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Abstract

An attempt was made to explore the formation mechanism of thermal shock crack patterns in ceramics and to develop quantitative numerical
simulations. A set of experiments on thin circular ceramic specimens yielded two-dimensional readings of thermal shock crack patterns with
periodical and hierarchical characteristics. The numerical simulations of the thermal shock crack patterns are based on the minimum potential
energy principle, where the convective heat transfer coefficient at high temperatures, which is difficult to measure, was inversely estimated by the
crack spacing, which is easy to measure. Numerical simulation results were in good agreement with the experimental data. Several interesting
thermal shock crack evolution phenomena were found. Two stability criteria of crack propagation, i.e. the minimum potential energy principle
and the fracture mechanics bifurcation theory, were compared. It was found that the two criteria verify and complement each other. The present
study leads to an improved understanding of the formation and evolution of thermal shock crack patterns in ceramics and can help engineers to
assess the thermal shock failure of practical ceramic components.
& 2014 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
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1. Introduction

The chemical stability of ceramics above the melting point of
metal alloys predestines this class of materials for high temperature
applications such as gas turbine engines [1] for aircraft propulsion,
marine propulsion, power generation and thermal protection
structures in hypersonic vehicle [2,3]. However, thermal shock
failure of ceramics is a long-standing problem [4]. It is recognized
that a basic understanding of thermal shock failure must be
gained to give full play to the potential of ceramic materials at
high temperatures [1].

Numerous studies were conducted to explore the mechanism
of thermal shock failure of ceramics. Among them, Kingery
[5] and Hasselman [6] proposed two theories of thermal shock
10.1016/j.ceramint.2014.09.036
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resistance from the viewpoint of stress and energy, respec-
tively. Soon afterwards, Hasselman [7] developed a unified
theory to combine thermal shock fracture initiation with crack
propagation in brittle ceramics. Schneider [8] studied thermal
shock parameters that depend on crack initiation and arrest
criteria for ceramics, and discussed the role of thermal shock
experiments. Salvini et al. [9] extended Hasselman's thermal
shock theory [7] by considering the crack interaction mechan-
isms with the refractory microstructure.
Thermal shock resistance of ceramics is commonly evalu-

ated by the degradation of the strength after thermal shock
which is caused by the appearance of cracks. Researchers very
early noticed that thermal shock cracks exhibit generally
regular and elegant patterns, such as periodic and hierarchical
characteristics, which are important for a clear understanding
of the thermal shock failure mechanism of ceramics. Bažant
[10] and Nemat-Nasser et al. [11,12] studied the stability of
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Specimens

Thick ceramic plates

Inconel wires

Fig. 1. Bound specimens for thermal shock.
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propagated thermal shock cracks (or drying shrinkage cracks),
and theoretically discussed the length hierarchy phenomenon.
Bahr et al. [13–15] established a fracture-mechanical model
based on the time-dependent energy release rate to explain the
thermal shock cracking behaviors. Jenkins [16] used a method
based on energy minimization to determine the spacing and
penetration of a regular array of cracks in a shrinking slab due
to a changing temperature field. Jiang et al. [17] conducted
thermal shock experiments of thin rectangular ceramic speci-
mens and developed numerical simulations of thermal shock
crack patterns. Li et al. [18] proposed a non-local failure model
to simulate the thermal shock crack evolution. Bourdin et al.
[19] conducted numerical simulation of reservoir stimulation
based on the variational approach. Furthermore, Bourdin et al.
[20] and Sicsic et al. [21] studied the morphogenesis, initiation,
and propagation of cracks in the thermal shock problem
through the variational analysis of the quasi-static evolution
of a gradient damage model.

The present work constitutes a continuing study on thermal
shock crack patterns in ceramics and the emphasis is on an
improved understanding of the formation and evolution mech-
anism as well as the development of quantitative numerical
simulations of thermal shock crack patterns. To eliminate the
boundary effects and to yield two-dimensional readings of
crack patterns which are convenient to measure quantitatively,
a set of thermal shock experiments on thin circular specimens
were conducted. Then the crack patterns were numerically
simulated based on the minimum potential energy principle.
Finally, we made comparison of two stability criteria of crack
propagation and comparison with experiments to reveal the
evolution and bifurcation mechanism of thermal shock crack
patterns.

