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a b s t r a c t

High speed machining (HSM) is an advanced production technology with great future
potential. Chip serration or segmentation is a commonly observed phenomenon during
high speed machining of metals, which is found to be ascribed to a repeated shear band
formation fueled by thermo-plastic instability occurring within the primary shear zone.
The occurrence of serrated chips leads to the cutting force fluctuation, decreased tool life,
degradation of the surface finish and less accuracy in machine parts during high speed
machining. Hence, understanding and controlling serrated chip formation in HSM are
extremely important. In this work, a novel dynamic large strain extrusion machining
(DLSEM) technique is developed for suppressing formation of serrated chips. The
systematic DLSEM experiments of Ti–6Al–4V and Inconel 718 alloy with varying degrees
of imposed extrusion constraint were carried out. It is found that there is a prominent chip
morphology transition from serrated to continuous state and shear band spacing
decreases with the constraint degree increasing. In order to uncover underlying mechan-
ism of the imposed extrusion constraint suppressing repeated adiabatic shear banding in
DLSEM, new theoretical models are developed where the effects of extrusion constraint,
material convection due to chip flow and momentum diffusion during shear band
propagation are included. The analytical expressions for the onset criterion of adiabatic
shear band and shear band spacing in DLSEM are obtained. The theoretical predictions are
in agreement with the experimental results.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

High speed machining (HSM) has become an important development area in advanced manufacturing technology due to
the enhanced manufacturing efficiency and much improved product quality. More recently, theoretical and experimental
investigations have been performed to study the feasibility of HSM (Burns and Davies, 1997, 2002; Molinari et al., 2002,
2013; Ye et al., 2013). A universal phenomenon is found during these investigations, that is to say, with increasing cutting
velocity, the continuous smooth chip flow breaks down and serrated chips begin to form. Especially for the difficult-to-cut
materials such as Ti–6Al–4V and Inconel 718 alloy, the serrated chips are more prone to appear with increasing cutting
speed (Burns and Davies, 2002; Molinari et al., 2002; Schulz and Moriwaki, 1992; Ye et al., 2013). The occurrence of serrated
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chips leads to the cutting force fluctuation, decreased tool life, degradation of the surface finish and less accuracy in machine
parts (Atlati et al., 2011; Davies et al., 1996). Therefore, the formation of serrated chip should be avoided during HSM in
technology.

In science, the serrated chip formation is originated from the repeated thermo-plastic shear banding within primary
shear zone (PSZ) in HSM, which has been demonstrated in more and more works (Burns and Davies, 2002; Molinari et al.,
2002, 2013; Recht, 1964, 1985; Ye et al., 2012, 2013). The mechanism of multiple shear bands in HSM is different from that in
simple shear because the materials convection exists in the former. The detailed discussions on multiple shear banding in
simple shear can be found in several books and reviews (Bai and Dodd, 1992; Batra and Wei, 2006; Dodd and Bai, 2012;
Grady and Kipp, 1987; Meyers, 1994; Meyers et al., 2001; Molinari, 1997; Wright, 2002; Wright and Ockendon, 1996; Xue et
al., 2002, 2004; Zhang and Clifton, 2003; Zhou et al., 1996a, 1996b). As for the multiple shear bands in serrated chips during
machining, Huang and Aifantis put forward a laconic method to predict the shear band spacing in serrated chip formation
by multiplying the chip flow speed by the characteristic instability time (Huang and Aifantis, 1997, 2007). Molinari and co-
workers assumed that segment spacing was related to the characteristic perturbation wave length for which the
corresponding perturbation grown rate reached a maximum (Molinari, 1997; Molinari et al., 2013, 2002). The scaling laws
in serrated chip formation were obtained in their numerical and dimensional analysis. Meyers and co-workers made a
systematic experimental study and found that in many cases the shear band spacing was different at different loading stages
(Meyers et al., 2001; Xue et al., 2002, 2004). In order to consider the later stage of shear localization, Ye et al. not only
considered the momentum diffusion and material convection (due to chip flow), but also took into account the shear band
evolution in the prediction of segment spacing for serrated chip formation (Ye et al., 2013).

The previous works are concerned about serrated chip formation and shear band spacing in serrated chip during free
machining (FM). The studies have demonstrated that the state of stress in PSZ has a significant effect on the chip formation
in FM, so a constraint is introduced into PSZ to change the state of stress and shear banding evolution in this paper. Actually,
Chiffre first put forward extrusion-cutting to impose the extrusion stress in PSZ for changing the chip formation (De Chiffre,
1976). Recently, Chandrasekar and co-workers devised a large strain extrusion machining (LSEM) apparatus to fabricate
ultrafine grain materials (UFG) at a low cutting speed (Brown et al., 2009; Efe et al., 2012). However, the research on the
effect of extrusion on chip flow stability or adiabatic shear banding in HSM is vacant. Inspired by the works of Chiffre and
Chandrasekar, we developed a novel dynamic large strain extrusion machining (DLSEM) device based on split Hopkinson
pressure bar (SHPB) to explore effect of extrusion on the formation of adiabatic shear bands or serrated chips in HSM. By
making use of the DLSEM device, a systematic DLSEM experiments for difficult-to-cut materials (e.g. Ti–6Al–4V and Inconel
718 alloy) with different constraint effects were made in this paper. The shear band morphology and segment chip spacing
were examined for different constraint levels. It is found that the imposed extrusion plays a significant role in suppressing
the emergence of thermo-plastic shear bands or serrated chips during DLSEM. To elucidate the mechanisms of the
suppression on repeated thermo-plastic shear banding during DLSEM, the theoretical models for onset of adiabatic shear
band and the multiple shear band spacing are established, where the momentum diffusion, thermal diffusion, material
convection induced by the rapid chip flow, and the extrusion of constraint are included. The explicit expressions for the
onset criterion of adiabatic shear band in DLSEM and the shear band spacing are derived. The analytical results are in
agreement with the experimental observations, and the underlying physics and dynamic evolution of adiabatic shear bands
in DLSEM are clearly revealed.

