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The strain rate dependency of materials’ failure has been widely observed in experiments and simula-
tions, yet its microscopic mechanism is still elusive due to the complexity of failure processes. In this
work, modified molecular dynamics simulations are carried out to investigate the strain rate effect over
a wide strain rate range. The results demonstrate three typical failure modes induced by the competition
of two timescales involved. The transition of mechanisms underlying these failure modes is discussed
with a simplified model. The corresponding analysis indicates that the thermal activation model offers
a good prediction for the variation of failure strain with respect to applied strain rate for failure mode
I; the coupled evolution of atomic motions and potential landscapes governs the failure mode II; and
the failure mode III is a result of the rapid separation between loading and deformation parts of the
sample.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The strain rate effect of materials, namely increase of yield
stress and strength of materials with an increase in the strain rates,
is a key feature in impact and shock dynamics as well as a long
standing problem in materials science [1]. The effect has been
widely observed in experiments of metals and alloys [2–4]. Exper-
imental results were obtained from different technics [4–6], such
as conventional compressive/tensile testing, split Hopkinson pres-
sure bar, shock-determined Hugoniot elastic limit stresses and
femtosecond laser pulses [6], over a wide strain rate range from
10�4 to almost 109 s�1. Several constitutive models had been pro-
posed to describe the strain, stress and strain-rate relations [7–9].
However, a complete description of the dependency for different
materials over such a wide strain rate range is an extremely diffi-
cult task. Various mechanisms were introduced to explain the rela-
tionship at different strain rate range. For example, it is generally
known that for many metals, the dependence of flow stress sharply
increases when the strain rate of deformation exceeds about 103–
104 s�1 which is interpreted as the consequence of the change in
mechanism [10]. Mechanisms such as dislocation generation,
deformation twinning, and adiabatic shear banding were proposed
to explain the dependency [11,12]. All these mechanisms are very
important in understanding the phenomena related to the strain
rate effect. However, since most of them are phenomenological
explanations, a microscopic or molecular understanding of the
effect will provide us new information about basic mechanisms
and governing factors.

Molecular dynamics (MD), with its ability to trace the dynamic
process of each molecule, has become an orthodox method in elu-
cidating microscopic mechanisms for mechanical behaviors of
materials. Lots of MD simulations have been carried out to investi-
gate the strain rate effect of nanoscale structures [13–17]. Besides
demonstrating results similar to that observed in experiments,
these simulations compensated results at ultrahigh strain rates
(above 109 s�1) and revealed much more details such as the evolu-
tion of structures at nanoscale. However, the simulated strain rates
are limited to be very high, usually above 108 s�1 [18]. This limita-
tion is attributed to the intrinsic time scale of femtoseconds in MD,
so it is hard to conclude that mechanisms proposed from simula-
tion can be simply extended to that obtained from experiments
with strain rates far below 108 s�1. Although efforts have been
made to construct multi-timescale or accelerated MD methods
[19,20], currently they are not mature for mechanism analysis of
strain rate effect. On the other hand, due to the massive degree
of freedom and complexity of potential functions, it is hard to
quantitatively analyze the strain rate dependency of characteristic
stress/strain based on simulation results or applying existing theo-
retical models, e.g. the thermal activation-strain rate analysis, to
the simulation results [8]. Moreover, a deeper understanding of
the effect at molecular level can also provide us some helpful clues
for designing new multi-timescale methods that may compensate
the current MD methods.
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In this work, we focus on MD simulations to simple atomic sys-
tems in order to obtain results with strain rate as low as 102 s�1

which is close to that measured in experiments. Based on the evo-
lution of atomic motion and potential landscapes, microscopic
mechanisms that govern the strain rate effect are discussed. More-
over, competition of multiple timescales involved in the rate effect
is also presented.

2. Computational framework

MD simulations were performed on 1-dimensional (1D) atomic
chains and 2-dimensional (2D) atomic planes, as illustrated in
Fig. 1. These configurations were chosen for two reasons. First,
since MD simulations at lower strain rates are quite time consum-
ing, simple configurations make it possible to perform simulations
under a wider strain rate range. For example, it takes about one
month to simulate the tensile process of an atomic chain contain-
ing only 28 atoms under a strain rate of 102 s�1 on a PC with single
CPU (Intel� Core™ i7-3820QM). Unfortunately, the time-related
simulation cannot be further accelerated by parallel computation,
because adjacent MD steps cannot be performed on different CPUs
concurrently. Therefore, if 3-dimensional (3D) atomic systems
were considered, the strain rate has to be beyond 108 s�1 for a tol-
erable duration which does not meet the requirements for study
over wide strain rate range in our work. Second, since we focus
on the mechanism of strain rate effect, a simpler system will be
enough to reveal the concise physics.