2. Experimental

99% Al2O3 powder (University of Science and Technology
Beijing Experimental Factory Co., Beijing, China) was ther-
moformed into thin circular plates with dimensions of 13 mm
diameter and 1 mm thickness. Then the specimens were
polished and tightly stacked together in sets of four, with
two thick circular ceramic plates on the outside to prevent the
temperature distribution from being disturbed by coolant acces-
sing the interior surfaces of the specimens. For the convenient of
binding, cross notches were carved on the outside surfaces of the
two thick plates. Finally, the stacks of alumina circular specimens
were bound with inconel wires, as shown in Fig. 1.

The bound specimens were heated in a furnace at a rate of
10 1C min�1 to the preset temperature T0 and maintained at
this temperature for 30 min. The range of T0 was from 250 1C
to 500 1C. The heated specimens were dropped into a water
bath at T1¼15 1C by free fall. The specimens were removed
from the water bath 10 min later and dried, then dyed with blue
ink to observe the cracks formed. Two sets of specimens
(8 specimens in total) were tested at every value of T0.

The digitally scanned photographs of dyed specimens are
shown in Fig. 2. It is observed that the thermal shock cracks
are perpendicular to the circle edge and point to the center.
In addition, the crack patterns on both sides of the specimen
are identical, which shows that the crack geometry is two-
dimensional and convenient to observe and measure. Further-
more, it is observed that the crack patterns exhibit elegant
periodic and hierarchical characteristics that vary with the
thermal shock temperature T0. The higher the T0, the more the
cracks. The long cracks become longer and the short cracks
become shorter as T0 increases.
The variations in the average crack spacing s0 with the

thermal shock temperature T0 are depicted in Fig. 3, where the
average crack spacing s0 means the arc length on the outer
circular circumference between two adjacent cracks. It can be
seen that at every value of T0, the fluctuation in the average
crack spacing, s0, in eight specimens is small, and the maxi-
mum standard deviation from the average value is less than
15%. At the same time the crack spacing s0 decreases with the
increase of T0.
In the following sections an attempt is made to quantita-

tively simulate thermal shock crack patterns as well as to
reveal the mechanism of formation and evolution of thermal
shock crack patterns, especially the interesting bifurcation
mechanism.
3. Numerical simulations

In the study of thermal shock crack patterns, two main
approaches are the fracture mechanics bifurcation theory and
the energy minimization method. In this section, numerical
simulations based on the minimum potential energy principle
will be developed. Then in the next section, comparisons will
be made with results of fracture mechanics bifurcation theory
and experimental data.
3.1. Assumptions

According to the experimental observations, three simplified
assumptions are made: (1) The cracks are two-dimensional,
and perpendicular to the outer circular circumference of
specimens. (2) The crack patterns are periodic and hierarchical,
consequently they can be simulated by a periodic unit. (3)
From the assumption (1), the temperature field is not disturbed
by the cracks, consequently it remains axisymmetric and is
easily calculated by Fourier's law of heat conduction.



Fig. 3. Variations in the average crack spacing s0 (the arc length on the outer
circular circumference between two adjacent cracks) in eight specimens with
the thermal shock temperature T0.

Fig. 2. Thermal shock crack patterns, where the preset temperature T0¼(a) 250 1C, (b) 300 1C, (c) 350 1C, (d) 400 1C, and (e) 500 1C.
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3.2. Theoretical considerations

The average total potential energy W in a specimen can be
expressed as a function of the crack spacing s (the arc length
on the outer circular circumference between two adjacent
cracks), the crack length p, and the time t

Wðs; p; tÞ ¼ Wðs; p; tÞ
V

¼ Uðs; p; tÞþS

V
¼ Uðs; p; tÞþγpb

V
ð1Þ

where V is the volume of the specimen, U is the strain energy,
S¼γpb is the crack surface energy (the energy required to form
new crack surfaces) and γ is the surface energy density, and b
is the thickness of specimens.

