
Range effect on percolation threshold and structural properties for short-range
attractive spheres
Jiachen Wei, Limei Xu, and Fan Song 
 
Citation: The Journal of Chemical Physics 142, 034504 (2015); doi: 10.1063/1.4906084 
View online: http://dx.doi.org/10.1063/1.4906084 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/142/3?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
From the depletion attraction to the bridging attraction: The effect of solvent molecules on the effective
colloidal interactions 
J. Chem. Phys. 142, 084904 (2015); 10.1063/1.4913197 
 
Interfacial and coexistence properties of soft spheres with a short-range attractive Yukawa fluid: Molecular
dynamics simulations 
J. Chem. Phys. 136, 154702 (2012); 10.1063/1.3703507 
 
Thermodynamic properties of short-range attractive Yukawa fluid: Simulation and theory 
J. Chem. Phys. 132, 114108 (2010); 10.1063/1.3357352 
 
How short-range attractions impact the structural order, self-diffusivity, and viscosity of a fluid 
J. Chem. Phys. 127, 044502 (2007); 10.1063/1.2753154 
 
Phase separation and percolation of reversibly aggregating spheres with a square-well attraction potential 
J. Chem. Phys. 125, 184512 (2006); 10.1063/1.2378832 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

159.226.199.8 On: Tue, 17 Mar 2015 03:40:25

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/956891792/x01/AIP-PT/JCP_ArticleDL_0315/PT_SubscriptionAd_1640x440.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Jiachen+Wei&option1=author
http://scitation.aip.org/search?value1=Limei+Xu&option1=author
http://scitation.aip.org/search?value1=Fan+Song&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4906084
http://scitation.aip.org/content/aip/journal/jcp/142/3?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/8/10.1063/1.4913197?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/8/10.1063/1.4913197?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/15/10.1063/1.3703507?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/15/10.1063/1.3703507?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/132/11/10.1063/1.3357352?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/127/4/10.1063/1.2753154?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/125/18/10.1063/1.2378832?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 142, 034504 (2015)

Range effect on percolation threshold and structural properties
for short-range attractive spheres

Jiachen Wei,1 Limei Xu,2,3,a) and Fan Song1,a)
1State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences,
No. 15 Beisihuanxi Road, Beijing 100190, China
2International Center for Quantum Materials and School of Physics, Peking University, No. 5 Yiheyuan Road,
Beijing 100871, China
3Collaborative Innovation Center of Quantum Matter, Beijing, China

(Received 12 October 2014; accepted 5 January 2015; published online 21 January 2015)

Percolation or aggregation in colloidal system is important in many fields of science and technology.
Using molecular dynamics simulations, we study the percolation behavior for systems consisting
of spheres interacting with short-range square-well (SRSW) which mimic colloidal particles, with
different interaction ranges. We specifically focus on how the interaction range affects the perco-
lation thresholds in the supercritical region. We find that the contact percolation boundaries are
strongly dependent on the interaction ranges of SRSW, especially away from the liquid-liquid critical
point. However, varying the interaction ranges of SRSW does not affect much the structure along
percolation boundaries especially for low packing fractions. For instance, along the percolation
boundary, distributions of coordination number show convergence, and distributions of cluster size
are universal for different interaction ranges considered. In addition, either the bond percolation
boundaries or isolines of average bond coordination number collapse to those for Baxter sticky model
on phase diagram, which confirms the extended law of corresponding states. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4906084]

I. INTRODUCTION

Percolation has long been studied in the past few de-
cades,1–12 and percolation theory has been widely applied to
the analysis of the aggregation behavior of small particles,
such as colloids, spherical proteins, and micelles.13–20 The
percolation threshold (PT) refers to the point at which colloidal
particles aggregate to form an infinite cluster that spans the
suspension. Such phase transition dramatically alters the orig-
inal structure of the system, leading to changes in bulk conduc-
tivity21,22 and mechanical property.23,24 In addition, inside the
percolated regime, when the system is further compressed or
quenched, dynamical arrest and gelation of colloidal particles
could occur.13,16–18,25–27 Thus, in-depth research on percolation
in colloidal system is of great significance in many fields of
science and technology.