The atomic chain shown in Fig. 1(a) consists of 28 atoms with 4
fixed at each end. The initial length (l0) is 7.033 nm with inter-
atomic distance d = 0.2605 nm. The 2D atomic configuration in
Fig. 1(b) represents a close-packed planar crystal with one of its
close-packed directions parallel to the x axis. Size of the plane is
20.64 � 7.74 nm along the x and y directions with the lattice con-
stant c = 0.258 nm. As illustrated, the origin of coordinate system
for both 1D and 2D configurations is located at the geometric
center.

The interatomic interaction is modeled using the Lennard–Jones
(L–J) potential

/ ¼ 4e0
r0

r

� �12
� r0

r

� �6
� �

; ð1Þ

with e0 = 0.4912 eV and r0 = 0.23276 nm [21]. The cutoff radius rcut

is set to be 0.7 nm. To reduce the influence of fixed atoms, the
length of fixed ends for both atomic chain and plane is chosen to
be greater than rcut. Since the L–J potential parameters are fitted
for copper, the atomic mass m is set to be 63.546 g/mol in simula-
tions. Actually, embedded-atom method (EAM) potentials are
Fig. 1. Configuration for an atomic chain (a) under tensile loading and an atomic
plane and (b) used for 2D tensile and shearing simulations. Red atoms are free to
move, while boundary atoms (in gray) are manipulated by external velocities. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
commonly used to model metals and alloys, because they usually
predict better results than simple pair wise potentials. In this work,
the L–J potential is used for two considerations. First, L–J potentials
can also properly model metallic systems even with some defects,
such as dislocations, surfaces and interfaces [22]. On the other hand,
the failure of atomic systems is an energy competition process
(kinetic energy and barriers between different states) which can
be investigated using either L–J or EAM potentials. Second, the sim-
ple form of L–J potential is suitable for theoretical analysis which
will help us extract meaningful physical parameters governing the
strain rate effect.

The 1D and 2D systems were firstly equilibrated at a specific
initial temperature (T0) to a stress-free state. Then velocity-con-
trolled loadings were applied. Specifically, a tensile loading is
implemented by applying a velocity distribution tbxb/l0 to the
boundary atoms (where xb denotes the position of boundary
atoms), so the nominal tensile strain rate ð _eÞ is tb/l0. During simu-
lations, boundary atoms move with the given velocity and the
other atoms follow MD steps without any velocity rescaling. Phys-
ical quantities (for example, the total energy, temperature and so
on) in simulations are extracted by means of time-average statis-
tics. For example, the total resultant force on atoms of the left-side
boundary FL is averaged to characterize the tensile response of the
system. Since the yield criterion for most metals is based on the
maximum shear stress [23], shearing simulations of the 2D system
with a periodic boundary condition imposed along the x-axis under
different strain rates are also considered. For shearing simulations,
the velocity distribution is applied on boundary atoms along the y-
axis.

3. Results

Tensile simulations of the atomic chain were performed under
strain rates ranging from 4.28 � 102 to 1.0 � 1012 s�1. Boundary
force FL versus tensile strain et with typical stain rates is plotted
in Fig. 2 and three failure modes can be identified.

(I) Smooth elastic stage followed by a catastrophic fracture, e.g.
tensile curves for strain rate of 1.13 � 104 and
1.62 � 107 s�1, respectively. In the former case, the atomic
chain breaks at 5.46%, which is hereafter denoted by the fail-
ure strain ef. With the strain rate increasing to 1.62 � 107 s�1,
ef is enhanced to 6.53%. Observations on fractured atomic
configurations show that most of the samples break at
regions far away from fixed ends. This failure mode is
detected as strain rates are below 109 s�1.
Fig. 2. Variation of boundary forces with tensile strain for atomic chains under
various strain rates.



Fig. 4. Tensile failure strain versus strain rate for atomic chains at various
temperatures.
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(II) Serrated elastic stage followed by a flow-style failure, e.g.
tensile behavior for strain rate of 1.0 � 1010 s�1 in Fig. 2.
Although the curve is quite different, the serrated segment
at elastic stage is still around that of mode I. Such a failure
is seen as strain rates are above 109 s�1 and below 1011 s�1.

