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We report a wavelike fracture pattern in a Zr-based bulk metallic glass that
has been deformed under quasi-static uniaxial tensions between room tempera-
ture (300 K) and liquid nitrogen temperature (77 K). We attribute this wave-
like pattern to a Kelvin–Helmholtz flow instability that occurs at certain
interfaces between local cracking/softening regions. The instability criterion
for the pattern formation is achieved via a hydrodynamic perturbation analy-
sis, and furthermore, an instability map is built which demonstrates that the
shear velocity difference on both sides of the interface is the main destabiliz-
ing factor. Finally, the characteristic instability time (the inverse of the
instability growth rate) is explored by seeking the dispersion relation in the
dominant (fastest) instability mode. The results increase the understanding of
the flow and fracture of metallic glasses as well as the nature of their liquid
structures.

Keywords: metallic glass; fracture pattern; Kelvin–Helmholtz instability

1. Introduction

One of the most striking features of a fluid is the ability to flow owing to a very limited
resistance to shear. When a fluid is subjected to a significant shear, its flow is prone to
be mechanically unstable into a turbulence where flow instabilities are frequently mani-
fested by the emergence of waves or vortices [1–3]. Nevertheless, flow instabilities are
not exclusive features of fluids, and actually can also take place in solids under the acti-
vation of sufficiently high energy. For example, confined sliding [4], high-speed impact [5]
or nanosecond pulse laser [6] can induce the formation of (primitive) vortical structures in
the plastic flow of crystalline metals, indicating the occurrence of flow instabilities. This
situation is of paramount significance in relation to metallic glasses, since this type of
disordered solids, in the popular and basically correct conception, is “frozen” liquids
that have lost their ability to flow below the glass transition temperature [7–9]. In
metallic glasses, a widely reported flow instability is the Saffman–Taylor (S–T) flow
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instability, which describes that a crack (inviscid air) is pushed into a more viscous
liquid layer (a shear band) driven by a negative pressure gradient [10,11]. The viscous
fingering recently observed in nanosecond pulse laser ablation of a Zr-based bulk metal-
lic glass also points towards an S-T flow instability [12]. Naturally, one would like to
ask: are there any other types of flow instabilities that can take place in metallic
glasses?

In the present work, we observed some wavelike configurations on the fracture
surfaces of a typical Zr-based (Vitreloy 1) bulk metallic glass subjected to quasi-static
uniaxial tensions over a wide range of temperatures. It is proposed that the wavelike
fracture pattern results from a Kelvin–Helmholtz (K–H) flow instability that is governed
by the competition between a shear velocity gradient and surface tension.

2. Experimental

A bulk metallic glass with nominal composition of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5
(Vitreloy 1) was chosen for this study because of its excellent glass-forming ability and
high thermal stability compared with other systems [13,14]. Master alloy ingots were
obtained by arc melting together the elements Zr, Ti, Cu, Ni and Be with a purity of
99.9% or better under a Ti-gettered Ar atmosphere. To ensure homogeneity, the master
alloy ingots were re-melted several times and subsequently suction drawn into copper
moulds to form plates (100� 20� 2mm). The glassy structure of as-cast plates was
confirmed by X-ray diffraction in a Philips PW 1050 diffractometer using CuKa
radiation.

Dogbone-like specimens, with gauge dimensions of 13� 2� 2 mm3 were obtained
by lathe machining the as-cast Vitreloy 1 plates using a coolant. Uniaxial tension tests
were performed with an Instron material testing machine under a strain rate of
~10−4 s−1 at room temperature (300 K), 221 K, 152 K and liquid nitrogen temperature
(77 K). At all temperatures, the Vitreloy 1 glass displays an elastic-brittle failure with-
out appreciable macroscopical plasticity [15]. The fracture angles fall in the range of
55°–61°, demonstrating that the fracture is dominated by shear stress but affected by
tensile normal stress [16–19]. After testing, an FEI Sirion scanning electron microscope
was used to examine the fracture surfaces of all specimens.