The paper is organized as follows: in Section 2 we briefly narrate the experimental procedure of the DLSEM Ti–6Al–4V
and Inconel 718 alloy. The experimental observations of shear band morphology and shear band spacing are given in Section 3.
Section 4 presents the analytical models for the onset of shear instability and shear band spacing in detail. The discussions on
underlying physics of shear bands in DLSEM are made in Section 4. Section 5 gives remarkable conclusions of our present
investigation.
2. Experimental procedure

The sample materials used in the experiments are Ti–6Al–4V and Inconel 718 alloy with chemical composition specified
in Table 1. The annealing temperatures of Ti–6Al–4V and Inconel 718 alloy are 700–785 1C and 927 1C, respectively. The
mechanical properties of Ti–6Al–4V and Inconel 718 alloy are listed in Table 2. The samples were taken from the bar
material and the microstructures of three section planes in the workpiece are shown in Fig. 1.
Table 1
Chemical composition of Ti–6Al–4V and Inconel 718 alloy.

Ti–6Al–4V Elements Ti Al V Fe C N H O
wt(%) 87.73–91 5.5–6.75 3.5–4.5 0.4 0.08 0.03 0.015 0.2

Inconel 718 Elements Ni Cr Fe Nb Mo Ti Al Others
wt(%) 50–55 17–21 19 4.75–5.5 2.8–3.3 0.65–1.15 0.3–0.7 r0.81



Fig. 1. Schematic for DLSEM processes with parameters and the microstructures of three section planes of workpiece.

Table 3
Cutting condition in DLSEM Ti–6Al–4V and Inconel 718 alloy.

Cutting parameters Notation Ti–6Al–4V Inconel 718

Rake angle α 01 01
Clearance angle α2 51 51
Precut chip thickness t0 ðμmÞ 100 100
Cutting width w ðmmÞ 2 2
Cutting speed V0 ðm=sÞ 5 10 15 10
Controlled chip thickness tc ðμmÞ 80–170 30–170 30–170 70–240
Chip compression ratio ψ 0.8–1.7 0.3–1.7 0.3–1.7 0.7–2.4
Constraint extrusion factor χ 0–0.53 0–0.82 0–0.82 0–0.71

Table 2
Mechanical properties and parameters for Ti–6Al–4V and Inconel 718 alloy.

Properties and parameters Notation Ti–6Al–4V Inconel 718

Density ρ ðkg m�3Þ 4430 8190
Elastic modulus E ðGPaÞ 110 205
Thermal conductivity k ðwm�1 K�1Þ 6.6 11.1

Specific heat capacity c ðJ kg�1 K�1Þ 670 435

Initial yield stress A ðMPaÞ 782.7 1029
Hardening modulus B ðMPaÞ 498.4 1477
Strain rate dependency coefficient C 0.028 0.06
Work-hardening exponent n 0.28 0.33
Thermal softening exponent m 1 1.44
The reference strain rate _ε0 ðs�1Þ 1� 10�5 1

Ambient temperature Ta ðKÞ 293 293
Melting temperature Tm ðKÞ 1873 1570
Thermal softening coefficient αT ðK�1Þ 8� 10�4 6:4� 10�4

Strain rate hardening coefficient ζ ðPa s�1Þ 0.75 0.75
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Fig. 1 shows a schematic of the DLSEM which is conducted on split Hopkinson pressure bar (SHPB). The chip thickness tc
is controlled by the constraint in DLSEM. Here, we consider an orthogonal machining process, where a wedge-shaped tool
with a rake angle α is moving toward the workpiece with a precut depth t0 at the cutting speed V0. Based on the definition
of chip compression ratio (CCR) ψ ¼ tc=t0 (Astakhov and Shvets, 2004; Astakhov and Xiao, 2008), the different CCRs are
Fig. 2. The transition from shear band like localized deformation to homogeneous deformation with increasing CEF at the cutting speed of 10 m/s in
DLSEM Ti6Al4V: (a) CEF¼0 (FM); (b) CEF¼0.18; (c) CEF¼0.35; (d) CEF¼0.47; (e) CEF¼0.59; (f) CEF¼0.71; and (g) CEF¼0.82.
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obtained by changing the position of constraint in the experiments. The maximum of CCR ψ is the corresponding CCR ψF for
FM (i.e. ψrψF ). To characterize the constraint extrusion effect, the constraint extrusion factor (CEF) χ is introduced and can
be defined as χ ¼ ψF�ψ

� �
=ψF (χAð0;1Þ). It is found that the constraint may have an increasing influence on chip formation

in DLSEM with χ increasing. For χ ¼ 0, it corresponds to FM where the constraint is not imposed. In order to explore the
relationship between different CEFs and shear instability during DLSEM difficult-to-cut materials, the different cutting
conditions for DLSEM Ti–6Al–4V and Inconel 718 alloy are listed in Table 3. By adjusting the position of constraint, the
required CEFs can be realized, which are listed in Table 3. After cutting, chips were collected and embedded into clean resin.
The lateral process was mechanically polished and then the polished surfaces were etched in the different etching solutions
to reveal the deformed microstructure of Ti–6Al–4V and Inconel 718 alloy (e.g. a 2%HFþ4%HNO3þ94%H2O solution lasting
for 10 s for Ti–6Al–4V and a 7%HNO3þ13%HFþ80%HClþ5gFeCl3 solution lasting for 20 s for Inconel 718). These etched
specimens were observed with the optical microscope (Olympus BX51M) and the scanning electron microscope (SEM FEI
Sirion400NC) to examine the morphologies of chips and adiabatic shear bands.
3. Experimental observations

In the light of Schulz and Moriwaki, the lower and upper limits for high-speed machining of titanium alloy is about
1.5 m/s and 15 m/s respectively (Schulz and Moriwaki, 1992), and therefore, the cutting speed 10 m/s in the experiments is
sufficient to produce shear bands in chips for free machining (FM). Generally, the parameters that characterize chip
morphologies are the segment spacing (shear band spacing) Lc and the shear band width δ illustrated in Fig. 2 (Molinari et
al., 2002; Schulz et al., 2001). Fig. 2a and Fig. 2b–g correspond to FM and DLSEM respectively. As for FM, the chips are
serrated due to the absence of extrusion constraint and the shear bands are obviously observed between the saw-teeth like
chips. However, in the condition of DLSEM, the chips become continuous and the suppression by the imposed constraint on
adiabatic shear banding in chips can clearly be seen from Fig. 2b–g. When CEF reaches or exceeds a critical value, i.e. χ¼0.71,
the thermo-plastic shear instability is totally suppressed and adiabatic shear bands disappear in chips (see in Fig. 2f–g). In
this case, homogeneous plastic deformation is realized in chips. From the magnified figures marked in Fig. 2, several features
should be noticed. First, the microstructure outside the shear band is greatly different from that inside for both FM and
DLSEM: the grains inside the shear bands are elongated along the shear direction and have undergone an extremely large
deformation, while those outside shear bands almost remain the same with undeformed structures. Second, the width of
shear bands in DLSEM is nearly equal to that in FM at the same cutting speed 10 m/s. In addition, for FM case where the
extrusion constraint vanishes, the shear bands evolve fully and the grains in FM refine more severely than those in DLSEM.

