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Abstract An analytical solution for predicting the vertical distribution of streamwise
mean velocity in an open channel flow with submerged flexible vegetation is proposed
when large bending occurs. The flow regime is separated into two horizontal layers: a
vegetation layer and a free water layer. In the vegetation layer, a mechanical analysis
for the flexible vegetation is conducted, and an approximately linear relationship between
the drag force of bending vegetation and the streamwise mean flow velocity is observed
in the case of large deflection, which differes significantly from the case of rigid upright
vegetation. Based on the theoretical analysis, a linear streamwise drag force-mean flow
velocity expression in the momentum equation is derived, and an analytical solution is
obtained. For the free water layer, a new expression is presented, replacing the traditional
logarithmic velocity distribution, to obtain a zero velocity gradient at the water surface.
Finally, the analytical predictions are compared with published experimental data, and
the good agreement demonstrates that this model is effective for the open channel flow
through the large deflection flexible vegetation.
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Nomenclature

A, effective bulk drag coefficient;
Af , frontal area of the stem;
As, surface area of the stem;
AL, projected area of the element on the coor-

dinate plane Oxy;
Ci, (i=1,2,· · · ,4) integration coefficient;
Cd, form drag coefficient;

Cf , friction drag coefficient;
CL, lift coefficient;
Cp, perimeter of the stem cross-section;
Cv, dimensionless coefficient in the drag force

formula;
D, frontal-projected width of the stem;
D1, length of the major axis for ellipse;
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D2, length of the minor axis for ellipse;
IFA, frontal area index;
Fb, buoyancy;
Fd, form drag force;
Ff , friction drag force;
FL, lift force;
Frigid, drag force of erect rigid vegetation in the

streamwise direction;
Fv, drag force of bending vegetation in the

streamwise direction in this analytical
model;

Fw, weight;
Fx, resultant force acting on the bending

stem by flow in the streamwise direction;
g, gravitational acceleration;
H , water depth;
h, height of the free water layer;
hv, projective height of the stem after bend-

ing;
i, energy slope;
kn, Kármán coefficient in the free water

layer;
kv, Kármán coefficient in the vegetation

layer;
l, stem length;
lc, mixing length scale for the canopy;

m, vegetation density;
N , constant used to adjust the weights of the

contributions of z and lc to the mixing
length;

ReD, drag Reynolds number;
ReL, Reynolds number based on the stem

length;
sh, parameter in the expression of Reynolds

stress;
u, mean flow velocity in the streamwise di-

rection;
un, mean flow velocity in the free water layer;
uv, mean flow velocity in vegetation layer;
u∗, shear velocity at the top of the plant;
V , volume;
Iα,Kα, modified Bessel functions of the first and

second orders of α, respectively;
β, averaged bending angle of vegetation

stem;
θ, rotation angle of the deflection stem;
κ, Kármán constant (0.41);
ν, kinematic viscosity of water;
ρ, water density;
ρv, wet density of the vegetation;
τ , Reynolds stress.

1 Introduction

The hydrodynamic characteristics of flow in open channels with aquatic vegetation have been
widely studied. Vegetation in open channels alters the structure of the water flow, increases
flow resistance, affects the transport of sediments and solutes, and has a significant impact on
the environment[1–3].

Many types of aquatic vegetation are flexible, easy to bend, and have a form that is stream-
lined in flowing water[4]. Recent studies have examined the characteristics of flexible aquatic
vegetation, which differ from those of rigid aquatic vegetation[3,5–6]. The bending of flexible
vegetation in flowing water is an important characteristic related to hydraulic and vegetation
properties[4,7–9]. In contrast to rigid erect vegetation, for which the drag force-velocity variation
shows a squared relationship[10], flexible plants are bent into a streamlined form with increasing
flow velocity, resulting in significantly reduced drag[11–12]. Besides the drag reduction in water
flow, this drag reduction phenomenon was also observed in air flow[13–15].