(III) Smooth elastic stage followed by a flow-style failure, like the
tensile curve for strain rate of 1.0 � 1011 s�1 in Fig. 2. The ini-
tial slope of the curve is much higher than that of mode I and
ef is much larger (13.25%). Atomic chains under strain rates
above 1011 s�1 undergo such failure mode and always break
at the joint of active and fixed atoms.

ef for all atomic chains simulated with initial temperature of
50 K are plotted against tensile strain rate in Fig. 3. The results
show that ef is significantly ‘‘strengthened’’ by strain rate. However,
the variation trend of ef under strain rates below and above 109 s�1

is quite different. As the strain rate increases from 109 to 1011 s�1, ef

increases 85.33% (from 7.5% to 13.9%). However, it is only enlarged
by 38.88% when the strain rate grows from 103 to 109 s�1. This
sharp increase of ef after a specific strain rate observed in simula-
tions is very similar to that in experiments [10]. Since no additional
velocity rescaling is imposed on the atomic system, the statistic
temperature varies during loadings. For example, as the atomic
chain is stretched under the strain rate of 1.62 � 107 s�1, its tem-
perature decreases from the initial 50 K to 21 K when the failure
occurs. Further investigation indicates that the reduced kinetic
energy and external work done by boundary velocities are used
to compensate for the increase of atomic system’s potential energy.

Strain rate dependence of ef for atomic chains at different tem-
peratures is also investigated. Results plotted in Fig. 4 show that ef

is strengthened by strain rates with various T0. Due to the high
computational consumption for simulations under low strain rate,
only strain rates above 104 s�1 were considered at temperatures
other than 50 K. Both the variation trend of ef and its value under
the same strain rate are affected by temperature. Specifically, ef

under a strain rate of 104 s�1 decreases from 10.85% to 4.35% as
T0 increases from 0 to 100 K. As the strain rate increases from
104 to 109 s�1, ef at 1 K changes 8.77% which is much smaller than
that of 49.36% at 100 K. It is worth noting that at 0 K ef remains
10.85% when strain rates are lower than 108 s�1. Another interest-
ing result shown in Fig. 4 is that ef at 100 K is beyond that at 50 K as
et exceeds 1010 s�1. Such a phenomenon was reported as the anom-
alous thermal hardening by Kanel [24] based on their experiments.
Fig. 3. Tensile failure strain versus strain rate for atomic chains. The blue solid line
is obtained by linear fitting to the data below strain rate of 109 s�1. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
Failure behavior of most defect-free crystals (particularly duc-
tile materials) under mechanical loadings is always controlled by
nucleation and propagation of dislocations. The dislocation caused
failure is, therefore, more sophisticated than the breaking of an
atomic chain. So strain rate effect on 2D atomic systems under ten-
sion and shearing were also considered to confirm the variation
trends obtained from 1D systems. Mechanical responses of atomic
planes under various tensile strain rates are quite similar to that of
atomic chains, as shown in Fig. 5. The force-strain curves of atomic
planes indicate that ef is strengthened by strain rates and similar
three typical failure modes are also seen. Snapshots in Fig. 6 show
the fracture configurations of atomic planes under tensile strain
rate of 1.0 � 105 s�1, 1.0 � 1010 s�1, 5.0 � 1010 s�1, separately. Con-
figuration observation indicates that the atomic plane failure in
Fig. 6(a) (mode I) is caused by sliding along specific directions.
With the strain rate increasing, atomic planes undergo a brittle
fracture as shown in Fig. 6(b) where the atomic plane breaks into
two parts; this is corresponding to failure mode II. Fig. 6(c)
sketches mode III in which active atoms separate from fixed
boundaries as the atomic plane is stretched with a strain rate
higher than 5.0 � 1010 s�1. The failure behavior of mode III is very
similar to the breaking of atomic chains.

Variation of ef for atomic planes under different tensile and
shearing strain rates is also plotted in Fig. 6. Again, the variation
trend of atomic planes is similar to that of atomic chains. However
the loading strain rates of 2D systems are limited to above
Fig. 5. Boundary forces vary with tensile strain for atomic planes under various
strain rates.



Fig. 6. Failure strain versus strain rate for atomic planes under shear and tensile
loadings. Insets are fracture snapshots under various tensile strain rates.