Moreover, the microstructure evolutions with different CEFs in DLSEM are illustrated in Fig. 2 in which Fig. 2a–g comes
from chips obtained for the CEF of 0 (FM), 0.18, 0.35, 0.47, 0.59, 0.71 and 0.82 respectively at the cutting speed of 10 m/s. All
measurements of segment spacing (shear band spacing) Lc for different CEFs were carried out for at least 10 neighboring
segments and the average-weighted segment spacing was regarded as the segment spacing for each situation. It is obvious
that the constraint makes three roles in the DLSEM process. First, the constraint may change the morphology of chips. The
chips in FM are serrated (Fig. 2a) but those in DLSEM are continuous (Fig. 2b–g). Second, the constraint has a distinct effect
on suppressing the occurrence of the shear bands. When the CEF exceeds a specific value, namely 0.71, shear bands could
not emerge and the deformation in chips is homogeneous as seen in Fig. 3f and g. However, the shear bands can be
produced in chips when CEF is below the specific value as shown in Fig. 2a–e. Third, the constraint could control the
evolution of shear bands. As for FM, the shear bands evolve completely and the chips are serrated significantly. With CEF
increasing, the constraint effect becomes more significant leading to a great resistance to shear band evolution (see in
Fig. 3. The statistic shear band spacing in DLSEM Ti6Al4V at the cutting speed of 10 m/s.



S.L. Cai, L.H. Dai / J. Mech. Phys. Solids 73 (2014) 84–102 89
Fig. 2b–e). The previous works have demonstrated that the shear band spacing increases as the shear band evolves (Meyers
et al., 2001; Xue et al., 2002, 2004; Ye et al., 2013; Zhou et al., 2006a, 2006b). Therefore, the shear band spacing decreases
with CEF increasing, our experimental results are in coincidence with this prediction.

The statistical shear band spacing for each CEF is illustrated in Fig. 3. The CEF of 0.71 is an important line of demarcation
to distinguish stability from instability. The chip deformation is stable above the CEF of 0.71, but the chip deformation
becomes unstable under that CEF. As for the instability in chips, the shear band spacing decreases with the CEF increasing
shown in Fig. 3.

In order to study what a role the strain rate makes during DLSEM, the other two different cutting speeds (5 m/s and
15 m/s) were chosen to conduct the experiments in DLSEM Ti–6Al–4V for different CEFs (see in Table 3). The microstructure
evolutions with different CEFs are illustrated in Figs. 4, and a1–a4 come from chips obtained for the CEF of 0, 0.12, 0.41 and
0.53 respectively at the cutting speed of 5 m/s, and b1, b2, b3 and b4 correspond to the CEF of 0, 0.35, 0.59 and 0.82
respectively at the cutting speed of 15 m/s. The transition from shear band like localized deformation to homogeneous
deformation with increasing CEF is independent of the cutting speed; however, the critical CEF distinguishing instability
from stability depends on the cutting speed. For low strain rate (5 m/s), the shear bands disappear in chips when CEF
reaches the value of 0.53; however, for high strain rate (15 m/s), the shear bands still exist in chips for the CEF of 0.59.
Moreover, the larger CEF (0.82 in Fig. 4b1) is required for restraining the shear instability at the speed of 15 m/s. The critical
CEF increases with the increasing cutting speed.
Fig. 4. Microstructure of chips obtained for different CEFs at different cutting speeds in DLSEM Ti6Al4V: a1–a4 corresponding to the CEF of 0 (FM), 0.12,
0.41 and 0.53 respectively at the cutting speed of 5 m/s; b1–b4 corresponding to the CEF of 0 (FM), 0.35, 0.59 and 0.82 respectively at the cutting speed of
15 m/s.



Fig. 5. The transition from shear band like localized deformation to homogeneous deformation with increasing CEF at the cutting speed of 10 m/s in
DLSEM Inconel 718: (a) CEF¼0 (FM); (b) CEF¼0.38; (c) CEF¼0.54; and (d) CEF¼0.71.
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In order to testify if the suppressing of shear banding instability in DLSEM is in force for other alloys, the DLSEM
experiments on another difficult-to-machine material nickel superalloy Inconel 718 were also conducted under the cutting
condition in Table 3. As shown in Fig. 5, the transition from shear band type localized deformation to homogeneous
deformation can also be observed, but the critical CEF is different from that of Ti6Al4V alloy. The shear deformation is
localized for free machining and it becomes homogeneous when CEF exceeds a certain value (0.54). The critical CEF of
Inconel 718 alloy is smaller than that of Ti6Al4V alloy.

4. Theoretical modeling for DLSEM

4.1. The governing equations

Fig. 6 shows a schematic of the DLSEM, in which the free machining (FM) is marked by the dashed lines. The wedge-
shaped tool with a rake angle α is static, and the workpiece with a precut depth t0 is moving toward the tool at the cutting
speed V0 and then flows out along the rake face of the tool in the form of a chip with a controlled chip thickness tc at the
speed Vc. In the FM case (a controlled chip thickness 170 μm in experiments), the constraint does not affect the chip
formation and the thickness of chip formed is tnc . The deformation of the workpiece ahead of the tool concentrates within



Fig. 6. The schematic of the DLSEM model, in which FM is marked by the dashed lines.
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the primary shear zone (PSZ) of a finite width h. The PSZ is assumed to be parallel-sided (Hill, 1954a, 1954b; Oxley, 1989;
Piispanen, 1948; Shaw, 2005). An Eulerian coordinate system (xoy) is attached to the static tool with the x-axis parallel to
the direction of shear flow and the y-axis normal to the direction respectively shown in Fig. 6. The workpiece is considered
to be thermo-viscoplastic material, and its constitutive equation is given by τ¼ f γ; _γ; Tð Þ, where γ is the shear strain, _γ is the
shear strain rate, and T is the temperature. For later use, let us introduce the following notations as did by Bai (1982):
Q ¼ ð∂f =∂γÞ40 (strain hardening coefficient), R¼ ð∂f =∂_γÞ40 (strain hardening coefficient) and P ¼ �ð∂f =∂TÞ40 (thermal
softening coefficient).