It is widely assumed that percolation follows the concept
of scaling. However, according to recent study,8 whether the
probability of percolation exhibits scaling depends on the span-
ning rule.8 In fact, Skvor et al.8,10,11 determined the PTs of
fluids with short-range interaction. They found that only the
wrapping probability of percolation can be described by uni-
versal scaling functions, which enables the estimation of PT
in fluid in general. Using the same criteria as above, Neitsch
et al.12 determined the PTs of square-well fluids and obtained
the universality of the critical exponents.

a)Authors to whom correspondence should be addressed. Electronic ad-
dresses: limei.xu@pku.edu.cn and songf@lnm.imech.ac.cn

The scaling behavior described above is mainly for models
with short-range interaction showing metastable liquid-liquid
critical point (LLCP) and liquid-liquid phase separation line.
Short-ranged attractions6–10,28 between colloidal particles are
commonly used to describe interactions such as hydrophobic
effect, van der Waals force, or surface chemical bonding.28 The
loci of the LLCP and phase separation line are very sensi-
tive to the attractive range between particles,29–32 yet how the
attractive range affects the loci of PTs is not much investi-
gated. Therefore, determining the PTs with different interac-
tion ranges is of great interest. In addition, we will discuss how
distributions of coordination number and cluster size change
near PT. Particularly, we focus on intermediate volume frac-
tions, where percolation transition often takes place. To avoid
the interruption of phase separation and crystallization, we
limit our discussion to the percolation transition and relevant
structural transformation in supercritical state.

Molecular dynamics (MD) simulation was implemented
in previous researches on spherical colloids.9,14,20,33–39 In
our study, due to its advantages in dealing with discretized
potentials, the event-driven MD40 is employed to determine
the loci of PTs for two types of percolation (namely,
contact percolation and bond percolation, see Sec. II) and to
investigate the structural properties of the colloidal system. We
find that the PTs for contact percolation are strongly dependent
on the range of the inter-particle interactions, particularly
in the region away from the LLCP. However, PTs for bond
percolation with different interaction ranges collapse to the
PT for Baxter sticky model. The manuscript is organized as
follows: Sec. II introduces the model and simulation methods.

0021-9606/2015/142(3)/034504/7/$30.00 142, 034504-1 © 2015 AIP Publishing LLC
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The determination of the PTs and the analysis of structural
properties near percolation transition are presented in Sec. III.
Sec. IV is the summary.

II. SIMULATION METHOD

A. The model

Colloidal particles are considered as impenetrable hard-
spheres devoid of internal degrees of freedom with diameter
σ. According to Noro-Frenkel extended law of corresponding
states,41 phase properties are insensitive to the specific shape
of the interaction potential for short-range attractive system.
Thus, we set the interaction between two spheres as pair-
wise short-range square-well (SRSW) potential,29–31,33–35,41,42

which serves as the basic state for understanding the role of
attractions in phase transition process,

U(r)=



∞ for r < d
−U0 for d < r < dλ,
0 for r > dλ

(1)

where U0 is the well depth, λ controls the well width, r is the
particle distance, and d represents the contacting distance. For
single component system, d =σ. We note that when λ→ σ and
U0→ ∞, the SRSW model is the Baxter sticky model.43 In our
study, U0 and σ are the units of energy and length, respectively.
T∗= k

B
T/U0 is the reduced temperature.

For our model, the second virial coefficient, B2, is given
as

B2= 4π
 ∞

0


1−exp

(
−U(r)
kBT

)
r2dr. (2)

Combining Eq. (1) and Eq. (2), we obtain the reduced second
virial coefficient, B∗2, by

B∗2 =
B2

BHS
= 1−


exp

(
U0

kBT

)
−1

 �
λ

3−1
�
, (3)

where BHS = 4 πσ3

3 is the second virial coefficient of hard

sphere system. According to Noro-Frenkel extended law of
corresponding states,6,7,15,41 all systems consisting of short-
range attractive particles near LLCP are characterized by the
same thermodynamic properties at the same B∗2.

B. Simulation details

Our system consists of N mono-particles interacting with
SRSW potential, contained in a cubic box of size L. Using
canonical ensemble (constant number of particle, volume and
temperature, NVT-ensemble), we carry out event-driven MD
simulation by employing periodic boundary condition.