According to the minimum potential energy principle, an
optimal thermal shock crack pattern minimizes the average
total potential energy

Wðs0; p0; tÞ ¼ min Wðs; p; tÞ ð2Þ
where p0 and s0 are the optimal crack length and spacing at the
time t. Computations show that when the preset temperature T0
is less than certain critical value Tc or the thermal shock time t is
less than a certain critical value tc, the minimum value on the
curved surface of W is located at p0¼0, which indicates that the
specimen does not crack. When T04Tc and t4 tc, the mini-
mum value of W shifts to a location where both s0 and p0
become positive finite values, which indicates that cracks
initiate. An illustrative example is shown in Fig. 4, where
T0¼400 1C, t¼0.002 s and 0.008 s. Theoretically, the optimal
thermal shock crack spacing and length (s0, p0) (the minimum
value of the energy curved surface in Fig. 4) change con-
tinuously with time t. Computations show that in thermal shock
process, the idealized crack length continuously increases from
zero, whereas the crack spacing starts from a finite value,
rapidly decreases and reaches its minimum value in a very short
time, then increases.
However, the irreversibility of crack growth prohibits the

continuous change of crack spacing with time. Therefore, the
minimum energy principle should be a conditional minimum
potential energy principle. The condition is that the formed
cracks do not move, recede or disappear. Our computations
show that when the cracks initiate, their spacing is a large finite
value. The crack spacing first decreases by a jumping manner
due to the appearance of additional cracks, then increases also
by a jumping manner of “spatial period doubling”, i.e. every
second crack continues to propagate, whereas the other cracks
stop. The process of “spatial period doubling” can be repeated,
thus an elegant hierarchical thermal shock crack pattern is
formed.

3.3. Semi-inverse method

The lack of accurate data of material properties at high tempera-
tures is a challenge in quantitatively simulating thermal shock crack
patterns. The available data [22–27] on the heat transfer coefficient



Table 1
Young's modulus E [28], Poisson's ratio ν [28], the mass density ρ [28], and
the surface energy density γ [29] of 99% Al2O3 ceramics.

E (GPa) ν ρ (kg/m3) γ (J/m2)

370 0.22 3980 12.16

Fig. 4. Graphs of the average total potential energy curved surfaces at T0¼400 1C for two time points, (a) t¼0.002 s; (b) t¼0.008 s.

Fig. 5. Computational region and boundary conditions: (a) initial region, (b)
extended region, where p and p1 represent the length of propagating and stationary
cracks, respectively, and dotted lines represent the uncracked boundaries.
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h for water quenching of ceramics are very disperse, with a
consensus being between 104 and 105 W/(m2 K). Apparently, such
dispersion prohibits any quantitative simulation of thermal shock
crack patterns. From our experiments (for example, refer to Fig. 3),
we find that crack spacing is easily measured from experiments
and the standard deviation from the average crack spacing is small.
In addition, our computations show that the idealized crack spacing
reaches its minimum value in a very short time. Accordingly, we
presented a semi-inverse method [17] combining experimental and
numerical analysis, where effective convective heat transfer
coefficients h are inversely estimated using the experimental data
of crack spacing which equal the minimum value of the idealized
crack spacing. The semi-inverse method permits us to study the
evolution of thermal shock crack patterns and to predict quantita-
tively crack length and length hierarchy. Furthermore, it is also an
exploration to estimate a physical quantity difficult to measure by
using physical quantities easy to measure.
3.4. Computational region and material properties

The finite element software ANSYS was used for the numerical
simulations. Noting the axisymmetry, a sector OABCD in Fig. 5(a)
was taken as the initial computational region, where R is the radius
of the specimen, A and D are the crack tips. Noting that the
central angle of the sector remains unchanged, the circumfer-
ential displacement uθ is zero on two radius boundaries

uθ ¼ 0; on OA and OD ð3Þ

The other boundaries are traction-free.
When “spatial period doubling” of the crack spacing appears,

the computational region would be extended to the sector
OABCEF in Fig. 5(b), where D is a stationary crack tip, A and
F are two propagating crack tips. Such an extension of the
computational region can be repeated.
According to our experience, the computational time t was

taken as 1 s, which was divided into 500 time steps, and the
step length of the crack length p was taken as R/100.
Young's modulus E [28], Poisson's ratio ν [28], the mass

