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A new analytical solution is first proposed to solve the population balance equation due to
Brownian coagulation in the continuum-slip regime. An assumption for a novel variable g
(g ¼m0m2=m1

2, where m0, m1 and m2 are the first three moments, respectively) is
successfully applied in executing a separate variable method for ordinary differential
equations of the Taylor expansion method of moments. The sectional method is selected
as a reference to verify the new solution. The accuracy between the new solution and Lee
et al. analytical solution (Lee et al., 1997, Journal of Colloid and Interface Science, 188, 486–
492) is mainly compared. The geometric standard deviation of number distribution for the
new analytical solution is revealed to be limited to 1.6583. Within the valid range of the
geometric standard deviation, the new analytical solution is confirmed to solve the
population balance equation undergoing Brownian coagulation with the very nearly same
accuracy as Lee et al. analytical solution. For the total particle number concentration, the
new solution usually yields higher accuracy. The new solution and Lee et al. analytical
solution approximately become one solution as the Knudsen number is smaller than
0.1000. The new solution has the potential to become a competitive analytical solution for
solving population balance equation regarding its accuracy and very straightforward
derivation.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

A reliable prediction for aerosol properties including the total particle number concentration, the geometric mean size
and the geometric standard deviation of number distribution has received much attention in emerging fields such as the
risk evaluation of aerosols at workplace, the development of realistic exposure scenarios and the nanoparticle synthesis
process (Buesser & Pratsinis, 2012; Vogel et al., 2014; Yu et al., 2008a, 2008b). For these aerosols, the evolution of particle
size distribution due to Brownian coagulation is unavoidable (Lee & Wu, 2005; Upadhyay & Ezekoye, 2003), which usually
leads to unsteady systems and has been confirmed to determine the aerosol characteristics in almost all ultrafine and
nanoparticle processes(Crowe et al., 2011; Friedlander, 2000). When these processes are theoretically investigated, the
evolution of the size distribution must be captured in mathematical models (Buesser & Pratsinis, 2012; Xie & Wang, 2013;
).
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Nomenclature

A constant (¼1.591)
r particle radius, m
N particle number concentration density, m�3

B2 collision coefficient for the continuum-
slip regime

C Cunningham correction factor
kb Boltzmann constant, J K
Kn particle Knudsen number
mk kth moment of particle size distribution
g m0m2=m1

2

Mk dimensionless kth moment of size distribution
T time, s
T temperature, K
U the point of Taylor-series expansion (m1/m0)
v particle volume, m3

vg geometric mean particle volume, m3

N initial total particle number concentration,
m�3

Greek letters

Ν kinematic viscosity, m2 s�1

Β particle collision kernel
Μ gas viscosity kg m�1 s�1

λ mean free path of the gas, m
σg geometric mean deviation of size distribution
τ dimensionless coagulation time, tN0B2

Abbreviation

PBE population balance equation
TEMOM Taylor expansion method of moments
GSD geometric standard deviation of number

distribution
ODE ordinary differential equation
SM sectional method
QMOM quadrature method of moments
SPSD self-preserving size distribution
PSPSD pseudo-self-preserving size distribution
Log-normal AMM log-normal analytical method of

moments
Log-normal NMM log-normal numerical method of

moments
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Santos et al., 2013; Singh et al., 2013). To meet the requirement, Müller established the integral-differential equation for the
dynamical process in 1928 based on the ground-breaking work of Smoluchowski (Müller, 1928; Smoluchowski, 1917), which
was later called Population Balance Equation (PBE). The PBE has become a basic governing equation to study aerosol
dynamics from then on. However, the analytical solution of this equation, especially in terms of a particle size dependent
coagulation kernel, still remains a challenging issue.