3. Results

Figure 1a shows the representative fracture morphology of the Vitreloy 1 at 300 K. It is
noted that the whole fracture surface consists of many sub-regions with different sizes.
In each sub-region, there always exists a smooth core (marked by the arrows in
Figure 1a) and radiating ridges of veins point to the core. It has been accepted that these
smooth cores should be the nucleation sites of local sub-cracks within the shear band
[17,20–22]. The shear band material can be considered as a viscous liquid [18,23–26],
and the propagation of these local sub-cracks will further soften the shear band material
ahead of them [27] and eventually lead to the final fracture. The vein ridges have been
well explained by the S–T instability at the interface between the advancing sub-crack
and the liquid layer ahead of the sub-crack tip [10,11]. At the moment of fracture, the
propagating sub-cracks encounter each other, forming many interfaces. Quite interest-
ingly, at some interfaces between the sub-regions, wavelike patterns on a microscale can
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be observed, as shown in Figure 1b, which displays an enlarged view of the rectangular
area in Figure 1a. This kind of interface configuration directs our attention to the K–H
instability in hydrodynamics [28]. For instance, Figure 1c shows a typical K–H
instability case [29], a “billow cloud” that is very rare and exceptional but can be seen
on some days. The K–H instability cloud is the result of an interface instability between
the cloud and the wind caused by a strong relative shear. The wavelike fracture pattern
in Figure 1b is very similar to the billow cloud in Figure 1c, although their scales are
different by at least eight orders of magnitude.

More importantly, the wavelike configurations can also be observed in samples
strained at other temperature: 221, 152 and 77 K, as displayed in Figures 1d–f, respec-
tively. It is noticed that the characteristic wavelength (about 1–5 µm) of these configura-
tions is not greatly affected by the temperature change, which implies that their formation
is mainly determined by flow dynamics (or the inertia). The temperature independence of
fracture patterns is also consistent with the fact that shear bands in front of the sub-cracks
are in the flow state with a saturation concentration of the free volume [30].

4. Theoretical analysis and discussion

Clearly, the observed wavelike pattern at the interface results from the interplay of local
sub-cracks. Without loss of generality, we consider two nucleation sites, N1 and N2, of
local sub-cracks on the main fracture surface that is localized in an Eulerian coordinate
system ðx; yÞ, as illustrated in Figure 2. Once nucleated in the dominated shear band,
the two sub-cracks begin to advance with velocities of v1 and v2, respectively. The
advancing sub-crack pushes the liquid layer ahead of the crack tip with the same
velocity. The propagation of the sub-cracks should inevitably lead to a relative shear
motion of two liquids in the vicinity of their interface that is assumed to be at y ¼ 0.

Figure 1. Microscale wavelike structures on tensile fracture surfaces of Vitreloy 1 metallic
glasses at temperatures of 300 K (a and b), 221 K (d), 152 K (e) and 77 K (f). (b) is the
magnified views of the rectangular area in (a). (c) Similarly shaped K–H instability cloud (Ref.
[29]) on a scale 108 times that of (b, d–f).
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Evidence for the shear motion at the interfaces is from the observation that radiating
ridges of veins caused by the S–T instability is not strictly perpendicular to the inter-
faces (see Figure 1). This leads to a difference in the velocities of two neighbouring liq-
uids projected on to their interface. It is reasonable to believe that this relative shear
motion of the two liquids induces the K–H flow instability that manifests in the form of
a wavelike interface. Here, we assume the two liquids with saturated free volume as
Newtonian fluids [30–33] and incompressible, and the effect of surface tension between
them is taken into account. Considering the characteristic length is at micrometre scales,
the surface tension is assumed to be a constant [34]. The hydrodynamic equations for
the two fluids and their interface can be written as:

qDtuþ @xp� lDu ¼ 0; (1)

qDtwþ @xp� lDw ¼ r
@2ys
@x2

dðy� ys0Þ; (2)

Dtq ¼ 0; (3)

r � v ¼ 0; (4)

Dtys ¼ ws; (5)

where (1) and (2) are the conservation laws for momentum along the x-direction and
y-direction, respectively, (3) the incompressibility condition, (4) the continuity equation
and (5) the interface continuity condition. In these equations, Dt � @t þ v � r is the mate-
rial derivation, q is the density, u and w are the components of v along the x-direction and
y-direction, respectively; l denotes the coefficient of viscosity, p is the pressure, r is the
surface tension constant, d is the Dirac delta function, the subscript “s” denotes the
interface and ys0 ¼ 0 is the initial position of the interface.