All the initial configurations are prepared as follows. First,
N particles are uniformly distributed on FCC crystal lattice to
prevent overlaps. The system is then compressed and equili-
brated to reach the targeted packing fraction φ = πσ3N/6L3.
The system is quenched to the desired temperature from high
temperature (T∗ = 10, far above the metastable liquid-liquid
phase separation line on a phase diagram27,32) using Andersen

thermostat. Additional long run (at least 107 events) is per-
formed to equilibrate the system. Equilibration can never be
realized if the system crosses the phase separation line.7 We do
not consider polydispersity since crystal phases barely occur
within the density and temperature range of our interest.

C. Cluster and coordination number

The cluster refers to a group of particles that are connected
to one another. For our model, we can either define cluster as
contact cluster or bond cluster. The contact cluster refers to
an ensemble of particles that are within the interaction range
of each other, i.e., r < λσ for SRSW potential. The contact
coordination number z of a given particle is the number of
particles in contact with it. The average contact coordination
number, ⟨z⟩, is obtained by averaging z over the system. The
distribution of contact cluster size n(s) is obtained by adding
up the number of contact clusters of size s. To avoid biased
presentation towards small-sized clusters, here, we employ
Stauffer’s method1 to normalize n(s) by

n0(s)= s
N

n(s), (4)

where n0(s) is normalized distribution of contact cluster size.
In our study, the average contact aggregation number, ⟨s⟩,

and the weight average contact aggregation number, ⟨s⟩w, are
defined as

⟨s⟩≡
N
s=1

s×n(s)
N
s=1

n(s)
, (5)

⟨s⟩w ≡


s2�

⟨s⟩ =
N
s=1

s2×n(s)
N
s=1

s×n(s)
. (6)

⟨s⟩ represents the average size of a randomly chosen cluster and
⟨s⟩w represents the average size of a cluster that a randomly
chosen particle belongs to. We note that the numerator in
Eq. (5) and the denominator in Eq. (6) actually are equal to
N because ⟨s⟩ is equal to the total number of particles divided
by total number of clusters.

An alternative way to define cluster is based on potential
energy U(r). For each configuration, we construct fictitious
bonds between any pairs of particles with bond probability
P(r) = 1− exp

�
U(r)/k

B
T
�
. Since the potential that we use is

square-well interaction, particles are bonded with probability
P = 1−exp

�
−U0/kB

T
�

only when they are within the interac-
tion range of each other. We note that this criterion is analogous
to those of Hill cluster44 and Coniglio-Klein cluster for lattice
gas model45 with a different coefficient in the fictitious bond
probability, PCK(r)= 1−exp

�
U(r)/2k

B
T
�
.

The bond cluster is then defined as an ensemble of parti-
cles that are linked by bonds.20,37,38,46 Accordingly, z∗= P× z
represents the bond coordination number, and ⟨z∗⟩= P × ⟨z⟩
represents the average bond coordination number of the sys-
tem. By adding up the number of bond clusters of size s,
we get the distribution of bond cluster size n∗(s). We can
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accordingly calculate the average bond aggregation number,
⟨s∗⟩, and weight average bond aggregation number, ⟨s∗⟩w.

D. Determination of critical packing fraction

Among various criteria for percolation, we choose the
wrapping rule, under which the finite size scaling is obeyed.
According to this criterion, a cluster wraps (percolates) the
system when any particle within the cluster is connected to
its image in another replica.8,10 In our study, if the cluster that
wraps the system is a contact cluster, the percolation is called
contact percolation, while if a bond cluster wraps the system,
it is called bond percolation. For each percolation in our study,
there exists a PT, also known as the critical packing fraction,
φc, which is a function of B∗2 and λ, i.e., φc(B∗2,λ).

For fixed B∗2 and λ, the probability, Ω, of a cluster that
wraps system can be written as a function of packing fraction φ
and box size L, i.e., Ω(φ, L). In thermodynamic limit, the box
size approaches infinity (L→ ∞), and Ω(φ, L) evolves into a
step function that jumps at φ= φc. For φ < φc, Ω = 0, and for
φ > φc,Ω= 1. In finite size simulation, the probability function
of percolation, Ω(φ, L), is of the sigmoidal shape. We test at
least three system sizes with N varying from 864 to 6912 for
each B∗2 in the supercritical region (Fig. 1(a)). At each φ, the
corresponding Ω(φ, L) is obtained by calculating the ratio of
percolated configurations among at least 105 configurations
(separated by 3× 105 collision events) for the largest system
(N = 6912) and 6×105 for the smallest system (N = 864). φc

and the critical probability for percolation transition Ωc are

FIG. 1. (a) The probability of percolation, Ω, as a function of packing
fraction, φ, for systems of three different sizes at B∗2= 0.5 and λ= 1.01. (b)
The same as (a) for Ω as a function of the scaling variable, x.

obtained within error bar from the intersection of the proba-
bility curves for different N (Fig. 1(a)).