The PBE is a strong non-linear equation with the same mathematical structure as Boltzmann's transport equation. Thus,
an exact analytical solution for it cannot be achieved (Lee et al., 1997; Yu et al., 2008a, 2008b). To solve it analytically, the
group of Prof. Lee in Kwangju Institute of Science and Technology, Korea has performed a series of ground-breaking works in
different specific-size regimes with a log-normal distribution assumption (Lee et al., 1997, 1984; Otto et al., 1999; Park et al.,
1999). These works received much attention because of their ability to capture the evolution of the size distribution.
Another solution deserved to be mentioned to solve the PBE was proposed in 1964 by introducing a similarity
transformation in the size distribution function (Swift & Friedlander, 1964), which is actually an asymptotic solution
independent of the initial size distribution. The idea in the asymptotic solution was currently accepted in studies on
Brownian coagulation processes using the Taylor expansion method of moments (TEMOM) (Chen et al., 2014a; Xie & Wang,
2013). In both the free molecular and continuum regimes, asymptotic solutions exist because the asymptotic status for the
size distribution, i.e., self-preserving size distribution (SPSD), has been verified in both the regimes (Friedlander, 2000).
However, in the continuum-slip regime, especially as the Knudsen number ranges from �0.1000 to �5.0000 (also called the
near-continuum regime), the geometric standard deviation (GSD) of number distribution always varies with the Knudsen
number (Otto et al., 1994; Park et al., 1999; Yu et al., 2011). In this case, the asymptotic solution will no longer exist. In fact,
the asymptotic solution has a fatal shortcoming in that it is not able to capture the evolution of size distribution for the time
period before the self-preserving size distribution is achieved (Lee et al., 1997). Therefore, an alternative solution beyond the
asymptotic status and without the requirement for the pre-defined size distribution becomes necessary.

The TEMOM exhibits a huge potential to achieve the time-dependent analytical solution for the PBE due to its very
simple mathematical structure of equations (Chen et al., 2014b; Xie et al., 2012; Yu et al., 2011; Yu & Lin, 2009a, 2009b).
The key of the TEMOM is that fractal moments in the ordinary differential equations (ODEs) for moments can be replaced by
the following expression (Yu et al., 2008a, 2008b):

mk ¼
uk�2k2

2
�uk�2k2

2

 !
m2þ �uk�1k2þ2uk�1k

� �
m1þ ukþukk2

2
�3ukk

2

 !
m0 ð1Þ

where u is the Taylor expansion point, k is the fractal number, and m0; m1 and m2 are the first three moments. The zeroth
and the first moments represent the total particle number concentration and the total volume concentration, respectively,
while the second moment is a polydispersity variable. In the continuum-slip regime, the TEMOM (Yu et al., 2011) can be
used for the Knudsen number up to 5.0000 (Lee et al., 1997). This method is valid for particles with diameter larger than
�27 nm; thus, this method can be used to resolve almost all Brownian coagulation issues, as shown in Fig. 1. The TEMOM
ODEs have been successfully numerically solved using a highly reliable Runge–Kutta algorithm (Yu et al., 2011).



Fig. 1. Variance of geometric standard deviation of number distribution (σg) with Knudsen number over the entire size regime.
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For an aerosol solely dominated by Brownian coagulation, the SPSD with constant GSDs can be quickly achieved in both
the free molecular regime and the continuum regime (Friedlander, 2000; Otto et al., 1999). Even in the entire size regime,
the GSD of aerosol size distribution only varies in a notably small range (Park et al., 1999). It is believed that the novel
property of GSD was the key in the derivation of the asymptotic solutions and the log-normal analytical solutions. The
TEMOM ODEs in the continuum-slip regime revealed that these equations can be further represented by the first three
moments along with a new variable gð ¼m0m2=m2

1Þ,. Based on a mathematical analysis, the variable g was verified to vary in
a notably small limited range too, which makes it possible for treating g as a constant to simplify the TEMOM ODEs. In this
case, the PBE in the continuum-slip regime is expected to be solved analytically.

In conclusion, in this work, a new analytical solution will be proposed to solve the PBE due to Brownian coagulation in
the continuum-slip regime. The newly proposed analytical solution is notably different from the existing asymptotic
solutions and the log-normal analytical method of moments. The newly proposed analytical solution will be verified by
selecting the reliable sectional method (SM) solution as a reference. Since the analytical solution proposed by Lee et al.
(1997) is usually regarded as the most suitable and reliable analytical solution for solving PBE in the continuum-slip regime,
it is introduced in this work for a comparison. In addition, three numerical methods, including the TEMOM (Yu et al., 2008a,
2008b), the quadrature method of moments (QMOM) (McGraw, 1997), and the log-normal numerical method of moments
(Lee et al., 1997), are also performed for comparisons. To make a clear difference, in this work, the log-normal numerical
method of moments is called log-normal NMM, while the log-normal analytical method of moments is called log-normal
AMM.
2. Theories