density ρ [28], and the surface energy density γ [29] of the
material remain approximately unchanged in the range 0–600 1C,
which are listed in Table 1. The coefficient of thermal expansion
α [30], the thermal conductivity k [31] and the specific heat c [32]
are strongly temperature-dependent, which are shown in Fig. 6.
Based on the “semi-inverse method” and using the data of the

crack spacing depicted in Fig. 3, the estimated values of the
effective convective heat transfer coefficient h at various values of
T0 are shown in Fig. 7. It can be observed that h first rapidly
increases, then decreases, with a peak near T0¼350 1C.
It is interesting to compare the present estimates of the

convective heat transfer coefficient with existing data: (1)
because of the difficulties of measurement, no direct measure-
ment data were reported. Existing data of the coefficient were
estimated by measuring the critical temperature differences
according to the theory of critical fracture stress [22–24] or by
solving the inverse heat conduction problem based on the



Fig. 6. Graphs of the coefficient of thermal expansion α [30], the thermal conductivity k [31], and the specific heat c [32] of 99% Al2O3 ceramics versus temperature.

Fig. 7. Effective heat transfer coefficient h estimated by semi-inverse method
at various values of T0.

Fig. 8. Crack propagation models: (a) equal-length crack model and (b) corre-
sponding disturbed crack model, where the disturbance quantity δ¼R/200.
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measurement of the temperature distribution in the specimens
during thermal shock [25–27]. The present semi-inverse
method is a new exploration where the coefficient is estimated
by using the crack spacing. (2) The variation law of the
coefficient with temperature estimated by using the present
semi-inverse method is in agreement with that of existing data,
i.e., the coefficient first increases to a peak value, then
decreases (refer to Fig. 7). (3) Because the estimation of the
coefficient involves a number of parameters including envir-
onmental variables, material properties, and geometry effects,
the dispersion of existing data is very large. For example, the
peak values of the coefficient are 100,000 W/(m2 K) in [22,23],
45,000 W/(m2 K) in [24], 63,000 W/(m2 K) in [25,26], and
29,300 W/(m2 K) in [27]. The present estimated peak value,
40,000 W/(m2 K), of the coefficient falls within the scope of
variation of existing data. (4) The present estimates of the co-
efficient can be used to quantitatively predict the length and length
hierarchy of thermal shock cracks in the present experiment (refer
to Fig. 11), while existing data failed to do this.

3.5. Stability criteria of crack propagation

From Section 3.2, in a very short time the thermal shock
crack spacing reaches its minimum value and the experimental
data of the average crack spacing are used to estimate inversely
the effective heat transfer coefficients h. Then the crack spacing
increases by a jumping manner of “spatial period doubling”, i.e.
every second crack continues to propagate, whereas the other
cracks stop. Consequently a hierarchical crack pattern is formed.
Therefore, a key work in numerical simulations is to build a
stability criterion of crack propagation, which determines when
“spatial period doubling” of the crack spacing occurs.
Referring to Fig. 8(a), at every time step, first consider the

equal-length crack model. The crack length p can be deter-
mined by the minimum potential energy principle. Let We

denote the corresponding minimum energy of the equal-length
crack model. Then we consider a disturbed crack model, as
shown in Fig. 8(b), where the disturbance δ¼R/200 (from our
experience), R is the radius of the circular specimen. Let Wd

denote the corresponding energy of the disturbed model.
Consider the difference of the two energy

ΔW ¼Wd–We ð4Þ
Apparently, if ΔW40, the equal-length model is stable;

whereas if ΔWr0, the equal-length model is unstable. In the
latter case, “spatial period doubling” of the crack spacing
appears. Such a process of “spatial period doubling” of the
crack spacing can be repeated to form a hierarchical crack
patterns.
3.6. Numerical simulation results

The numerical simulations developed in the above sections
can reproduce the evolution process of thermal shock crack
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patterns (length and length hierarchy), which is difficult to
observe and measure in experiments.

As an illustrative numerical example, the evolutions of the
crack spacing s and crack length p with time t at T0¼400 1C
are plotted in Fig. 9, where the solid line and the dashed line
represent the spacing and the length of the propagating cracks,
respectively.