We consider a small deviation y0sof the initial interface (ys0) with the form
exp i xt þ kxð Þ. This perturbation will cause small deviations u0;w0; p0; q0; l0f g of other
hydrodynamic variables u0;w0; p0; q0; l0f g with an identical form. It is, therefore, inter-
esting to concentrate on the evolution of the disturbed interface. In order to highlight
the essential physics, we assume that u0 ¼ u0 yð Þ, w0 ¼ const:1, q0 ¼ q0 yð Þ and
l0 ¼ const: 2. These assumptions are consistent with the common consideration for the

Figure 2. Schematics of the interplay of two sub-cracks nucleated at the sites N1 and N2,
respectively, on the main fracture plane modelled in an Eulerian coordinate system (x; y). The two
sub-cracks propagate with the velocities of v1 and v2, respectively.
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steady-state homogeneous flow in a shear band [30,35–37]. Here, k is the wave number
related to the spatial scale of the instability and x ¼ cþ ia, here, a is the growth rate
of the instability. The stability of the interface is actually determined by the sign of a.
If a� 0, it is stable, otherwise, unstable.

Inserting the perturbations into Equations (1)–(5) and only retaining the first-order
terms of the perturbed velocity w0, we can derive the governing equation for the
perturbed state:

�iq0 xþ ku0ð Þ C2 � k2
� �

w0 þ l0 C2 � k2
� �

C2w0 � l0 C2 � k2
� �

k2w0

� iCq0 xþ ku0ð ÞCw0 � ikq0Cu0Cw
0 þ ikCq0Cu0w

0 þ ikq0C
2u0w

0 þ ikq0Cu0Cw
0

� ikCl0C2u0 � ikl0C3u0
¼ �rk4y0d yð Þ; (6)

where C ¼ @y. Through the integral approximation, the interface condition that is satis-
fied at a surface of the discontinuity can be given by:

Ds �q0i xþ ku0ð ÞCw0 þ iq0kCu0w
0 þ l0 C2 � k2

� �
Cw0 � il0kC2u0 � l0k

2Cw0� �
¼ �rk4y0s; (7)

where Ds ¼ fys0þ0 � fys0�0. It should be kept in mind that the domain of interest is the
two thin fluid layers in the vicinity of the interface. Thus, we shall further suppose that
the two fluids are flowing with the constant velocities u01 and u02 as well as at constant
densities q01 and q02. We can immediately obtain the solution of Eq. (6) except for the
interface, that is

w0
n ¼ y0si xþ ku01ð Þe �1ð Þnky n ¼ 1; 2ð Þ: (8)

Applying the solution to the interface condition (7) yields the spectral equation for the
growth rate a of the perturbation:

a4a
4 þ a3a

3 þ a2a
2 þ a1aþ a0 ¼ 0; (9)

with

a4 ¼ 4 q01 þ q02ð Þ3; (10a)

a3 ¼ �8k2 l01 þ l02ð Þ q01 þ q02ð Þ2; (10b)

a2 ¼ k q01 þ q02ð Þ½5k3 l01 þ l02ð Þ2 þ 4k2r q01 þ q02ð Þ � 4kq01q02 u01 � u02ð Þ2�; (10c)

a1 ¼ �k3 l01 þ l02ð Þ½k3 l01 þ l02ð Þ2 þ 4k2r q01 þ q02ð Þ � 4kq01q02 u01 � u02ð Þ2�; (10d)

a0 ¼ k7r l01 þ l02ð Þ2 � k6 u01 � u02ð Þ2 q01l
2
02 þ q02l

2
01

� �
(10e)

According to the Routh-Hurwitz criterion [38], the instability criterion for the interface
can be obtained as:

u01 � u02j j[ l01 þ l02ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rk

q01l
2
02 þ q02l

2
01

s
: (11)
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This criterion indicates that the difference in initial horizontal velocity
Du0 ¼ u01 � u02j j incurs the interface instability, whereas the surface tension r
suppresses the instability development. Obviously, the fluid viscosity (l01 and l02) also
affects the interface stability. In physics, this kind of configuration just satisfies the
K–H instability [28].