According to the velocity vector relationships given by Merchant and Shaw (Merchant, 1945; Shaw, 1950), the chips flow
speed along the rake face of the tool is expressed as

Vc ¼
V0 sin φ

cos φ�αð Þ; ð1Þ

where the shear angle φ is given by De Chiffre (1976)

tan φ�αð Þ ¼ 1
ψ cos α

� tan α: ð2Þ

The cutting speed V0 and the chip speed Vc are resolved into two components parallel and normal to the direction of shear
flow respectively, and then the velocity V x; y; tð Þ at y¼ 0 and y¼ h in the PSZ shown in Fig. 6 are given by

Vx x;0; tð Þ ¼ �V0 cos φ;Vy x;0; tð Þ ¼ V0 sin φ

Vx x;h; tð Þ ¼ V0 sin φ tan φ�αð Þ; Vy x;h; tð Þ ¼ V0 sin φ

(
: ð3Þ

In the current analysis, the deformation can only occur in the x direction but may have a gradient in the y direction.
Therefore, the velocity component Vx x; y; tð Þ and Vy x; y; tð Þ are only a function of the coordinate y and the time t, namely
Vx x; y; tð Þ ¼ V y; tð Þ and Vy x; y; tð Þ ¼ Vn y; tð Þ. For the deformation in machining, a further assumption is made: the speed
perpendicular to PSZ (y direction) is a constant. Combined with Eq. (3), the velocity component Vn y; tð Þ is equal to V0 sin φ.
Then, the deformation can be formulated in a one-dimensional framework; the variables τ; γ; _γ; T depend solely on
coordinate y and time t.

The momentum is conserved in PSZ during DLSEM, so the momentum equation is given by

∂2τ
∂y2

þξ
∂σT
∂y

�η
∂σCT
∂y

¼ ρ
∂_γ
∂t
þV0 sin φ

∂_γ
∂y

� �
; ð4Þ

where σT is the compressive stress from the rake tool face, σCT is the compressive stress from the constraint, and ρV0 sin φ ∂_γ
∂y

is the change of momentum due to material convection resulted from chip flow. In the equation, ρ, c, and k are material
parameters (density, specific heat capacity and thermal conductivity respectively). ξ and η are the geometric parameters:
ξ¼ sin φ 1þμ tan ðα�φÞð Þ=t0, η¼ sin φ=t0 cos ðα�φÞ where μ is the frictional coefficient between the rake tool face and
chips. ξ is introduced into the momentum equation by Burns and Davies for taking the tool compressive stress into
consideration (Burns and Davies, 2002), and η is added into the momentum equation due to considering the constraint.
As for FM, η is not included in Eq. (4) and Eq. (4) is the same as the momentum equation of Burns and Davies (2002).
Compared with the momentum equation in simple shear (Dodd and Bai, 2012; Meyers, 1994; Walley, 2007; Wright, 2002),
the effect of the compressive stresses from the tool and the constraint as well as material convection due to chips flow are
added in Eq. (4) during DLSEM. The tool compressive stress σT can be written as (Burns and Davies, 1997)

σT ¼
E sin φ

t0

Z t

0
Vs�V y; tð Þ½ �dt; ð5Þ
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where Vs ¼ V0 cos α= cos φ�αð Þ is the shear speed in PSZ (Merchant, 1945; Shaw, 1950) and E is the elastic modulus of the
workpiece material. The following relationship can be obtained from Eq. (5):

∂2σT
∂t∂y

þV0 sin φ
∂2σT
∂y2

¼ �E sin φ

t0
_γ: ð6Þ

Here, inspired by the work of Burns and Davies (1997), we assume that the constraint compressive stress σCT from constraint
is given by

σCT ¼ E
tT UV y; tð Þ

tnc
; ð7Þ

where tT ¼ tnc �tc=Vs is the average time of constraint in the DLSEM process. Based on the definition of CEF, the constraint
compressive stress σCT is written by σCT ¼ σðV y; tð Þ=VsÞ where σ ¼ Eχ. As for FM, tnc is equal to tc and the constraint
compressive stress σCT is zero. For DLSEM, the constraint compressive stress increases with CEF increasing. By making a
partial derivative of Eq. (7) with respect to y, the relationship between σCT and _γ is obtained:

∂σCT
∂y

¼ σ

Vs
_γ: ð8Þ

The conservation equation of energy is written in the following form:

∂T
∂t

¼ βτ

ρc
_γþ k

ρc
∂2T
∂y2

�V0 sin φ
∂T
∂y

; ð9Þ

where β is Taylor–Quinney coefficient. Eq. (9) states that there are three different physical processes altering the
temperature in PSZ: heat generation due to plastic working (the first term in the right side of the equation), diffusion
and mass transfer of heat (the second and third terms, respectively). It is noted that the mass transfer of heat is due to the
material moving outwards PSZ (see Fig. 6), which should be important during the DLSEM process.

The compatibility equation is

_γ ¼ ∂V y; tð Þ
∂y

¼ ∂γ
∂t
þV0 sin φ

∂γ
∂y
; ð10Þ

where V0 sin φ is the velocity of materials moving perpendicular to PSZ.
The initial condition (IC) and the boundary condition (BC) governing the one-dimensional DLSEM are given by

IC

γ y;0ð Þ ¼ 0

_γ y;0ð Þ ¼ Vs

h
T y;0ð Þ ¼ Ta

8>><
>>: ; ð11Þ

where Ta is the ambient temperature and

BC
V 0; tð Þ ¼ �V0 cos φ

V h; tð Þ ¼ V0 sin φ tan φ�αð Þ

(
: ð12Þ

If the specific form of constitutive relation is given, we can solve simultaneously the coupled governing Eqs. (4), (6) and
(8)–(12) for PSZ of shear stress, shear strain, shear strain rate and temperature in course of DLSEM.
4.2. Homogeneous deformation solution