It can be observed from the inset of Fig. 9 that in a very
short time, the thermal shock cracks initiate and the idealized
crack spacing denoted by the dot dashed line rapidly reaches
its minimum value (at t¼0.01 s). The stage is very short and
the variation of the practical crack spacing is difficult to
predict. Apparently, it is a good alternative scheme that the
practical crack spacing is taken from experimental data, which
are easy to measure.

Fig. 9 shows that after the thermal shock cracks initiate, the
cracks propagate very rapidly, then the propagation speed
decreases gradually with the release of thermal stress until the
strain energy cannot support the simultaneous propagation of
all cracks. At this time “spatial period doubling” of the crack
spacing appears, i.e. every second crack continues to propagate
with an equal spacing s¼2s0, whereas the other cracks stop.
After “spatial period doubling” of the crack spacing appears,
the crack propagation speed shows a sudden increase as the
strain energy supports propagation of only half of the cracks.
This process can be repeated until the strain energy induced by
thermal stress cannot support the propagation of any cracks.
4. Comparison and discussion

4.1. Comparison of two stability criteria of crack propagation

In the study of thermal shock crack patterns, a widely used
method is the fracture mechanics bifurcation theory, for
example refer to [33–35]. The theory uses the stability criterion
of crack propagation based on the stress intensity factor or the
energy release rate. First we consider the equal-length crack
Fig. 9. Evolution of the crack spacing s and crack length p with time t at
T0¼400 1C, where the solid and dashed lines represent the spacing s and the
length p of the propagating cracks, respectively. In the inset the dot dash line
denotes the idealized crack spacing s0, and the solid line denotes the practical
average crack spacing s0 taken from the experimental datum in Fig. 3.
model in Fig. 8(a). From mechanical equilibrium, we have

KI ¼ KIC ð5Þ

where KI and KIC are the stress intensity factor at the crack tip
and the fracture toughness of the material, respectively. Then
we consider the disturbed crack model, as shown in Fig. 8(b),
where the disturbance δ¼R/200 in our computations. Let KIl

and KIs be the stress intensity factors at long and short crack
tips, respectively. If

KIloKIC;KIs4KIC ð6Þ

the long crack in Fig. 8(b) will stop growing, whereas the
short crack will grow and catch up with the long crack, which
shows that the equal-length crack model is stable. If

KIlZKIC;KIsrKIC ð7Þ

the short crack in Fig. 8(b) will stop growing, whereas the
long crack will continue to grow, which shows that the equal-
length crack model is unstable and hierarchy of crack length
occurs. Noting that the equal-length crack model satisfies
the condition (5), the stability criterion of crack propagation
can be expressed by

ΔK ¼ KIs–KIl ð8Þ

When ΔKZ0, the equal-length crack model is stable, whereas
when ΔKo0, the equal-length crack model is unstable and
hierarchy of crack length occurs.
The stress intensity factor is a local mechanical quantity at

the crack tip, whereas the total potential energy is a whole
mechanical quantity of the specimen. It is interesting to
compare the two stability criteria of crack propagation by
using ΔW in Eq. (4) and ΔK in Eq. (8).
The variations of ΔW and ΔK with the crack length p at

T0¼400 1C before and after first crack length hierarchy are
shown in Fig. 10. It can be observed that when p is a small
value, both ΔK and ΔW are positive, which indicates that
equal-length crack propagation is stable. Both ΔK and ΔW
decrease with the increase of p, which indicates that equal-
length crack propagation gradually changes from stability to
instability. Both ΔK and ΔW change signs almost at the same
length p¼0.72 mm, which indicates that equal-length crack
propagation becomes unstable, consequently “spatial period
doubling” of the crack spacing occurs, i.e. every second crack
continues to propagate, whereas the other cracks stop. After
“spatial period doubling” of the crack spacing occurs, both ΔK
and ΔW jump to large value, which indicates that such a
propagation of cracks is highly stable. Then both ΔK and ΔW
decrease with the increase of p and change again their signs at
p¼1.76 mm, which indicates second “spatial period doubling”
of the crack spacing occurs. The process can be repeated and
forms a hierarchical crack pattern. Fig. 10 shows the equiva-
lence of two stability criteria of crack propagation. Such
finding improves our understanding of the formation mechanism
of thermal shock crack patterns.