For more accurate determination of φc,10 we use the scal-
ing variable x = (φ−φc)L1/ν (ν is the correlation length expo-
nent), so that the percolation probability turns into a function
of the single variable x. In this situation, all theΩ(φ, L) curves
plotted for different system sizes fall onto a single Ω(x) curve
independent of system size L. To obtain φc, we fit the numer-
ical results using the master function5

Ω(x)= 1
1+exp

�5
i=0aixi

� , (7)

with eight fitting parameters ({ai}, ν, and φc). Exemplified in
Fig. 1(b), the data obtained for different system sizes do fall
onto a single master curve, consistent with the prediction of
the scaling theory.5

It is interesting to note that both the probabilities of contact
percolation and bond percolation follow the scaling behavior.
Therefore, the method mentioned above can be employed to
determine both contact PTs and bond PTs.

III. RESULT AND DISCUSSION

Since the extended law of corresponding states only works
effectively for extremely short-range attractive potentials (no
more than 10% of the particle size),32,42 we limit our study to
three attraction range values, λ= 1.01, 1.03, and 1.05, without
losing generality.

A. Determination of contact PT

Fig. 2(a) shows the location of contact PTs and the liquid-
liquid phase separation lines with different λ values. As an
ideal reference to the square-well system, the exact location
of the LLCP of the Baxter sticky model43 has been determined
by both simulation and theoretical calculations,15,42 based on
which we obtain the LLCPs of our SRSW systems by mapping
the phase diagram.12,42 The liquid-liquid phase separation lines
with λ = 1.01 and λ = 1.05 are derived from Monte Carlo
simulation.27,32

For different interaction ranges, employing the definition
of contact cluster and the spanning rule mentioned above, we
determine the three groups of contact PTs. The loci of PTs form
the percolation boundary (percolation line), which separates
the phase diagram into a percolated and an unpercolated part.
The contact percolation boundaries with different values of
λ show dispersion (Fig. 2(a)). For instance, the percolation
boundaries are more dispersed when B∗2 is larger and more
converged as B∗2 decreases, consistent with the extended law
of the corresponding state valid in the vicinity of the LLCP.41

In addition, at fixed B∗2, the critical packing fraction for
contact percolation can be written as a function of λ, i.e., φc(λ).
As λ decreases, φc(λ) becomes larger. If the well-width gradu-
ally approaches zero (that is U0→ ∞), the contact percolation
boundary of SRSW system in our study is that of Baxter sticky
model,43 the dotted line as shown in Fig. 2(a). We note that,
at the same B∗2, φc(λ= 1.01)−φc(λ= 1.03) is larger than φc(λ
= 1.03) − φc(λ = 1.05), suggesting that the location of the
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FIG. 2. Phase diagram for SRSW system. (a) The contact and bond PTs,
and (b) isolines ⟨z⟩ = 2 and ⟨z∗⟩ = 2 for different λ. Green and navy stars
are phase separation lines as well as mapped LLCPs for λ = 1.01 and 1.05,
respectively. Black solid lines represent contact percolation boundaries. Black
dotted line in (a) is the percolation boundary for Baxter sticky model. Two
groups of blue triangles in (a) are bond PTs for λ = 1.01 and 1.05. The red
dashed lines in (b) represent ⟨z⟩ = 2 isolines. Pink dotted lines with pentagon
symbols in (b) are ⟨z∗⟩ = 2 isolines for λ = 1.01 and 1.05. All lines between
symbols are to guide the eye. The error bars are smaller than symbol sizes.

contact percolation boundary becomes less sensitive to the λ
value with the increase of λ. In contrast, the critical probability
for contact percolation Ωc (∼0.37) is independent of the value
of B∗2 and λ. The correlation length exponent for contact perco-
lation ν is also independent of the value of B∗2, but slightly
dependent on λ, e.g., ν = 0.97 for λ = 1.01 and ν = 0.95 for
λ= 1.05.