According to Jiang and Dai (2009), the deformation within a shear band can be approximately regarded as a highly
localized homogeneous deformation. Therefore, it is necessary to seek the homogeneous solutions by assuming that shear
strain and shear strain rate are uniformly distributed within the PSZ. Meanwhile, the velocity along x direction V y; tð Þ in PSZ
is assumed to change from �V0 cos φ on the lower boundary to V0 sin φ tan φ�αð Þ on the upper boundary linearly
without discontinuities. That is

V y; tð Þ ¼ ðVs=hÞy�V0 cos φ; 0ryrhð Þ: ð13Þ

The workpiece material is assumed to be rigid-perfectly plastic for simplicity and the Johnson–Cook (J–C) law was chosen to
be the constitutive law of the workpiece material, which can be represented by the following formula (Johnson and Cook,
1983):

τ¼ 1ffiffiffi
3

p AþB
γffiffiffi
3

p
� �n� �

1þC ln
_γffiffiffi
3

p
_ε0

� �� �
1� T�Ta

Tm�Ta

� �m� �
; ð14Þ



Fig. 7. The stress–strain relations for different CEFs at different cutting speeds in DLSEM: the cutting speed ranges from 0.5 to 50 m/s.
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where the J–C parameter of Ti6Al4V is listed in Table 2 (Lee and Lin, 1998) and that of Inconel 718 is referred to the literature
(Muthu et al., 2012). Substituting Eqs. (13) and (14) into Eqs. (4), (6), (8)–(10), then the governing equations become

∂2τ
∂y2

¼ Eξ sin φ

t0

Vs

h
tþησ

h

∂T
∂t

¼ βτ

ρc
Vs

h
þ k
ρc

∂2T
∂y2

�V0 sin φ ∂T
∂y

τ¼ 1ffiffi
3

p AþB Vsffiffi
3

p
h
t

	 
nh i
1þC ln Vsffiffi

3
p

_ε0h

	 
h i
1� T�Ta

Tm �Ta

	 
mh i

8>>>>>>><
>>>>>>>:

: ð15Þ

Using the finite difference method, the nonlinear partial differential equation (15) is solved for different CEF cases. The
stress–strain relations of different CEFs at different cutting speeds are shown in Fig. 7.

As seen in Fig. 7, both the cutting speed and the degree of constraint have a significant effect on the shear deformation in
DLSEM. The shear deformation is stable at low cutting speed (for example V0 ¼ 0:5 m=s); however, the shear deformation is
more prone to become unstable with cutting speed increasing. The constraint could suppress the thermo-plastic shear
instability in DLSEM; as seen at the cutting speed of 5 m/s, the shear deformation is unstable in FM but it becomes stable for
a certain degree of constraint. At relatively higher cutting speed (10 m/s), a much larger degree of constraint is needed to
make the shear deformation stable. At much higher cutting speed, the shear deformation is always unstable for all of the
degrees of constraint; however, the history of deformation at each CEF is different from each other. The discrepancy
between the deformations of different CEFs could become smaller with the cutting speed increasing. For example, at the
cutting speed of 10 m/s close to that of experiments, the shear deformation is unstable for FM (CEF¼0) and the shear
instability becomes more difficult with CEF increasing, which is consistent with the experiments shown in Fig. 2. For later
use, we can calculate the parameters τ0, γ0, _γ0, T0, Q0, R0 and P0 through the stress–strain curve when the shear deformation
begins to be unstable at the cutting speed of 10 m/s.
4.3. Instability analysis

The physical shear localization can be related to the mathematical instability in the differential equations governing the
DLSEM. According to the dealing method introduced in Bai (1982), Clifton et al. (1984), Dai and Bai (2008), Dai et al. (2004),
Jiang and Dai (2009), Molinari (1997), Molinari et al. (2002), the stability analysis is simplified by seeking an inhomogeneous
deformation solution with respect to small perturbations on the homogeneous solution. Such that

U ¼ U0þUn exp ptþ iqyð Þ; ð16Þ

where U is the inhomogeneous solutions of Eqs. (4), (6) and (8)–(10), U0 is the homogeneous solutions, Un is small constants
characterizing the magnitude of the perturbation, q is the wave number and p is the rate of growth. Substituting Eq. (16) into
Eqs. (4), (6) and (8)–(10) and then only considering terms of first order in Un, the spectral equation is derived by the
following form:

α̂3þ 1þAð Þk̂2þNþC
� �

α̂2þ Ak̂
4þ 1þN�B�3Dð Þk̂2þMþCN

� �
α̂þ 1�D�ADð Þk̂4þ M�ND�CDð Þk̂2þMC
� �
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þ i
ffiffiffiffi
D

p
k̂ 3α̂2þ 2 1þAð Þk̂2þ2Nþ2C

� �
α̂þ Ak̂

4þ 1þN�B�Dð Þk̂2þMþCN
� �� �

;

¼ 0 ð17Þ
where the dimensionless variables are introduced by

α̂¼ kp
cQ0

; k̂
2 ¼ k2q2

ρc2Q0
; A¼ cR0

k
; B¼ βP0τ0

ρcQ0
; C ¼ βkP0 _γ0

ρc2Q0
; D¼ ρV2

0 sin
2φ

Q0

M¼ k2ξE sin φ

ρc2t0Q
2
0

; N¼ ησk
VsρcQ0

8>>>><
>>>>:

: ð18Þ

Because p is a complex number, α̂ is also a complex number and the dimensionless growth rate α̂ is introduced by the form of
α̂¼ aþ ib where a and b are the real numbers. Then, the spectral equation (17) is further transformed into the following form:

8a3þ8S1a2þ2 S21�S2
	 


aþS1S2�S3 ¼ 0; ð19Þ

where the polynomial coefficients are defined by

S1 ¼ 1þAð Þk̂2þNþC

S2 ¼ Ak̂
4þ 1þN�Bð Þk̂2þMþCN

S3 ¼ k̂
4þMk̂

2þMC

8>>><
>>>:

: ð20Þ

The stability of the DLSEM process is now determined by the sign of a: if ao0, the shear deformation in DLSEM is stable;
otherwise, it is unstable. According to the mathematical analysis, if S2o0, i.e.,