The integral-differential PBE was first proposed by Müller in 1928 based on the Smoluchowski ground-breaking work for
coagulation dynamical process (Müller, 1928; Smoluchowski, 1917), and it takes the following expression:

∂n v; tð Þ
∂t

¼ 1
2

Z v

0
β v�v0; v0ð Þn v�v0; tð Þn v0; tð Þdv0 �n v; tð Þ

Z 1

0
β v; v0ð Þn v0; tð Þdv0 ð2Þ

where nðv; tÞdv is the particle number whose volume is between v and vþdv at time t, and β v; v0ð Þ is the collision kernel for
two particles of volumes v and v0. In the continuum-slip regime, the collision kernel has the following form:

β v; v0ð Þ ¼ B2
C vð Þ
v1=3

þC v0ð Þ
v1=

03

� �
ðv1=3þv1=

03Þ ð3Þ

where B2 ¼ 2kbT=3μ, kb is the Boltzmann constant, T is the gas temperature, and μ is the gas viscosity. The slip correction
factor, C vð ÞðC vð Þ ¼ 1þA KnÞ, is used to accommodate the gas slip effects on small particles, where A¼ 1:591 and Kn¼ λ=r,
which is expected to make the collision kernel to be valid for the Knudsen number up to about 5.0000 (Otto et al., 1999).
Here, λ is the mean free path of gas and r is the particle radius. In this case, the ODEs for moments, which are obtained using
a Taylor expansion technique, take the following form:

dm0
dt

� �
cs
¼ B2

�151m4
1 þ2m2

2m
2
0 �13m2m2

1m0ð Þm2
0

81m4
1

þϕm7=3
0 5m2

2m
2
0 �64m2m2

1m0 �103m4
1ð Þ

81m13=3
1

� �
dm1
dt

� �
cs
¼ 0

dm2
dt

� �
cs
¼ �B2

2 �151m4
1 þ2m2

2m
2
0 �13m2m2

1m0ð Þ
81m2

1
þ4ϕm1=3

0 m2
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2
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8>>>>>>><
>>>>>>>:

ð4Þ
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Here, ∅¼ Aλð4π=3Þ1=3. Equation (4) takes the following form when introducing g¼m0m2=m1
2:

dm0
dt

� �
cs
¼ B2

2g2 �13g�151f g
81 m0 tð Þ2þ∅m1 tð Þ � 1=3 5g2 �64g�103f g

81 m0 tð Þ7=3
n o

dm1
dt

� �
cs
¼ 0

dm2
dt

� �
cs
¼ B2 �2 2g2 �13g�151f g

81 m1 tð Þ2�4∅m1 tð Þ7=3g1=3 g2 �2g�80f g
81 m2 tð Þ�1=3

n o

8>>>>><
>>>>>:

ð5Þ

If Eq. (5) is further treated with a dimensionless solution, mk ¼Mkmk0 and mk0 ¼Nvg0k, then it has the following expression:

dM0
dτ2

� �
cs
¼ 2g2 �13g�151f g

81 M0 τ2ð Þ2þ A Kn0ð ÞM1 τ2ð Þ � 1=3 5g2 �64g�103f g
81 M0 τ2ð Þ7=3

n o
dM1
dτ2

� �
cs
¼ 0

dM2
dτ2

� �
cs
¼ �2 2g2 �13g�151f g

81 M1 τ2ð Þ2� 4A Kn0ð ÞM1 τ2ð Þ7=3g1=3 g2 �2g�80f g
81 M2 τ2ð Þ�1=3

n o

8>>>>><
>>>>>:

ð6Þ

where τ2 ¼ B2Nt; Kn0 ¼ λ 4π=3
� 	1=3ðvg0Þ�1=3, and vg0 is the initial geometric mean volume of the investigated aerosol, N is

the total initial particle number concentration. The GSD in the continuum-slip regime is only valid in the range from 1.0000
to 1.6583, as shown in Appendix A. By assuming g to be a constant, Eq. (6) can be analytically solved using a Separate
Variable Technique for both M0 and M2 as follows:

(i) M0

t0 ¼ � 1
Ac

1
M0

� 1
M00

� �
þ3Ac

2A2
c

1

M2=3
0

� 1

M2=3
00

 !
�3A2

cm

A3
c

1

M1=3
0

� 1

M1=3
00

 !

