the model has
some limitations, compared with numerical [1, 2] and im-
plicit [3] solutions, it provides a rather straightforward and
simpler analysis on the delamination buckling. The accu-
racy of the model is also assessed by comparing the results
with those obtained in previous studies.

Appendix

The definitions of parameters

f1 = [−r2 sin(r3B) cos(r1B) + r3 cos(r3B) cos(r1B)

+r1 sin(r3B) sin(r1B)]/[r3e−r2B],

f2 =
−r2 sin(r3B) + r3 cos(r3B)

r3e−r2B
,

f3 = [r2 cos(r3B) cos(r1B) + r3 sin(r3B) cos(r1B)

−r1 cos(r3B) sin(r1B)]/[r3e−r2B],

f4 =
r2 cos(r3B) + r3 sin(r3B)

r3e−r2B
,

f5 = f1e−r2B[(r2
2 − r2

3) cos(r3B) + 2r2r3 sin(r3B)]

+ f3e−r2B[(r2
2 − r2

3) sin(r3B) − 2r2r3 cos(r3B)],

f6 = f2e−r2B[(r2
2 − r2

3) cos(r3B) + 2r2r3 sin(r3B)]

+ f4e−r2B[(r2
2 − r2

3) sin(r3B) − 2r2r3 cos(r3B)],

f7 =
−r2

1 cos(r1B) − f5
f6

,

f8 = f1 + f2 f7,

f9 = f3 + f4 f7, (22)

f10 = r3 f9 − r2 f8,

f11 = −r2 f9 − r3 f8,
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f12 = −2r2r3 f9 + (r2
2 − r2

3) f8,

f13 = 2r2r3 f8 + (r2
2 − r2

3) f9,

g0(ξ) =
W2(ξ)

A1
= e−r2ξ[ f8 cos(r3ξ) + f9 sin(r3ξ)],

g1(ξ) =
W2ξ(ξ)

A1
= e−r2ξ[ f10 cos(r3ξ) + f11 sin(r3ξ)],

g2(ξ) =
W2ξξ(ξ)

A1
= e−r2ξ[ f12 cos(r3ξ) + f13 sin(r3ξ)],

S1 =
1

A2
1

∫ B

0
(W2

1ξξ − 4∆2W2
1ξ)dξ = 4∆3 sin(4∆B),

S2 =
1

A2
1

∫ ∞

B
(W2

2ξξ − 4∆2W2
2ξ + 4W2

2)dξ

=

∫ ∞

B
(g2

2 − 4∆2g2
1 + 4g2

0)dξ,

R1 =
1

A4
1

∫ B

0
(W2

1ξξW
2
1ξ − ∆

2W4
1ξ)dξ

= 4∆6
(B

2
+

sin(4∆B)
2∆

−
5 sin(8∆B)

16∆

)
,

R2 =
1

A4
1

∫ ∞

B
(W2

2ξξW
2
1ξ − ∆

2W4
2ξ)dξ =

∫ ∞

B
(g2

2g
2
1 − ∆

2g4
1)dξ.
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