The linear relationship between the drag force and the flow velocity was observed in various
experiments. For example, Armanini et al.[16] measured the resistance of willows in a prototype
experiment using a designed force transducer. Their results showed that the stiffness of the veg-
etation played an important role in the vegetation drag. For partially submerged rigid willows,
the drag force-velocity variation showed the traditional square relationship. For completely
submerged flexible vegetation, a linear drag force-velocity variation was observed, which can
be explained by the streamlined form of the trees which results in decrease in the momentum-
absorbing area. Wilson et al.[17] conducted a laboratory research on this relationships of 22
full-scale trees of three different genera (1.4 m–4 m). They found that for the full-scale trees,
the drag force tends to vary linearly with velocity when it is over 0.5m/s, while for lower veloc-
ities (0m/s–0.5m/s), the drag force-velocity variation maintains the squared relationship. This
linear drag force-velocity relationship was also observed in the experiments of Schoneboom et
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al.[18] with artificial poplars.
Various studies focused on the resistance of vegetation (or use cylinders to simulate

vegetation)[19–21]. For example, Wang[22] investigated the flow characteristics of flow around a
square cylinder by the large eddy simulation (LES). The velocity distribution can reflect the
characteristics of vegetation resistance on flows, which have been studied by different meth-
ods for the rigid vegetation[2,23–25]. For example, Liu et al.[26] proposed analytical models of
streamwise velocity in flows with submerged shrub-like vegetation. Yang et al.[27] experimen-
tally studied the velocity distribution of flows in different types of vegetations such as arbors,
shrubs, and grass. For the channel partially covered with vegetation, Zhang et al.[28] developed
the 2D k-ε turbulence hydrodynamic model to simulate the turbulent vegetated flow in this
situation.

For the flow through flexible vegetation, the effect of vegetation bending on the turbulent
flow structure should be taken into consideration. Huai et al.[9] proposed an analytical velocity
model when the bending of vegetation is not too large. However, for large bending of flexible
vegetation, the simulation of the bending curve by the analytical model adopted by Huai et
al.[9] (Eq. (11) in that paper) may not reflect the real situation, because the hypothesis of the
uniformly distributed total load on the vegetation stem to calculate the bending curve may have
a large deviation from the actual situation. In this case, we try to propose a new analytical
solution for the large deflection in the vegetated flow. In this paper, we conduct a mechanical
analysis on flexible plants to verify the linear vegetation drag force-velocity relationship, which
was observed in experiments by other researchers. Then, we propose a new drag force-velocity
expression, which is a new attempt to describe the vegetation drag when large deflection occurs,
and formulate the corresponding momentum equations for each layer to obtain the analytical
solution of the velocity distribution in the open channel flow through flexible vegetation with
large deflection.

2 Theoretical analysis

2.1 Deflection of flexible vegetation
In a uniform, steady, and fully developed turbulent open channel vegetated flow, flexible

vegetation bends under the forces exerted by the flowing water. Take a flexible cylinder stem
(see Fig. 1) to conduct mechanical analysis. θ is the rotation angle of the deflection stem, and
hv is the projective height of the stem after bending. Figure 1 illustrates five forces acting on a
small element ds: the element weight dFw, the element buoyancy dFb, the lift force dFL, and
two kinds of drag force: the form drag force dFd, which is normal to the stem, and the friction
drag force dFf , which acts along the stem.

 

Fig. 1 Schematic of forces on single-stem flexible plant with significant bending

The weight of the element can be calculated by its volume and density, which can be ex-
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pressed as

dFw = ρvgdV, (1)

where ρv is the wet density of the vegetation, g is gravitational acceleration, and dV is the
volume of the element.

The submerged flexible vegetation is subjected to an upward buoyancy force in the flow,
which can be expressed as

dFb = ρgdV, (2)

where ρ is the water density.
When the flow moves through the bending vegetation stem, it generates a lift force, which

is perpendicular to the streamwise direction. The lift force is downward[4] when 0 < θ < π/2
and can be expressed as

dFL =
1
2
CLρu2dAL, (3)

where CL is the lift coefficient, dAL is the projected area of the element on the coordinate plane
Oxy, and u is the mean flow velocity in the streamwise (x) direction. It is noted that the flow
velocity in this paper refers to the mean velocity rather than the instantaneous flow velocity.

The form drag force normal to the stem and the friction drag force along the stem can be
calculated by[7,29]

dFd =
1
2
Cdρ(u cos θ)2Af =

1
2
Cdρ(u cos θ)2Dds, (4)

dFf =
1
2
Cfρ(u sin θ)2As =

1
2
Cfρ(u sin θ)2Cpds, (5)

where Cd is the form drag coefficient, Cf is the friction drag coefficient, Af is the frontal area
of the stem, As is the surface area of the stem, D is the frontal-projected width of the stem,
and Cp is the perimeter of the stem cross-section. The geometric relationship gives

ds =
dz

cos θ
. (6)

The resultant force acting on the bending stem by flowing water in the streamwise direction
can be calculated by the projecting buoyancy, the lift force, the form drag force, and the friction
drag force in the streamwise direction (since weight is not the interaction force between flow
and vegetation, it is not included here). It can be seen that only the form drag force and the
friction drag force work in the flow direction, while the other two forces are perpendicular to
the flow direction. Therefore, the resultant force Fx acting on the bending stem by flowing
water in the streamwise direction is

dFx = dFd cos θ + dFf sin θ. (7)

The drag force of bending vegetation acting on the flowing water can also be expressed as
Eq. (7), because the acting force and the reacting force are equal and opposite (Newton’s third
law of motion).