þ
Acm

3 � ln M2=3
0 A2

cm�AcmAcM
1=3
0 þA2

c

� �
þ ln M0A

3
cmþA3

c

� �
þ2 ln M1=3

0 AcmþAc

� �
� ln M0ð Þ

n o
Ac

4

�
Acm

3f� ln M2=3
00 A2

cm�AcmAcM
1=3
00 þA2

c

� �
þ ln M00A

3
cmþA3

c

� �
þ2 ln M1=3

00 AcmþAc

� �
� ln M00ð Þg

Ac
4 ð7:1Þ

(ii) M0

t2 ¼
1
Bc
ðM2�M20Þ�

3Bcm

2B2
c

ðM2=3
2 �M2=3

20 Þþ3B2
cm

B3
c

ðM1=3
2 �M1=3

20 Þ

�
3B3

cmf ln BcM
1=3
2 þBcm

� �
� ln BcM

1=3
20 þBcm

� �
g

Bc
4 ð7:2Þ

where t0 and t2 are the time, and

Ac ¼ 2g2 �13g�151
81

Acm ¼ AM1 τ2ð Þ � 1=3 5g2 �64g�103f g
81 Kn0

Bc ¼ �2 2g2 �13g�151f g
81 M1 τ2ð Þ2

Bcm ¼ �4AM1 τ2ð Þ7=3 g2 �2g�80f g
81 Kn0

8>>>>>>><
>>>>>>>:

The above derivation is straightforward and does not involve any assumption for the particle size distribution. In
particular, the zeroth moment and the second moment in Eq. (7) are both functions of time implicitly, making the new
solution to be able to capture the evolution of aerosol dynamical process before approaching its asymptotic status, which is
the same as the log-normal AMM. Thus, the newly proposed solution has the same ability as the log-normal AMM which
extends beyond the asymptotic solution.

If the Knudsen number is smaller than 0.1000 where the slip correction factor, C vð Þ, can be approximated to be 1.0000,
Eq. (7) automatically degrades to a much simpler form

M0 τ2ð Þð Þc ¼ 1
�Ac τ2 þð1=M00Þ

M1 τ2ð Þð Þc ¼M10

M2 τ2ð Þð Þc ¼ Bc τ2þM20

8>><
>>: ð8Þ

Here, the zeroth and second moments are explicit functions of time; thus, it is much easier to be used in practice. However,
Eq. (8) has to be used for aerosols in the continuum regime rather than in the continuum-slip regime.
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3. Computations

The numerical computations are all performed using an Intel (R) Core i7-3820 CPU 3.6 GHz computer with 4 GB of
memory. The fourth-order Runge–Kutta method with a fixed time step of 0.0010 is used to numerically solve the set of
ODEs, including the TEMOM ODEs, the log-normal NMM ODEs, and the QMOM ODEs. Note that the newly proposed
analytical solution is derived from the TEMOM ODEs (Yu et al., 2011), while the log-normal AMM was derived from the log-
normal NMM ODEs (Lee et al., 1997). For all numerical and analytical solutions, the total time is up to 100. All the programs
are written using the C Programming language and performed with the Microsoft Visual Studio 2008 compiler. In all
simulations, the temperature and the pressure of the surrounding air are assumed to be 300.0000 K and 1.0130�105 Pa,
respectively. In this case, the viscosity and the mean free path of gas molecules are 1.8508�10�5 Pa s and 68.4133 nm,
respectively. The relative error of any variable in the investigated solutions to that in the referenced SM is calculated as
follows (Yu et al., 2008a, 2008b):

Error%¼ ϕNM�ϕSM

ϕSM
� 100% ð9Þ

Here, ϕNM is the variable obtained from methods of moments, and ϕNM is the referenced SM variable. In the calculation, all
initial dimensionless moments take the same expressions as shown in Eq. (13) in Yu et al. (2014). The program code of the
SM used in this work has been verified in our previous works (Anand et al., 2012; Yu & Lin, 2009b), which is generally
considered as a very accurate solution for solving the PBE (Otto et al., 1999). In the SM, the section spacing factor is 1.025 and
the bin number is 360, which ensures the accuracy of the SM as a reference. For the QMOM, four specific models with node
3, 4, 5 and 6 are performed and employed in comparisons.