Fig. 7. A 3-atoms model (a) and variation of atomic frequencies (b) with nominal
strain obtained from MD simulations and harmonic approximation. Insets show
atomic potential landscapes at different strain.
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1.0 � 105 s�1 due to the increase of atom number. Although strain
rates used in 3-D system simulations are always above
1.0 � 108 s�1, similar 3 strain rate regions have been reported pre-
viously in MD simulations of 3-D nickel nanowires [15].
4. Discussion

4.1. Timescales involved in the fracture of atomic systems

Both 1D and 2D simulation results show 3 typical failure modes
and a distinct transition strain for the dependency of ef on strain
rate _e. To reveal the physics under the phenomenon, we focus on
the dependent variables involved in the simulations: timescales.
Atomic motion of the simulated systems can be divided into two
parts: one is the thermal vibration in potential wells and the other
is deformation controlled by external loadings. Generally, charac-
teristic timescales involved in the two parts are quite different
and can vary with external conditions. Specifically, the timescale
of deformation td can be determined by the imposed strain rate,
i.e. 1= _e; while the timescale of thermal vibration is related to the
atomic vibration period tv (the reciprocal of frequency). In this
work, the characteristic period t�v can be evaluated by the material

and potential parameters:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr2

0=e0

q
(about 10�13 s). Normally, td in

experiments is about 1 ms to 1 s which is at least 10 orders of mag-
nitude larger than t�v .

While td is fixed by a specific strain rate, tv of an atom can
change with strain or the interatomic distance. To make this clear,
a simple 3-atoms model is considered, see Fig. 7(a). The 3 atoms
are aligned along a straight line with the left one fixed at the origin,
the middle one free to move and the right one controlled by exter-
nal velocity tb. Vibration frequency and potential landscape of the
free atom are plotted against strain in Fig. 7(b). The atomic fre-
quency at a specific strain marked as MD is calculated from the
reciprocal of vibration period which is twice the average time for
the free atom moving from the leftmost to rightmost point in
MD simulation; while the harmonic approximated frequency is
calculated from the second derivative of the potential well at its
minimum [25]. The potential landscape at a specific strain is
obtained by evaluating potential energies of the free atom at differ-
ent coordinates around its average position. At point A in Fig. 7(b),
the free atom vibrates with a high frequency (or a short period) in
its potential well which has only one minimum. As the interatomic
distance increases, the potential well becomes wider and atomic
frequency decreases. At point B, the second derivative of the poten-
tial well at the minimum becomes zero which is indicated by the
harmonic approximated frequency. After point B, the potential
landscape splits into two minimums at the middle point, yet the
free atom have enough kinetic energy to climb over the potential
barrier. At point C, atomic kinetic energy almost equal to that of
the potential barrier and its frequency is close to zero. It means
that the free atom move very slowly with a very long period. After
point C, the free atom just vibrates around one of the potential
minimums and its frequency increases. Therefore, during the ten-
sile process, td remains the same while tv changes dramatically
due to the evolution of atomic potential landscape.

Point C in Fig. 7(b) is a singularity for the 3-atoms model and
can be analogous to the failure strain of atomic chains. Evolution
of atomic potential landscape in strain region near point C is quite
critical for the failure of atomic system. Let us take a small strain
region DeC = 1% before point C for consideration. Frequency of the
middle atom at eC � DeC decreases to less than 0.1 of the character-
istic frequency, or tv is about 10�12 s. On the other hand, td over the
region will be DeC= _e. When the loading strain rate is rather slow,
e.g. _e in failure mode I, td (>10�10 s) is much longer than tv. There-
fore the middle atom has enough time to adjust its thermal vibra-
tion in order to adapt the change of potential landscapes. Then the
failure of atomic system will be controlled by kinetic energy of the
middle atom and the height of potential barrier. For the other
extreme, e.g. _e in mode III with strain rate faster than 1011 s�1, td

(<10�13 s) is shorter than tv. For this case, there is no sufficient time
for the middle atom to finish a complete thermal vibration within
the time of td. That is, the middle atom will fail to ‘‘feel’’ the rapid
movements of the right atom after the interatomic distance
exceeds rcut. So failure is dominated by the external velocity which
determines the time when the interatomic distance between the
middle and right atoms reach to rcut. That is why mode I failure
of 2D atomic systems shows atomic sliding in the free region while
mode III shows brittle fracture at the interface between active and
fixed atoms, see Fig. 6(a) and (c). Finally for mode II with strain
rates between that of mode I and III, td is comparable to tv over
region DeC, then coupling of the atomic thermal vibration and evo-
lution of potential landscape plays an important role. Conse-
quently, failure mode II in Fig. 6(b) demonstrates a more
complicated fracture character mixed with that of both modes I
and III. It is the competition between td and tv that lead to the tran-
sition of failure modes and mechanisms. Specifically, mechanisms
underlying the rate effect with failure modes I and II are discussed
in details.