B. Analysis of contact coordination number

The isoline for ⟨z⟩= 2, regarded as a good approximation
of the contact percolation boundary predicted by mean field
theory,27,47 is plotted in the phase diagram shown in Fig. 2(b).
However, when B∗2 is either too large or too small, as can be
seen from Fig. 2(b), the ⟨z⟩= 2 isoline seriously deviates from
the contact percolation boundary. To test the interaction range
effect on the locations of the isolines, we discuss three cases,
λ= 1.01, 1.03, and 1.05. The dispersive feature of the isolines
shown in Fig. 2(b) means that the distance between the isolines
of different λ is positively correlated to the value of B∗2. Similar
results are observed for other ⟨z⟩ isolines (not shown). In all
three interaction ranges considered, the contact percolation
boundaries and ⟨z⟩= 2 isolines cross around B∗2 =−0.2, labeled
by the horizontal dashed line.

Next, we investigate the structure changes in terms of the
distribution of contact coordination number, Π(z), at different
thermodynamic state points near percolation transition. The
distributions along contact percolation boundary for different

FIG. 3. (a) The distribution of contact coordination number,Π(z), along con-
tact percolation boundary. (b) Π(z) of system at different packing fractions,
φ, with B∗2 = 0.7. (c) Π(z) of system at different φ with B∗2 = −0.7. The solid
and the dashed lines represent Π(z) for λ = 1.05 and λ = 1.01, respectively.
See the legend for the meaning of the symbols.

B∗2 are presented in Fig. 3(a), which are asymmetric function
of z with maxima located at z = 1 or z = 2. For B∗2 increases
from −0.7 to 0.9, Π(z) increases for small z < 2 and decreases
for larger z > 3. This indicates that the average contact coordi-
nation number, ⟨z⟩=∞

z=0 z×Π(z), is negatively correlated to
B∗2. Fig. 3(a) also shows that, at the same B∗2, Π(z) for different
λ are more or less the same for negative B∗2, but different for
positive B∗2. The difference becomes more obvious for B∗2 > 0.5.
Π(z) along the isoline ⟨z⟩= 2 for different λ are less dispersed,
compared with those in Fig. 3(a) (see supplementary material).

To reveal the evolution of Π(z) before and after percola-
tion occurs, we investigate the behavior of Π(z) for different
φ with B∗2 fixed. Fig. 3(b) is the results for B∗2 = 0.7. The
peak positions of Π(z) increase with the increase of φ. In
addition, Π(z) is different for different interaction ranges, λ.
The difference in Π(z) for same φ but different λ becomes
larger for higher packing fraction. We also study Π(z) for B∗2
= −0.7 (Fig. 3(c)). We find that at fixed φ, the difference in
Π(z) for different λ is very minor, different from the case for B∗2
= 0.7. This indicates the convergence of structural properties
for systems with different λ when B∗2 becomes smaller.

C. Analysis of contact cluster

Fig. 4 presents the average contact aggregation number
⟨s⟩ and the weight average contact aggregation number ⟨s⟩w
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FIG. 4. (a) The average contact aggregation number, ⟨s⟩, as a function of
packing fraction, φ, at different B∗2. (b) The weight average contact aggrega-
tion number, ⟨s⟩w, as a function of φ at different B∗2. Dotted lines indicate
contact PTs at different B∗2. Error bars provide the standard deviation after
averaging at least 105 configurations. All the results are obtained for λ = 1.05.
See the legend for the meaning of the symbols. All lines are guides to the eyes.

for systems with λ= 1.05 at different B∗2. Both of these quan-
tities increase dramatically as the colloidal system becomes
more compact. At different B∗2, the value of contact PTs varies
(Fig. 4, dotted lines). The values of ⟨s⟩ and ⟨s⟩w at contact
PT are very close to their corresponding values for different
B∗2. For instance, at contact PT, the critical average contact
aggregation number, ⟨s⟩c ∼ 5, and critical weight average con-
tact aggregation number, ⟨s⟩cw ∼ 1000, respectively. We note
that the larger the value of B∗2, the smaller the values of ⟨s⟩c
and ⟨s⟩cw, highlighted by downward-sloping dashed lines in
Fig. 4. At PT, ⟨s⟩ is rather small (∼ 5), while ⟨s⟩w is quite large
(∼ 1000). This implies that the cluster size polydispersity,
which is proportional to ⟨s⟩w/⟨s⟩,38 reaches its peak value.