B41þNþAk̂
2þMþCN

k̂
2 ; ð21Þ

there is at least a positive real root in all roots of Eq. (19). Therefore, Eq. (21) is an onset condition of thermo-plastic shear
instability in DLSEM. It is of interest to seek the easiest instability situation, and for the easiest instability mode where

k̂¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MþCN

A
4
q

, the instability condition of DLSEM is converted to

B

1þNþ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A MþCNð Þ

p 41: ð22Þ

In this instability criterion (22), B represents the effect of thermal softening which causes the instability in DLSEM. When
B increases, the thermal softening has an increasing influence on instability and chip flow in DLSEM is more prone to be
unstable. A and M reflect the strain rate hardening and work hardening respectively, which are the resistance of instability.
N represents the effect of constraint hardening which also resists the instability. It is noted that N is a distinctive feature in
DLSEM comparing with conventional free machining. It can be seen that this constraint hardening effect increases with CEF
χ increasing, which provides a high resistance to shear instability. This observation is in accordance with the experiments
shown in Fig. 2. For free machining (N¼ 0), the instability criterion becomes B

1þ2
ffiffiffiffiffiffi
AM

p 41. In the condition of simple shear
where M and N are both equal to zero corresponding to the thermo-plastic simple shear, the instability criterion further
simplifies the form B41 which is the same as that derived by Bai (1982). From instability criterion (22), we can analyze the
phenomenon of instability in DLSEM in details by applying the homogeneous deformation results.
Fig. 8. Relationship between the real part of dimensionless growth rate and dimensionless wave number in the condition of the different CEFs.
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By introducing the calculation results of the finite difference method for homogeneous deformation into Eq. (19), the
relationship between the real part of dimensionless growth rate a and dimensionless wave number k̂ for different CEFs at
the cutting speed of 10 m/s can be shown in Fig. 8. As seen in Fig. 8, the characteristic wave number where the real part of
dimensionless growth rate has a maximum increase with the CEF increasing. There will not be a positive a for all of the
dimensionless wave number k̂ if CEF exceeds a certain value of 0.71, which means that the shear deformation is stable. These
analysis results are consistent with the experimental results (see in Fig. 2).

Using the homogeneous deformation solution, the variation of the instability criterion (22) from CEF at the cutting speed
of 10 m/s is illustrated in Fig. 9. The stability and instability of DLSEM is separated by a specific constraint extrusion factor
0.7. If CEF is smaller than 0.7, the shear deformation is unstable; otherwise, it is stable. The prediction of instability criterion
(22) is identical to the experimental results. Therefore, the instability criterion (22) is valid to predict the instability
in DLSEM.

Because the instability criterion (22) is effective, it is used to determine whether the shear deformation is unstable at
different cutting speeds or for different materials in DLSEM. The cutting speed takes another role in DLSEM (see in Fig. 4)
and the resulting mechanical responses are different from each other at different cutting speeds. Substituting the
homogeneous deformation solution (15) into the instability criterion (22), the relationship between the instability criterion
value and CEF for different cutting speeds is illustrated in Fig. 10a. As seen in Fig. 10a, the theoretical model of stability
analysis is still valid for different cutting speeds. The unstable shear deformation becomes stable when the CEF exceeds a
certain value for different cutting speeds and the critical CEF increases with the cutting speed, which are in accordance with
the experiments shown in Fig. 4. Compared with the low strain rate, the high strain rate promotes the instability and larger
CEF is needed to make the shear deformation stable during DLSEM. Figs. 2 and 5 show the microstructure of chips in DLSEM
different materials at the same cutting speed of 10 m/s, and it is obvious that the transition from shear band like localized
deformation to homogeneous deformation with increasing CEF is material independent. By substituting homogeneous
Fig. 9. Comparison of instability criterion with experimental observations at different constraint extrusion factors.

Fig. 10. (a) Relationship between the instability criterion and CEF at different cutting speeds in DLSEM Ti6Al4V; and (b) relationship between the instability
criterion and CEF for Ti6Al4V and Inconel 718 at the cutting speeds of 10 m/s.
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deformation solution (15) into instability criterion (22), the relationship between instability criterion value and CEF for
different materials are shown in Fig. 10b. If the dimensionless number of controlling instability is above 1, the shear
deformation becomes unstable; otherwise, it is stable, which is in accordance with the available experimental observations
(see in Figs. 2 and 5). From Fig. 10b, the critical CEF of Inconel 718 is about 0.51 which is smaller than that of Ti6Al4V alloy
(0.71). The calculated results indicate that the instability criterion is also suitable for other materials.

In order to know how the constraint may have an effect on DLSEM at different cutting speeds, the relationship between
the real part of dimensionless growth rate and wave number for different CEFs at different cutting speed is obtained by
introducing the calculation results of homogeneous deformation into Eq. (19). The maximum of the real part of
dimensionless growth rate α̂m is easily found out during the relationship between the real part of dimensionless growth
rate and wave number, and then, the dimensionless instability characteristic time t̂m ¼ 1=α̂m is illustrated in Fig. 11 for
different CEFs at different cutting speeds. The dimensionless instability characteristic time decreases with increasing cutting
speed for different CEFs, which means that the instability of shear deformation may take place much more easily at higher
cutting speed. The trend is in accordance with the available experiments during free machining titanium alloys (Arrazola et
al., 2009; Gente et al., 2001; Molinari et al., 2002; Sutter and List, 2013; Ye et al., 2013). If the cutting speed is a constant, the
dimensionless instability characteristic time increases with CEF increasing in DLSEM. It is revealed that the constraint may
restrain the instability of thermo-plastic shear deformation in DLSEM. However, the effect that the constraint suppresses the
instability becomes much smaller at higher cutting speed. It is observed in the available experiments that the morphology of
chip changes from continuous to serrate during cutting titanium alloys with increasing cutting speed (Arrazola et al., 2009;
Gente et al., 2001; Molinari et al., 2002; Sutter and List, 2013; Ye et al., 2013). The critical speed that makes a distinction
between continuous and serrated chip is an important parameter during free machining. The solutions of homogeneous
deformation at different cutting speeds are used to calculate the values of parameters in the instability condition (22), and
then the values of parameters are substituted into the instability criterion (22) to determine whether the shear deformation
Fig. 11. Value of the dimensionless characteristic time for the CEF of 0 (FM), 0.18, 0.35, 0.47, 0.59 and 0.71 at different cutting speeds.