Substituting Eqs. (4), (5), and (6) into Eq. (7) gives

dFx

dz
=

1
2
ρu2

(
CdDcos2θ + CfCp

sin3θ

cos θ

)
. (8)
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As an example, in the experiments of Kubrak et al.[30], the cylindrical stems with an ellip-
tical cross-section (the length of the major axis D1=0.000 95m, the minor axis D2=0.0007 m,
and the stem length=0.165m) were used to simulate flexible plants in a glass-walled flume.
D=0.00095m and Cp=0.002606 7 m based on the elliptical cross-section.

The form drag and friction drag coefficients vary with the flow velocity and the vegetation
characteristics. The form drag coefficient is determined as suggested by Schlichting[31],

Cd =

⎧
⎪⎨
⎪⎩

3.07Re−0.168
D , ReD < 800,

1.0, 800 � ReD < 8 000,

1.2, 8 000 � ReD < 105,

(9)

where ReD denotes the drag Reynolds number, which can be calculated as

ReD =
uD cos θ

ν
. (10)

The friction drag coefficient in a turbulent flow is calculated by[32]

Cf =
0.074
Re0.2

L

, (11)

where ReL denotes the Reynolds number based on the stem length

ReL =
ul

ν
, (12)

where the stem length l = 0.165 m in the experiments of Kubrak et al.[30], and ν is the kinematic
viscosity of water. Substituting the form drag coefficient Cd and the friction drag coefficient Cf

into Eq. (8) gives the relationship between the streamwise drag force and the mean velocity, as
shown in Fig. 2. Different types of lines indicate different bending angles.

Fig. 2 Relationship between streamwise drag force and mean velocity

The streamwise drag force-velocity relationship (see Fig. 2) becomes almost linear with the
increasing bending angles. According to the experimental results of Kubrak et al.[30], the
velocity in the vegetation layer is less than 0.7 m/s. Therefore, we set the velocity range in this
figure to 0 m/s–0.7 m/s. For the larger bending angles, the force-velocity relationship may be
substituted by straight lines with different slopes. Wilson et al.[17] suggested that the linear
relationship occurred when the velocity was over 0.5m/s for full-scale trees of three different
genera. It is reasonable to assume that a linear force-velocity relationship occurs over a certain
range of flow velocity for certain types of vegetation since the flexibility of different types of
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vegetation is different. However, the velocity may not necessarily be the factor, which directly
determines whether the drag-velocity relationship is linear. The bending angle may be the
decisive factor, as shown in the theoretical results in Fig. 2, where the relationship appears
linear with increasing bending angles. In fact, the bending angle of flexible stems varies with
the bending curve and is not always a constant. Generally, the drag force-velocity relationship
can be approximately regarded as linear when large bending occurs[16–18].
2.2 Model construction

For the uniform, steady, and fully developed turbulent open channel flow through flexible
vegetation, the flow regime is separated into two horizontal layers: a vegetation layer and a free
water layer, as shown in Fig. 3. H is the water depth, h = H − hv denotes the height of the
free water layer, and β is defined as the averaged bending angle, which is the angle between the
vertical direction and the line through the initial and final points of bending.

Fig. 3 Open channel flow with submerged flexible vegetation

2.2.1 Flow in vegetation layer
In the vegetation layer, considering the force balance between the Reynolds shear stress,

the gravity component, and the drag force of the vegetation, the momentum equation can be
expressed as

∂τ

∂z
− ∂Fv

∂z
+ ρgi = 0, (13)

where τ is the Reynolds stress, Fv is the vegetation drag force in the streamwise direction, and
i is the energy slope.

For the Reynolds stress, a first-order closure scheme is presented

τ = ρkvu∗z
∂uv

∂z
, (14)

where kv is defined as the Kármán coefficient in the vegetation layer, u∗ = (gih)1/2 is the shear
velocity at the top of the plant, and uv is defined as the flow velocity in the vegetation layer.