Next, we investigate how ⟨s⟩ depends on the interaction
range, λ. As shown in Figure 5, for fixed B∗2 = 0.7, ⟨s⟩ for
λ= 1.05 and 1.01 are different. The higher the values of φ, the
larger the discrepancy in ⟨s⟩ for two different λ at the same
packing fraction. When the system is not percolated (φ < φc),
similar behavior is observed in ⟨s⟩w for two different λ with
the increase of φ (not shown). Fig. 5 also shows the results for
two interaction ranges at fixed B∗2 =−0.7. We find that, at the
same φ, the difference in ⟨s⟩ for different λ is much smaller,
compared with the case for B∗2 = 0.7, consistent with the results
in Sec. III A and Sec. III B.

Fig. 6(a) shows the normalized distribution of contact
cluster size, n0(s), for different φ at B∗2 = 0.7. n0(s) decreases
monotonically with cluster size s when the system is not perco-
lated. Upon percolation at φ = 0.3, n0(s) obeys a power law
behavior.5 Fig. 6(b) shows n0(s) along contact percolation
boundary, which collapse to the same curve, n0(s)∝ s1−τ, with

FIG. 5. The average contact aggregation number, ⟨s⟩, as a function of pack-
ing fraction, φ, for λ = 1.01 and 1.05 at different B∗2. Error bars provide the
standard deviation after averaging at least 105 configurations. See the legend
for the meaning of the symbols. Solid and dashed lines are guides to the eyes.

τ the Fisher exponent, τ = 2.08 for B∗2 = −0.7, and largest τ
= 2.17 for B∗2 = 0.9. After percolation at φ > φc, the system then
separates into a sol-like part with small-sized clusters and a gel-
like part with large-sized clusters (Fig. 6(a)). More discussion
is provided in supplementary material.48

D. Determination of bond PT and analysis of relevant
structure changes

Similar to the estimation of the loci of contact PTs, we
estimate the loci of bond PTs. For comparison, we plot these
two results together in Fig. 2(a). Quite different from the loci
of contact PTs with different interaction ranges, which are

FIG. 6. (a) The normalized distribution of contact cluster size, n0(s), of
systems at different packing fractions, φ, with B∗2 = 0.7. (b) n0(s) of systems
along contact percolation boundary. Solid lines represent fitting curves for the
power law decay of n0(s) upon percolation. All the results are obtained for
λ = 1.05. See the legend for the meaning of the symbols.
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dispersed, the loci of bond PTs with different λ (λ = 1.01, λ
= 1.05) merge with the percolation boundary of Baxter sticky
model possibly due to the obeying of the extended law of
corresponding state. The trade-off between interaction range
and statistical weight for bond probability may account for
the collapse of bond percolation boundaries, which deserves
further investigation.

Different from the critical probability for contact percola-
tionΩc ∼0.37 for different B∗2, the critical probability for bond
percolation Ω∗c increases when B∗2 increases. For λ= 1.01, Ω∗c
= 0.42 at B∗2 = 0.7, and Ω∗c = 0.37 at B∗2 = −0.7. For λ = 1.05,
Ω∗c = 0.52 at B∗2 = 0.7, and Ω∗c = 0.40 at B∗2 =−0.7. The corre-
lation length exponent for bond percolation ν∗ is still invariant
to the change of B∗2. For λ= 1.01, ν∗= 0.97, while for λ= 1.05,
ν∗= 0.96.

To study the structure changes near the bond percolation
boundary, we investigate the behavior of average bond coordi-
nation number ⟨z∗⟩ defined in Sec. II C. As can be seen from
Fig. 7, the value of ⟨z∗⟩ is inversely correlated to B∗2 at the same
φ. Different from the average contact coordination number ⟨z⟩,
the magnitude of which is very sensitive to the well-width
(Fig. 2(b)), the magnitude of ⟨z∗⟩ is almost independent of λ
at each thermodynamic state points. As B∗2 increases, ⟨z∗⟩ as
a function of φ changes from convex to concave. An approx-
imately linear relationship of φ − ⟨z∗⟩ is obtained around B∗2
= −0.2, which is the same value as the crossing between the
contact percolation boundary and the ⟨z⟩= 2 isoline shown in
Fig. 2(b).