Based on the instability criterion (11), the dynamic balance between the stabilizing
and destabilizing effects determines a critical wavelength:

kc ¼ 2p l01 þ l02ð Þ2
q01l

2
02 þ q02l

2
01

r

Du20
: (12)

The critical wavelength, from a viewpoint of the spatial scale, determines whether a
perturbation will grow unstably or die out. Perturbations with a wavelength smaller than
kc will disappear, whereas the ones with a wavelength larger than kc will lead to a run-
away instability. Equation (12) shows that the critical instability wavelength depends not
only on the material parameters (q0, l0 and r) but also on the relative shear velocity
Du0 of the two fluids. According to our previous work [39], the crack propagation
velocity of the Vitreloy 1 is about 1–2% of the Rayleigh wave speed (about
2200 ms−1) at the vein-pattern stage. Thus, an interval 0�Du0 � 80 ms�1is reasonably
obtained. Further, we neglect the trivial difference in density and viscosity of the two
fluids. We plot the critical instability wavelength versus the relative shear velocity for
the surface tension r 	 0:83 Nm�1 [40], which constructs an instability map (see
Figure 3). The map predicts that the critical instability wavelength decreases with
increasing Du0, which separates the domain into an unstable (upper) and a stable
(lower) one. Higher Du0 will make the instability take place more easily. At the limit
Du0 ! 0, it predicts kc ! 1, which means a stable state. For the present experiments,
the characteristic wavelength of the wavelike patterns is about 1–5 µm (Figure 1) that is
marked by two dashed lines in the instability map (Figure 3). According to the map,

Figure 3. An instability map constructed by the plot of the critical instability wavelength as a
function of the relative shear velocity of two viscous fluids.
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the relative shear velocity of the two fluids should be larger than a critical value (about
20 ms−1) to guarantee the occurrence of the K–H instability. The result explains why
the wavelike pattern can be only observed at certain interfaces that just satisfy the K–H
instability condition, i.e. Equations (11) or (12), instead of observing it at all interfaces.
It in turn provides the evidence that only at the wavelike interfaces, there exists the
strong shear motion of liquids. The good agreement between the predicted critical
wavelength and the measured wavelength validates that the K–H instability is a candi-
date mechanism for the observed wavelike fracture patterns.

It is also interesting to examine the characteristic instability time to see if there is a
sufficient time to allow the K–H instability to occur. The characteristic instability time
is the inverse of the absolute value of the instability growth rate in the dominant
(fastest) mode that is determined by the dispersion relation @am=@km ¼ 0. We plotted it
for Du0 � 20 ms�1 in Figure 4. It can be seen that for each Du0 the instability growth
rate increases with increasing wave number. This means that the smaller the instability
wavelength, the faster the instability takes place. Furthermore, for a fixed wave number
(or instability wavelength), a higher Du0 will increase the instability growth rate, also
leading to a faster instability. According to our current observations, the characteristic
wavelength (about 1–5 μm) of the wavelike patterns corresponds to the range
1:26� 106 m�1 � k� 6:28� 106 m�1 indicated by the double-headed arrow in Figure 4.
In this range of wave numbers, the characteristic instability time ranges from microsec-
onds to tens of microseconds which is less than the characteristic time of shear banding
(inhomogeneous flow) propagation [41,42]. This ensures that the K–H instability has
sufficient time to occur during inhomogeneous flow in front of moving cracks. How-
ever, it is noted that the observed wavelike configurations induced by the K–H instabil-
ity do not develop into mature vortices. The reason is maybe related to the highly
dissipative nature of metal plasticity and the greater resistance to flow, which prevents
the further development of the wavelike structures and confines them to the early stage
of the onset of turbulence.

Figure 4. The dispersion relations in the dominant instability mode at different relative shear
velocities. The region marked by the arrow corresponds to the current observation.
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5. Conclusions

Quasi-static uniaxial tensile experiments were performed on Vitreloy 1 bulk metallic
glasses between room temperature and liquid nitrogen temperature. In this temperature
range, wavelike patterns are observed on the facture surfaces. It is proposed that this
wavelike fracture pattern results from the K–H flow instability of fluids at sub-crack
tips. Based on a hydrodynamic instability analysis, such mechanism is highlighted by
exploring the critical instability wavelength and the characteristic instability time. We
believe that wavelike flow patterns could be observed in other situations of metallic
glasses [43], so long as the underlying K–H instability mechanism becomes activated.
Finally, it must be pointed out that the compressive stress on the shear plane usually
restrains the free volume creation [44] or cavitation [15,18], and the resulting nucleation
of local sub-cracks. We, therefore, expect that the wavelike fracture pattern can be
rarely observed in metallic glasses under uniaxial compressions.
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