4. Results and discussion

In theory, the geometric standard deviation of an aerosol can be an arbitrary value which is equal to or larger than 1.0000
(Yu et al., 2008a, 2008b). However, a drawback inheriting from the TEMOM ODEs makes the new solution to be confined
from 1.0000 to 1.6583 for GSD, as presented in Appendix A. Therefore, the ability of the new analytical solution to solve the
PBE must be evaluated, or the errors generated by the analytical solution must be specified. The accuracy of the newly
proposed analytical solution can be characterized by the relative errors of the analytical solution to the referenced SM
solution for the three key quantities, including M0, σg and vg . To make the study much more representative, aerosols with
three representative initial GSD, i.e., 1.2000, 1.3500, and 1.6000, and three representative initial Knudsen numbers, i.e.,
0.0001, 0.1000 and 5.0000, are selected and investigated. The Knudsen number 5.0000 corresponds to the high limit of the
continuum-slip regime in terms of aerosol geometric mean size, while 0.0001 corresponds to its low limit.

To verify the newly proposed analytical solution with very small Knudsen number, three aerosols with different initial
GSDs, i.e., 1.2000, 1.3500, and 1.6000, are investigated, which correspond to the cases 1, 2 and 3 shown in Table 1. To make a
clear comparison, other solutions including the log-normal AMM, the TEMOM, the QMOM and the log-normal NMM are also
performed. Figure 2 shows the relative errors of M0, σg and vg of the investigated solutions to the referenced SM solution,
respectively. As the initial GSDs are selected to be 1.2000 and 1.3500, the new analytical solution yields higher accuracy than
or nearly the same accuracy as the log-normal AMM for the three investigated key quantities. Especially, the newly
proposed analytical solution shows a little advantage in accuracy forM0. However, as the initial GSD is selected to be a larger
value, i.e., 1.6000, the new solution shows disadvantage over all of other solutions. Fortunately, the newly proposed
analytical solution yields clear higher accuracy than the log-normal AMM for the other two key quantities,
i.e.,σg and vg . It is thus concluded that the log-normal AMM and the new solution approximately become one solution
when the aerosol is in the continuum regime and the GSD is not a high value. In fact, as the Knudsen number is 0.0001, the
analytical solution shown in Eq. (7) automatically degrades to the form shown in Eq. (8) where the moments are explicit
functions of time, which has been presented in Section 2.

When the Knudsen number is selected to be 0.1000, the investigated aerosol should be in the near continuum regime
where the slip correction for coagulation kernel cannot be ignored (Yu & Lin, 2009b). In this regime, three representative
Table 1
Characteristics of investigated size distribution cases with specific geometric standard deviation and Knudsen number.

Case number Geometric standard deviation Knudsen number

1 1.2000 0.0001
2 1.3500 0.0001
3 1.6000 0.0001
4 1.2000 0.1000
5 1.3500 0.1000
6 1.6000 0.1000
7 1.2000 5.0000
8 1.3500 5.0000
9 1.6000 5.0000



Fig. 2. The comparison of relative errors of M0, σg and νg among the new solution, the log-normal AMM, the TEMOM, the QMOM and the log-normal NMM
with initial Knudsen number 0.0001.
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aerosols with different initial GSDs, i.e., 1.2000, 1.3500 and 1.6000, are selected, which correspond to the cases 4–6 shown in
Table 1. Figure 3 shows the comparison of relative errors of M0, σg and vg of different solutions to the referenced SM
solution. It is clear when the initial GSDs are 1.2000 and 1.3500, the newly proposed analytical solution yields higher
accuracy than the log-normal AMM forM0. The newly proposed analytical solution has the same accuracy as the log-normal
AMM for σg and has lower accuracy for vg . As the initial geometric standard deviation is selected to be a larger value, 1.6000,
the new analytical solution is found to yield a lower accuracy for M0 than the log-normal AMM. However, for the same
numerical condition, the new solution yields higher accuracy for both σg and vg .

Because of the coagulation kernel used in this work, the newly proposed analytical solution has to be applied to aerosols
whose Knudsen number must be smaller than 5.0000 (Lee et al., 1997). Here, three representative aerosols with different
initial GSDs, i.e., 1.2000, 1.3500 and 1.6000, are investigated for verifying the newly proposed analytical solution at the high
Knudsen number limit. The selected aerosols correspond to the cases 7–9 shown in Table 1. The comparison of the relative
errors of M0, σg and vg of different solutions to the referenced SM solution is performed as shown in Fig. 4. For M0, it is
shown that the newly proposed analytical solution yields higher accuracy than the log-normal AMM, as the initial GSD is
selected to be 1.2000 and 1.6000, whereas it yields lower accuracy as the initial GSD is 1.3500. For σg and vg , the accuracy of
the newly proposed analytical solution is found to be nearly same as or lower than the log-normal AMM.