Fig. 12. Variation of critical speed with constraint extrusion factor (CEF).
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in chip is stable or not. The cutting speed ranges from 0.05 m/s to 1000 m/s to find out the critical speed for different CEFs.
The relationship between critical speed and CEF is shown in Fig. 12, and the critical speed is larger with CEF increasing. This
is because the constraint restrains the formation of serrated chip and much higher speed is needed to promote the
instability of shear deformation.

4.4. Shear band spacing

When the shear deformation in PSZ is unstable, the shear bands will occur in the serrated chips. According to the

mathematical instability analysis, the characteristic wave number is given by k̂¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MþCN

A
4
q

, and the shear band spacing is

obtained

L̂c ¼
2πffiffiffiffiffiffiffiffiffiffiffiffi
MþCN

A
4
q : ð23Þ
Fig. 13. (a), (b) and (c) correspond to the initial time, middle time and finished time of the shear band evolution respectively.
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The shear band spacing predicted by instability analysis is much less than that of experiments in Fig. 3. As discussed by
Meyers and co-workers (Meyers et al., 2001; Xue et al., 2002), the perturbation theory can make a reasonable prediction of
shear band spacing at the early stage of shear band evolution. Our recent study has demonstrated that the evolution degree
of shear bands has a notable effect on shear band spacing in high speed metal machining (Ye et al., 2013). The spacing at this
time when the shear bands stop evolving is the shear band spacing observed in serrated chips. Therefore, the new theory for
shear band spacing in DLSEM is required.

Two sets of coordinates are set up to analyze the shear band spacing in the serrated chips. The Eulerian coordinate
system (xoy) is attached to the static tool with the x-axis parallel to the direction of shear flow and the y-axis normal to that
direction respectively shown in Fig. 13. The Lagrangian coordinate system (XOY) is set up in chips to observe the evolution
process of shear bands and moves out at the speed of V0 sin φ (seen in Fig. 13). The time when shear flow becomes unstable
is chosen to be zero time. That is to say, t ¼ 0 is the time when the flow stress reached a maximum in the stress–strain curve.
As shown in Fig. 13a, the Eulerian coordinate system (xoy) overlaps the Lagrangian coordinate system (XOY) at the time of
t ¼ 0. Because the Lagrangian coordinate system (XOY) flows with chips along the Y direction at the speed of V0 sin φ, the
Eulerian coordinate system (xoy) is separated from the Lagrangian coordinate system (XOY) as time goes on. According to
the theory of Grady, the momentum of shear bands diffuses from inside to outside as the shear bands evolve (Grady, 1992),
and then a rigid unloading zone is generated. As shown in Fig. 13b, there is no shear deformation in chips when the chips
move into the PSZ because of the rigid unloading zone. The shear band spacing continues to increase with the further
evolution of shear bands until t ¼ ts when the shear band stops evolving and the next shear band starts to form (seen in
Fig. 13c). The shear band spacing in serrated chips is given by multiplying the chip flow speed V0 sin φ by the time ts for the
completed evolution of one shear band. The above process is repeated all the time to produce the multiple shear bands
regularly in chips.

From the speed distribution curve of X-velocity component on the right of Fig. 13a, at the time of t ¼ 0, the speed
distribution in the shear band is given by

V Y ;0ð Þ ¼ �V0 cos φ;Y ¼ 0
V Y ;0ð Þ ¼ V0 sin φ tan φ�αð Þ;Y ¼ h

(
: ð24Þ

At the finished time of shear band evolution t ¼ ts, the speed distribution in shear band is obtained from the speed
distribution curve of X-velocity component on the right of Fig. 13c:

V Y ; tsð Þ ¼ V0 sin φ tan φ�αð Þ; Y ¼ 0
V Y ; tsð Þ ¼ V0 sin φ tan φ�αð Þ; Y ¼ h

(
: ð25Þ

For Y ¼ 0, we assume that the X-velocity component of materials is linear to the time t during the shear band evolution
process. The materials above Y ¼ h have undergone the shear band evolution process, so the X-velocity component of
materials is a constant of V0 sin φ tan φ�αð Þ. The speed boundary conditions are as follows:

V Y ; tð Þ ¼ Vs

ts
t�V0 cos φ; Y ¼ 0

V Y ; tð Þ ¼ V0 sin φ tan φ�αð Þ; Y ¼ h

8><
>: : ð26Þ

It is further assumed that the X-velocity component of materials in shear band is linear to the position Y in the Lagrangian
coordinate system at every time of shear band evolution:

V Y ; tð Þ ¼ Vs

h
Y� Vs

hts
YtþVs

ts
t�V0 cos φ :ð27Þ

From Eq. (27), the relationship between the boundary displacement Ψ and time t is given by

Ψ ¼
Z t

0
V h; tð Þ�V 0; tð Þ
 �

dt ¼ Vst� Vs

2ts
t2; ð28Þ

when the evolution of shear bands terminates, the boundary displacement Ψ c is obtained

Ψ c ¼ Vsts
2

: ð29Þ

For later analysis, the degree of shear band evolution Λ is introduced here in the form of Λ¼Ψ=Ψ c:

Λ¼ 2
ts
t� 1

t2s
t2; ð0rΛr1Þ: ð30Þ

When Λ¼ 0, it means that the shear band has just formed without evolution. If Λ¼ 1, the shear band is fully mature and the
next shear band begins to form. Using the method in works of Grady (1992) and Ye et al. (2013) (Grady, 1992; Ye et al., 2013),
the linear relaxation of flow shear stress is applied to approximately describe the relation of unloading stress because of
shear band evolution:

τ¼ τ0 1�Λð Þ; ð31Þ
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where τ0 is the shear stress at the moment of shear instability. Combining Eq. (30) with Eq. (31), the relationship between
flow shear stress τ and time t is achieved

τ¼ τ0 1� 2
ts
tþ 1

t2s
t2

 !
: ð32Þ

Deriving Eq. (27) with respect to Y , the shear strain rate _γ in shear band is given by

_γ ¼ Vs

h
� Vs

hts
t: ð33Þ

For simple analysis, the constitutive relation for materials adopted by Molinari (1997) and Wright and Ockendon (1996) is
used here:

τ¼ τ0 1�αTTð Þþζ_γ; ð34Þ
where αT and ζ are the thermal softening coefficient and strain rate hardening coefficient respectively listed in Table 2.
Substituting Eqs. (32) and (33) into Eq.(34), the temperature T in shear band evolution is obtained

T ¼ 1
αT

2
ts
t� 1

ts2
t2

� �
þ ζ

τ0αT

Vs

h
� Vs

hts
t

� �
: ð35Þ

By means of the method used by Grady (1992), the requirement of global energy consistency is imposed here by integrating
the energy equation over the shear band evolution time ts,Z ts

0

dT
dt

dt ¼
Z ts

0

τ_γ

ρc
� 2k

ρch2
T

 !
dt; ð36Þ

where c is specific heat capacity, k is thermal conductivity and ρ is density. Substituting Eqs. (32), (33) and (35) into Eq. (36),
the global shear band evolution time ts is derived by

ts ¼
1�αTT0

ðτ0αTVs=4ρchÞ�ð4k=3ρch2Þ�ðkζVs=ρcτ0h
3Þ
; ð37Þ

where T0 is the temperature in shear band at the moment before shear instability occurs. By multiplying the chip flow speed
V0 sin φ by the time ts, the shear band spacing Lc is given by

Lc ¼ 1�αTT0ð Þh
ðTταTϒ=4Þ�ð4Vλ=3V0 sin φÞ�ðVλϒ=VζÞ

; ð38Þ

where Tτ ¼ τ0=ρc, Vλ ¼ k=ρch, Vζ ¼ τ0h=ζ and ϒ ¼ 1� χð ÞφF
cos α þ 1

1� χð ÞφF cos α�2 tan α respectively.

In Eq. (38), αTT0 and TταT represent the effect of thermal softening and plastic work in the process of shear band
evolution respectively. The increasing αTT0 or TταT may lead to the shear band spacing increasing. Vλ and Vζ indicates the
speed of thermal diffusion and strain rate hardening respectively. The shear band spacing increases with the thermal
diffusion speed increasing, but it decreases with the increasing strain rate hardening speed. When the cutting speed V0

increases, the shear band spacing will decrease from Eq. (38), which is in accordance with the trend of available experiments
(Molinari et al., 2002, 2013; Ye et al., 2013). ϒ in Eq. (38) reflects the influence of CEF on shear band spacing. According to the
observation in experiments, the PSZ width h is chosen to be 5 μm here because we assume that width of PSZ is equal to that
Fig. 14. Comparison of the predicted shear band spacing with the experimental observation.
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of shear bands. By substituting the other parameter value into the Eqs. (23) and (38), the predicted shear band spacing of
different models and experimental results of shear band spacing are shown in Fig. 14.

As shown in dotted lines in Fig. 14, the shear deformation is stable and the shear band spacing predicted by theories is
useless when CEF exceeds the value of 0.7. When CEF is below the value of 0.7, the instability of shear deformation happens
in PSZ and the predicted shear band spacing comes into use. According to the solid lines, the predicted shear band spacing
by the present momentum diffusion theory is more consistent with the experimental results. The discussions about the
difference in predicting shear band spacing between the momentum diffusion theory and the perturbation theory have
been made by several researchers (Meyers et al., 2001; Xue et al., 2002, 2004); (Batra and Wei, 2006, 2007); (Molinari, 1997,
2013); (Chen et al., 2013; Ye et al., 2013).

Because Eq. (38) is effective to predict shear band spacing in DLSEM, it is also used to predict the spacing of shear bands
at different cutting speeds and for different materials. The shear band spacing is calculated further at different cutting
speeds or for different materials to reveal the influence from constraint in DLSEM. The variations of shear band spacing
with CEF for different cutting speeds (5 m/s, 10 m/s, 15 m/s) and for different materials (Ti6Al4V and Inconel 718) are shown
in Fig. 15. As seen in Fig. 15a, the predicted shear band spacing by Eq. (38) is consistent with the experimental results
at different cutting speeds. The theoretical model of shear band spacing is also valid for different cutting speeds. The shear
band spacing decreases with CEF increasing for a given cutting speed, and the shear deformation is stable when CEF exceeds
a certain value. The extrusion effect from constraint becomes stronger with CEF increasing, leading to the degree of
shear band evolution much smaller, and then the shear band spacing decreases at last. As shown in Fig. 15b, the predicted
shear band spacing by Eq. (38) is consistent with the experimental results for different materials. Although the predicted
shear band spacing is different from each other for the same CEF, the tendency that shear band spacing decreases with the
increasing CEF remains invariable. The theoretical model of shear band spacing (38) is also valid for different materials.
Fig. 15. (a) Shear band spacing varies with CEF at different cutting speeds in DLSEM Ti6Al4V; and (b) shear band spacing varies with CEF for Ti6Al4V and
Inconel 718 at the cutting speeds of 10 m/s.

Fig. 16. Shear band spacing varies with cutting speed for different CEFs.
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The relationship between shear band spacing and cutting speed for different CEFs is also calculated and illustrated in Fig. 16.
It can be found that the larger CEF leads to smaller shear band spacing. For a given CEF, shear band spacing decreases with
cutting speed increasing. The trend is in accordance with the experiments (Molinari et al., 2002; Ye et al., 2013). When the
cutting speed is greater than a critical value, the shear band spacing has not much change with the cutting speed increasing
(see in Fig. 16), which is in agreement with the simulation results of Molinari et al. (2013).

5. Concluding remarks

A novel dynamic large strain extrusion machining (DLSEM) technique is developed for suppressing formation of serrated
chips. The systematic DLSEM experiments of Ti–6Al–4V and Inconel 718 alloy were undertaken for different constraint
extrusion factors (CEFs) at different cutting speeds. The microscopic observations of chips reveal that the transition from
shear band type localized deformation to homogeneous deformation with increasing CEF is universal but the critical CEF
distinguishing instability from stability depends on the cutting speed and material description; and the shear band spacing
decreases with increasing CEF because the constraint suppresses the evolution of shear band. Based on the experimental
observations, a theoretical model for DLSEM is developed to obtain the instability criterion and predict the shear band
spacing, considering the effects of extrusion constraint, material convection due to chip flow and momentum diffusion
during shear band propagation. The theoretical predictions are in agreement with the experimental results; therefore, the
theoretical model is effective to predict the instability and shear band spacing in DLSEM.
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