Fig. 10. Variations of ΔW and ΔK with crack length p at T0¼400 1C before
and after first crack length hierarchy. Fig. 11. Numerical predictions of various level crack lengths p versus the

preset temperature T0, the corresponding classified experimental results are also
shown by points with error bar.

Y. Liu et al. / Ceramics International 41 (2015) 1107–1114 1113
4.2. Comparison with experiments

It can be seen from Figs. 2 and 3 that the experimental data of
thermal shock crack patterns exhibit some degree of dispersion.
Numerical simulations can help us find the essential feature from
uncertainty. Now consider the hierarchy of the crack length.
According to the hierarchical mechanism described in Section 3.5,
the ratio of the crack number of various levels for a three-level
crack pattern is 2:1:1 from short to long, it is 4:2:1:1 for a four-
level crack pattern and 8:4:2:1:1 for a five-level crack pattern.
According to the above ratios, the experimental statistical
results of the thermal shock crack length were classified and
depicted in Fig. 11 by points with error bar. Additionally, the
numerical simulation results of the various level crack lengths
p versus the preset temperature T0 are also shown in Fig. 11 by
column chart. It can be seen that the numerical predictions are
in good agreement with experimental results.

It is also observed that the crack length of every level
continuously changes with the increase of preset temperature
T0. An interesting phenomenon is found: the crack length of
the longest level increases with the increase of T0, whereas the
crack lengths of the other levels decrease. When ΔW in Eq. (4)
(or ΔK in Eq. (8)) goes across zero, a new crack level is
separated from the longest crack level. Then the length of the
new crack level decreases with the increase of T0.
4.3. Discussion about the crack spacing in the computational
model

In the present computational model the assumptions of a
circular geometry and regular spacing require that the crack
spacing s can take on discrete values only, i.e.

s¼ R� 2π=n; for n¼ 1; 2; 3;… ð9Þ
where n is the crack number and R is the radius of the specimen. In
the practical numerical simulations, however, the crack spacing s of
the computational unit is taken from the average value s0 of
experimental data among eight specimens, where corresponding n
is not an integer. By comparing s0 with the crack spacing s that is
corresponding to an integer value of n and is closest to s0,
we found that the maximum deviation between s0 and s is less than
1.7% which is small enough and can be ignored.

5. Conclusions
(1)
 A set of water-quenching experiments on thin circular
ceramic specimens at various preset temperatures yielded
elegant two-dimensional thermal shock crack patterns. It is
observed that the crack patterns exhibit favorable periodic
and hierarchical characteristics that vary with the thermal
shock temperature. The higher the temperature, the more
the cracks. In addition, the long cracks become longer and
the short cracks become shorter as T0 increases. At the
same thermal shock temperature the dispersion in the
number of cracks (or the average crack spacing) in various
specimens is small.
(2)
 Based on the minimum potential energy principle, numer-
ical simulations were developed to investigate the evolu-
tion of crack patterns during the thermal shock process.
To overcome the difficulty in measuring accurately the
convective heat coefficient at high temperatures, a so-called
“semi-inverse method” was developed, where the effective
convective heat coefficient was inversely estimated by
using the experimental data of crack spacing which is easy
to measure. The “semi-inverse method” explores a new
approach of practical importance, i.e. to estimate a physical
quantity difficult to measure by using physical quantities
easy to measure. The numerical predictions of the crack
length and length hierarchy are in good agreement with
experimental results.
(3)
 Two stability criteria of crack propagation, i.e. the minimum
potential energy principle and the fracture mechanics bifurca-
tion theory, were compared. The former is based on a whole
physical quantity, the total potential energy of the specimen,
whereas the latter is based on a local physical quantity, the
stress intensity factor at the crack tip. It is found that the
simulations by the two criteria are in excellent agreement.
The two criteria verify and complement each other.
(4)
 Numerical simulations can conveniently reproduce the
evolution process of thermal shock crack patterns, which
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is difficult to observe by experiments. It is found that the
crack length of every level continuously changes with
the increase of preset temperature T0. The crack length of
the longest level increases with the increase of T0, whereas
the crack lengths of the other levels decrease. New crack
levels are always separated from the longest crack level.
Then the length of the new crack level decreases with the
increase of T0. The present study leads to an improved
understanding of the formation and evolution of thermal
shock crack patterns in ceramics.
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