Fig. 8. Atomic trajectories in potential landscape under various boundary velocities
(tb) for a 3-atoms model.
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4.2. Thermal activation explanation to failure mode I

Since td is much longer than tv for mode I, fracture of atomic
chains can be determined by the current kinetic energy and poten-
tial barrier. In other words, an atomic chain will break if it has
enough kinetic energy to climb over the potential barrier. It is a
typical thermal activation process and a dependence of ef on _e
can be established using the Arrhenius-type equation [26]

_ef ¼ _e0e�
DUðeÞ

kT ; ð2Þ

where _ef is the failure strain rate [16,26,27]; _e0 is a pre-exponential
constant or a characteristic strain rate; DU is the activation energy
for failure which is a function of the current strain e; k is the Boltz-
man constant and T is the absolute temperature. A similar postula-
tion used in [16] is introduced: when _ef equals the imposed strain
rate _e, the atomic system will failure and can no longer support
loads, i.e.,

_ef � _e: ð3Þ

Then Eq. (2) can be rewritten and _e can be connected with the fail-
ure strain ef as

_e ¼ _e0e�
DUðef Þ

kT ; ð4Þ

where DU(ef) is the activation energy at ef. In order to evaluate
DU(ef), an atomic chain with periodic boundary condition and
described with the L–J potential of Eq. (1) is considered. If the inter-
atomic distance is a0 when the atomic chain is at stress-free state,
then the per-atom potential energy (summation of L–J potentials
over all neighbors of an atom) at strain e is

/ðeÞ ¼ C12ð1þ eÞ�12 � C6ð1þ eÞ�6
; ð5Þ

where C12 ¼ 4e0
r0
a0

� �12P1
n¼1

1
n12 and C6 ¼ 4e0

r0
a0

� �6P1
n¼1

1
n6 are summa-

tion constants. The stress-free interatomic distance a0 can be deter-
mined by condition

/0ð0Þ ¼ �12C12 þ 6C6 ¼ 0 ð6Þ

which can be numerically evaluated as a0 = 1.1193r0. Therefore,
DU(ef) can be calculated as the difference between per-atom poten-
tial energy at ef and the unstable strain em for the atomic chain:

DUðef Þ ¼ /ðemÞ � /ðef Þ: ð7Þ

where em can be determined by the unstable condition

/00ðemÞ ¼ 0: ð8Þ

Combining the second derivative of Eqs. (5) and (8), we can get
em = 10.87%. This value agrees well with the simulation results of
ef for atomic chain at 0 K which remains about 10.85% when strain
rates are slower than 108 s�1. em can also be understood as the the-
oretic failure strain or the ceiling of ef for atomic chains with failure
mode I. Since ef of mode I in Fig. 3 is approaching to em, Eq. (5) can be
Taylor expanded near em:

/ðeÞ ¼ /ðemÞ þ /0ðemÞðe� emÞ þ
1
2

/00ðemÞðe� emÞ2

þ oððe� emÞ2Þ: ð9Þ

Recalling Eq. (8), we can get the second-order approximation of
/(e) around em as

/ðeÞ � /ðemÞ þ /0ðemÞðe� emÞ: ð10Þ

So the activation energy in Eq. (7) can be approximated as

DUðef Þ � /0ðemÞðem � ef Þ: ð11Þ

By substituting Eq. (11) into Eq. (4), finally we get an approximated
relationship between ef and _e:
ef ¼
kT

/0ðemÞ
ðln _e� ln _e0Þ þ em ð12Þ

Eq. (12) indicates that ef is proportional to temperature T which
is consistent with the MD results obtained above. Moreover, Eq.
(12) also shows that ef is linear proportional to ln _e with a slope
of kT//

0
(em). Specifically, for the atomic chains with initial temper-

ature of 50 K, the slope is evaluated to be 1.324 � 10�3 which is
well consistent with that, 1.243 � 10�3, fitted with the simulation
data in Fig. 3, with a minor error less than 6%. It should be men-
tioned that since temperature of the system decreases from 50 to
21 K during tension, the theoretical slope is calculated using the
temperature of 21 K which reflects the amount of kinetic energy
to overcome the potential barrier at ef. According to Eq. (12), the
slope goes to zero and ef remains em at 0 K which is consistent with
the simulation result in Fig. 4. These results indicate that the ther-
mal activation model shows a good competence for the explana-
tion of strain rate effect with failure mode I observed in MD
simulations.