In conclusion, from the joint evaluation of the three key quantities including M0, σg and vg for the new solution and the
log-normal AMM, it is not possible to determine which analytical solution yields higher accuracy. For any solution
investigated in this work, its accuracy only prevails in one or two of the three key quantities. Actually, we also obtained the



Fig. 3. The comparison of errors ofM0, σg and νg among the new solution, the log-normal AMM, the TEMOM, the QMOM and the log-normal NMM for three
cases with initial Knudsen number 0.1000.
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same conclusion for pseudo-preserving-size-distribution aerosols which is not presented here. With a decrease of the
Knudsen number, the new solution and the log-normal AMM yield much closer relative errors, indicating both solutions
might become one solution in the continuum regime. In addition, it is found that in the new solution the total particle
number concentration usually achieves a higher accuracy than in its competitor.
5. Discussions

Although the integral-differential PBE has been proposed for nearly 100 years (Müller, 1928), an exact analytical solution
for this equation with a size-dependent coagulation kernel is not yet known (Vogel et al., 2014). It attributes to the strong
nonlinear property of the PBE and also the common characteristics of Boltzmann equations which cannot be analytically
solved using the current mathematical techniques (Yu et al., 2008a, 2008b). Up to now, there are only two main
approximate analytical solutions for the PBE, i.e., the asymptotic solution (Friedlander, 2000) and the log-normal NMM.
The log-normal NMM is prior to the asymptotic solution due to its ability to resolve time-dependent aerosol dynamical
processes, thus, it is acknowledged as the mostly suitable analytical solution for the PBE. Unlike the above two solutions, the
present work provides an alternative way to solve the PBE. In the derivation, there is no assumption for the size distribution,
thus, it might be much more rigorous. More importantly, the derivation in this work is much straightforward where only the
two mathematical techniques, i.e., the Taylor expansion technique and the separate variable technique, need to be



Fig. 4. The comparison of errors ofM0, σg and νg among the new solution, the log-normal AMM, the TEMOM, the QMOM and the log-normal NMM for three
non-self-preserving size distributed cases with initial Knudsen number 5.0000.
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employed. Here, the key to analytically solve the PBE is to assume the novel variable g to be a constant, which is verified to
be reasonable in this work.

For any solution to be used for solving the PBE, both the accuracy and the scope of application are primarily important.
An ideal solution is required to not only yield high accuracy, but also to have the scope of application as wide as possible.
In the continuum-slip regime, the geometric standard deviation of number concentration and the Knudsen number are both
key physical quantities (Lee et al., 1997). Thus, the ideal solution is required to have an ability to cover the entire valid
Knudsen number and geometric standard deviation. Here, the expected Knudsen number ranges from an infinite small
value to 5.0000 and the geometric standard deviation ranges from 1.0000 to an infinite large value, which has been
discussed in Section 4. It has been verified that the log-normal AMM has no limitation for the above two key quantities.
However, the new solution inherits a drawback from the TEMOM ODE whose solution has to be limited from 1.0000 to
1.6583 for geometric standard deviation. Fortunately, in almost all atmospheric environment and particle process
engineering, the geometric standard deviation is usually a value smaller than 1.6583 because aerosols have to quickly
move into a self-preserving size distribution status as only Brownian coagulation is involved. It has been verified that the
geometric standard deviations of number distributions are 1.3200 and 1.3550 in the continuum regime and free molecular
regime, respectively, by executing both the log-normal NMM and the TEMOM (Park et al., 1999; Yu et al., 2008a, 2008b).
In addition, the geometric standard deviation of number distribution in the continuum-slip regime has been verified to be
smaller than 1.3550 when achieving pseudo-self-preserving size distribution status (Otto et al., 1999). Therefore, the newly
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proposed analytical solution can be applied in both basic study and engineering studies, although its scope of application is
not as wide as the log-normal AMM.