The vegetation drag force for an erect rigid plant is[10]

∂Frigid

∂z
= 0.5ρCdmDu2

v, (15)

where m is the vegetation density, which is defined as the number of stems per unit bed
area. When large bending occurs, we approximate the drag force-velocity relationship as linear.
Similar to the form of Eq. (15) for rigid vegetation, the drag force of flexible vegetation is
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presented below. Here, we introduce the shear velocity u∗ as a characteristic velocity to balance
the dimensions in the equation

∂Fv

∂z
= ρCvmDu∗uv, (16)

where Fv is the drag force of the bending vegetation in the flow direction, and Cv is a dimen-
sionless coefficient which is similar to the coefficient 0.5Cd in Eq. (15).

Substituting Eqs. (14) and (16) into Eq. (13) gives

∂

∂z

(
kvu∗z

∂uv

∂z

)
− (CvmDu∗)uv + gi = 0. (17)

The flow velocity in the vegetation layer can be obtained from the above equation

uv(z) = C1Iα(f(z)) + C2Kα(f(z)) +
gi

CvmDu∗
, (18)

where C1 and C2 are the integration coefficients, and Iα and Kα (α = 0 and 1) are the modified
Bessel functions of the first- and second-order of α, respectively.

The vertical gradient of the flow velocity is

∂uv(z)
∂z

=
f(z)
2z

(C1I1(f(z)) − C2K1(f(z))), (19)

where

f(z) = 2
√

A
z

hv
, (20)

A =
Cv

kv
mDhv. (21)

Here, the frontal area index IFA = mDhv, which is the total frontal area of the vegetation
elements per unit area of the bed. Then, Eq. (21) can be expressed as

A =
Cv

kv
IFA. (22)

This equation shows that the frontal area index times a coefficient Cv/kv equals the pa-
rameter A. Therefore, the parameter A indicates the effect bulk drag coefficient of bending
vegetation in the vegetation layer hv. It is known that flexible stems bend in flowing water,
and the height of vegetation layer is compressed from the stem length l to the bending height
hv. Thus, the effect means the stems of bending height hv rather than that of the stem length
l resists the flowing water in a open channel. As a result, we call the parameter A the effective
bulk drag coefficient.

The no-slip condition at the channel bed gives

uv(z0) = 0, z0 → 0, (23)

where z0 approaches zero under the condition of precision required, because Eq. (18) has no
mathematical solution when z = 0.

From the momentum balance of the flow above the vegetation, the interfacial shear stress
between the vegetation and the free water layers gives another boundary condition[33]

τ(hv) = ρkvu∗hv
∂uv

∂z

∣∣∣∣
z=hv

= ρu2
∗. (24)
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Substituting Eq. (23) into Eq. (18) and Eq. (24) into Eq. (19), we obtain the integration
coefficients

C1 =
2u∗

kvf(hv)K0 (f (z0)) − gi
CvmDu∗

K1 (f (hv))

I0 (f (z0))K1 (f (hv)) + I1 (f (hv))K0 (f (z0))
, (25)

C2 =
C1I1 (f (hv)) − 2u∗

kvf(hv)

K1 (f (hv))
. (26)

Substituting Eqs. (25) and (26) into Eq. (18) gives the velocity distribution in the vegetation
layer.
2.2.2 Flow in free water layer

In the free water layer, there is no vegetation drag force. Therefore, the momentum equation
can be expressed as

∂τ

∂z
+ ρgi = 0, (27)

where the Reynolds stress in the non-vegetation layer can be expressed in the same way as for
the vegetation layer

τ = ρknu∗z
∂un

∂z
, (28)

where kn is the Kármán coefficient in the free water layer, and un is the flow velocity in the
free water layer. Substituting Eq. (28) into Eq. (27) gives

∂

∂z

(
knu∗z

∂un

∂z

)
+ gi = 0. (29)

The velocity in the free water layer can be obtained from

un(z) = − gi

knu∗
z + C3 ln z + C4, (30)

where C3 and C4 are the integration coefficients, and the vertical gradient of the flow velocity
is

∂un

∂z
= − gi

knu∗
+

C3

z
. (31)

When the wind drag and surface tension at the water surface are ignored, the boundary
condition can be expressed as

∂un

∂z

∣∣∣∣
z=H

= 0. (32)

Substituting Eq. (32) into Eq. (31) gives

C3 =
giH

knu∗
. (33)

The velocity distribution in the free water layer is obtained by substituting Eq. (33) into
Eq. (30), i.e.,

un (z) =
gi

knu∗
(H ln z − z) + C4, (34)

where the integration coefficient C4 can be obtained by another boundary condition

un (hv) = uv (hv) . (35)
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2.3 Determining coefficients
The application of this analytical model requires the values of three parameters: the effective

bulk drag coefficient A and the two Kármán coefficients: kv in the vegetation layer and kn in
the free water layer.
2.3.1 Effective bulk drag coefficient A