4.3. Coupled evolution of atomic motions and potential landscapes

As mentioned above, failure mode II of atomic systems is con-
trolled by the coupling of two timescales; and it is hard to be the-
oretically analyzed. In order to clarify the mechanism involved, the
3-atoms model is employed again to extract a phenomenological
explanation. Fig. 8 shows trajectories of the middle atom in poten-
tial landscapes under various boundary velocities tb.

The 3D landscape in Fig. 8 is generated by calculating the poten-
tial energies of the free atom at different positions (x coordinates)
and strains (e). It can be seen that the atomic potential landscape
splits at a critical strain ecr (similar to em of an atomic chain). After
ecr, the atom slips into one of the two minimums and vibrates in a
new potential well. For failure mode II, the force-drop strain edrop

(equivalent to ef of an atomic chain) observed in the strain-force
curve of 3-atoms model is corresponding to the strain at which
the atom locates at the new local minimum of potential landscape
(see insets in Fig. 9). Since the atomic frequency near ecr

approaches to zero (point C in Fig. 7), the middle atom can move
with a very slow velocity which is comparable to the external
velocity tb. As a result, a ‘‘dragging effect’’ by tb is acted on the
movement of the middle atom. At the moment, the coupled evolu-



Fig. 9. Force-drop strain as a function of strain rate for a 3-atoms model. Insets
illustrate an atom moves from the ‘‘hilltop’’ to the ‘‘valley bottom’’ of a potential
landscape during tensile process.
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tion of atomic motions and potential landscapes becomes a domi-
nant and a faster tb leads to a greater edrop, see Fig. 8. In other
words, for mode II, the faster _e is applied, the greater ef will be
obtained from the strain-force curve. Due to different mechanisms,
the incensement of ef with _e for mode II can be faster than that of
mode I. edrop of the 3-atoms model is plotted against _e in Fig. 9. The
_e dependency of edrop is quite similar to that of atomic chain simu-
lations with failure mode II in Figs. 3 and 4. It is worth noting that
edrop is greater than ecr = 10.87%. Similarly in the simulation of
atomic chains, we can get ef greater than em (see Fig. 2) and it is also
a result of the coupling effect. Moreover, we can predict that a fast
ti in Fig. 9 at a high temperature will lead to a large edrop. Thus the
anomalous thermal hardening phenomenon mentioned in Section
3 can be observed.

5. Conclusions

The strain rate effect commonly observed in experiments is
analyzed using MD simulations. Models including a 1D atomic
chain, a 2D atomic plane and a 3-atoms system are examined to
clarify fundamental mechanisms underlying the strain rate effect.
Tensile deformation of the 1D atomic chain certifies the strain rates
ð _eÞ dependency of failure strain (ef), with _e ranging from 4.28 � 102

to 1.0 � 1012 s�1. Three typical failure modes with different
mechanical responses are detected. The strain rate dependency is
also confirmed in the tensile and shear simulations of 2D atomic
planes. Analysis combining simulation results and a 3-atoms
model manifests that two characteristic timescales, the timescale
of atomic thermal vibration (tv) and external deformation (td), are
involved in the strain rate effect. It is found that although td may
remain unchanged during a loading process, tv can dramatically
change with the evolution of potential landscapes. It is the compe-
tition of the two timescales that lead to the three failure modes and
transition of mechanisms. Specifically, for failure mode I with td

much longer than tv, the thermal activation theory shows a good
competence for explaining the strain rate dependency. The theory
indicates that ef of atomic chains shows a linear dependency on ln _e
with a slop of kT//

0
(em). The evaluated theoretical slop shows well

consistent with simulated data. For failure mode II with td compa-
rable to tv, the coupled evolution of atomic motions and potential
landscapes becomes a dominant for the dependency of ef on _e.
Finally for the failure mode III with td shorter than tv, the failure
is a result of the rapid separation between loading and deformation
parts of the atomic system.
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