We also plot ⟨z∗⟩= 2 isolines on phase diagram Fig. 2(b).
As expected, we obtain overlapping isolines for systems with
λ= 1.01 and λ= 1.05. Since at the same thermodynamic condi-
tion ⟨z∗⟩ < ⟨z⟩, ⟨z∗⟩= 2 isolines locate at higher packing frac-
tion, compared with ⟨z⟩= 2 isolines at the same B∗2. When B∗2 is
negative, the value of the bond probability, P, is closer to 100%,
thus the ⟨z∗⟩= 2 isoline is closer to the corresponding ⟨z⟩= 2
isoline at the same B∗2. With the increase of B∗2, P decreases,
so we observe greater distance between ⟨z∗⟩ and ⟨z⟩ isolines at
larger B∗2. For system with infinitesimal well-width and infinite
well-depth, namely, the Baxter sticky model, the ⟨z∗⟩ isoline
superimposes on the ⟨z⟩ isoline, because it has P → 100%.
In fact, the ⟨z∗⟩ isolines and bond percolation boundaries for

FIG. 7. The average bond coordination number, ⟨z∗⟩, as a function of the
packing fraction, φ, for λ = 1.01 and 1.05 at different B∗2. See the legend for
the meaning of the symbols. Solid and dashed lines are guides to the eyes.

FIG. 8. (a) The average bond aggregation number, ⟨s∗⟩, as a function of
packing fraction, φ, at different B∗2. (b) The weight average bond aggregation
number, ⟨s∗⟩w, as a function of φ at different B∗2. Dotted lines indicate bond
PTs at different B∗2. Error bars provide the standard deviation after averaging
at least 105 configurations. All the results are obtained for λ = 1.05. See the
legend for the meaning of the symbols. Solid and dashed lines are guides to
the eyes.

systems with any small values of λ superimpose on those for
the Baxter sticky model.

Fig. 8(a) and Fig. 8(b) demonstrate the average bond
aggregation number, ⟨s∗⟩, and weight average bond aggrega-
tion number, ⟨s∗⟩w, as function of φ, respectively. Compared
to the corresponding ⟨s⟩ and ⟨s⟩w for contact percolation at the
same B∗2 and φ shown in Fig. 4, ⟨s∗⟩ and ⟨s∗⟩w of bond clusters
are smaller, especially for larger B∗2. However, at percolation,
the values of the critical average bond aggregation number,
⟨s∗⟩c, and the critical weight average bond aggregation number,
⟨s∗⟩cw, for bond percolation (Fig. 8, dashed lines) are very

FIG. 9. The average bond aggregation number, ⟨s∗⟩, as a function of packing
fraction, φ, for λ = 1.01 and 1.05 at different B∗2. Error bars provide the
standard deviation after averaging at least 105 configurations. See the legend
for the meaning of the symbols. Solid and dashed lines are guides to the eyes.
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close to the corresponding values of ⟨s⟩c and ⟨s⟩cw for contact
percolation, i.e., ⟨s∗⟩c ∼ 5 and ⟨s∗⟩cw ∼ 1000, highlighted by the
dashed lines in Fig. 8.

We next investigate the dependence of ⟨s∗⟩ on the inter-
action range, λ. As can be seen from Fig. 9, at B∗2 = −0.7,
for same φ, ⟨s∗⟩ for λ = 1.05 is slightly larger than that for
λ = 1.01. Similar results are obtained at other values of B∗2.
However, such difference in ⟨s∗⟩ is very minor, compared to
the difference in ⟨s⟩ at the same packing fraction in Fig. 5. In
addition, we do not observe any increase of the discrepancy
in ⟨s∗⟩ for λ = 1.05 and 1.01 with the increase of B∗2. The
results indicate the convergence of the structural properties for
systems with different interaction ranges after employing the
bond probability into our calculation.

IV. CONCLUSION

To summarize, we investigate the effect of the interaction
potentials (with different interaction ranges of SRSW) on the
percolation boundaries. We find that the probabilities of con-
tact percolation and bond percolation both obey the scaling
behavior. The loci of the contact PTs are strongly dependent
on the interaction ranges of SRSW, especially away from the
LLCP. However, varying the interaction ranges of SRSW does
not affect much the structure along percolation boundaries
especially for low packing fractions. For instance, along the
percolation boundary, distributions of coordination number
show convergence, and distributions of cluster size are uni-
versal for different potential interaction ranges considered. In
addition, either the bond percolation boundaries or the isolines
for average bond coordination number with different interac-
tion ranges collapse to those for Baxter sticky model on phase
diagram, which confirms the extended law of corresponding
states.
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