The selection of the SM as a reference to verify the newly proposed analytical solution as well as other solutions is
reasonable and feasible. This is because the SM is now regarded as the most accurate solution for solving PBE as the size
distribution dependent coagulation kernel is involved (Otto et al., 1999). In theory, the verification of the newly proposed
analytical solution should be performed for all valid Knudsen numbers and geometric standard deviations. This is because in
the continuum-slip regime only the PSPSD distribution rather than SPSD distribution exists. This is absolutely different from
the free molecular and continuum regimes where individual constant geometric standard deviation exists (Lee et al., 1997;
Otto et al., 1994). However, it is not possible to go through all the Knudsen numbers and geometric standard deviations for
verification in practice, thus, some representative cases have to be selected and investigated, just as the performance in
this work.

In Figs. 2–4, as compared to the analytical solutions, no significant advantage in accuracy for the numerical solutions is
found, although a very highly reliable fourth-order Runge–Kutta method with a very small time step was used. A much
important conclusion is drawn from the joint evaluation of three key quantities as the Knudsen number is 0.0100 and less,
i.e., the newly proposed analytical solution and the log-normal AMM approximately become one solution. This attributes to
a fact in both the analytical solutions that the effect of slip correction factor on the equation can be removed in the
continuum size range. Although the effect of Knudsen number on the accuracy of analytical solutions is found, it is not
possible to obtain a general conclusion, e.g., the accuracy of analytical solutions increases or decreases with the variance of
Knudsen number. When the newly proposed analytical solution is verified for non-self-preserving aerosols in Figs. 2–4, it is
found that both the initial geometric standard deviation of number distribution and the Knudsen number have an effect on
the accuracy. The same properties are also found in other numerical and analytical solutions. However, it is not possible to
determine which solution is a better one, especially for the newly proposed solution and the log-normal AMM.

6. Conclusions

A new analytical solution is first proposed to solve the population balance equation due to Brownian coagulation in the
continuum-slip regime with the Knudsen number up to 5.0000. The analytical solution is achieved based on the
performance of the Taylor expansion method of moments together with an assumption for a novel variable g
(g ¼m0m2=m1

2, where m0, m1 and m2 are the first three moments), which is verified to capture the time-dependent
evolution of aerosol dynamical process without an assumption for the size distribution. The sectional method is selected as
a reference to verify the accuracy of the new solution. The new solution is compared to the log-normal AMM as well as other
three numerical solutions, namely the TEMOM, the QMOM and the log-normal NMM, whereas the comparison between the
new solution and the log-normal AMM is mainly analyzed. It is revealed that as the three key aerosol quantities including
M0, σg and vg are jointly concerned, it is not possible to determine which solution yields higher accuracy, but the new
solution usually yields higher accuracy for the total number concentration. As the Knudsen number is smaller than 0.1000,
the new solution and the log-normal AMM are verified to approximately become one solution. Within the valid geometric
standard deviation, the new solution is verified to be a reliable solution and it has potential to become a competitive
solution in the future.
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Appendix A. TEMOM model in the continuum-slip regime

The TEMOM model in the continuum regime can be written as the following expression with g ¼m0m2=m1
2 (Yu et al.,

2008a, 2008b):

dm0 tð Þ
dt

� �
c
¼ B2 2g2 �13g�151f g

81 m0 tð Þ2

dm1 tð Þ
dt

� �
c
¼ 0

dm2 tð Þ
dt

� �
c
¼ �2B2 2g2 �13g�151f g

81 m1 tð Þ2

8>>>>><
>>>>>:

ðA1Þ

For an aerosol, the zero moment must decrease while the second moment must increase with the time when its
dynamical process is solely dominated by Brownian coagulation mechanism, thus,

2g2�13g�151o0 ðA2Þ
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The term of right hand of (A1) is the same as in Eq. (4) for both m0 and m2 shown in this work, thus, Eq. (A2) is also valid
for Eq. (4). In addition, the coagulation process will be enhanced in the continuum-slip regime as compared to that in the
continuum regime, thus, the following criterion must be satisfied:

5g2�64g�103o0
g2�2g�80o0

(
ðA3Þ

In order to obtain the validate scope of application of TEMOM equations in the continuum-slip, it needs to solve Eqs. (A2)
and (4) simultaneously. Finally, the scope of g is

gAð0:0000;10:0000Þ
As the equation ln2 σg

� 	¼ ð1=9ÞlnðgÞ is applied, then

σgA ð1:0000;1:6583Þ
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