Measurements of Dunn et al.[34] were adopted to determine the A-IFA relationship by fit-
ting the analytical model results to the measured velocity data, and a linear relationship was
obtained (see Fig. 4) as follows:

A = 16.571IFA. (36)

Then, this equation was verified by the data of Kubrak et al.[30], and we found that this
linear A-IFA was also suitable for the data of Kubrak et al.[30], demonstrating the validity of
this equation for determining the effective bulk drag coefficient. Equation (36) shows that the
effective bulk drag coefficient A = 0 when IFA = 0, i.e., the vegetation resistance equals zero
when vegetation does not exist, which is consistent with the actual situation.

Fig. 4 Relationship between effective bulk drag coefficient and frontal area index

2.3.2 Kármán coefficient kv

Various methods have been used to express the Reynolds stress in the vegetation layer. Here,
we present two approaches[33,35].

In the first approach, Yang and Choi[33] used the eddy viscosity

νt =
κ

Cu
u∗z (37)

with Cu = 1 for mD � 5 m−1 and Cu = 2 for mD � 5 m−1, and the Kármán constant κ = 0.41.
Then, the Reynolds stress can be expressed as

τ = ρνt
∂u

∂z
= ρ

( κ

Cu

)
u∗z

∂u

∂z
. (38)

Compared with Eq. (14) adopted in this paper, κ/Cu of Yang and Choi[33] can be seen as
the Kármán coefficient kv, i.e.,

kv =
κ

Cu
. (39)

In the second approach, Wang[35] proposed an expression for the Reynolds stress based on a
modified mixing length theory that takes into consideration the effects of both the ground and
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canopy elements on turbulent mixing in a wind profile, which is similar to that in flowing water

τ = ρ (κsh) u∗z
∂u

∂z
, (40)

where the coefficient sh is calculated by

sh =
lc

((lc)
N + (κhv)

N )
1/N

, (41)

in which the subscript h denotes the height of vegetation rods, and N is a constant used to
adjust the weights of the contributions of κhv and lc to the mixing length. Here, N=1 is used
for simplicity.

lc =
2(u∗/u(hv))3

CdmD
. (42)

By comparing Eq. (40) with Eq. (14), the Kármán coefficient kv can be expressed as

kv = shκ. (43)

2.3.3 Kármán coefficient kn

There is no explicit theory to determine the Kármán coefficient kn in the free water layer.
Therefore, we determine this coefficient based on the experimental data[30,34].

3 Model verification

Our analytical model is applied to the experimental data of Dunn et al.[34] and Kubrak et
al.[30].

The experiments of Dunn et al.[34] were conducted in a 19.5m long, 0.91m wide, and
0.61m deep tilting flume, using plastic commercial drinking straws (0.006 35 m in diameter
and 0.158 75m long) to simulate flexible vegetation.

Kubrak et al.[30] conducted their experiments in a 16m long and 0.58m wide glass-walled
flume. To simulate flexible vegetation, they used cylindrical stems of elliptical cross-section
(the length of major axis D1= 0.000 95m, minor axis D2=0.000 7m, and the stem height before
bending is 0.165m). Different from the experimental data adopted by Huai et al.[9], here we
choose the large deflection cases from Kubrak et al.[30] to verify the model proposed in this
paper.

The parameters of the experiments are given in Table 1.

Table 1 Experimental parameters

Data source
Ref. [34] Ref. [30]

Exp.13 Exp.14 Exp.16 Run 3.1.1 Run 3.2.1 Run 4.2.1

i 0.003 6 0.010 1 0.003 6 0.008 7 0.017 4 0.017 4
A 2.75 2.08 0.44 5.94 5.20 5.43
kv 0.17 0.14 0.33 0.14 0.12 0.15
kn 0.17 0.15 0.20 0.10 0.14 0.08
D/m 0.006 35 0.006 35 0.006 35 0.000 95 0.000 95 0.000 95
H/m 0.368 0.232 0.230 0.2386 0.1962 0.207 7
hv/m 0.152 0.115 0.097 0.151 0.132 0.138
m (stems/m2) 171.7 171.7 43.0 2 500 2 500 2 500
Averaged bending angle/(◦) 35 51 65 30 40 44
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The effective bulk drag coefficient A shown in Table 1 is calculated using Eq. (36). The
Kármán coefficients kv and kn are determined by fitting the analytical model results to exper-
imental data. The averaged bending angles are also taken from the experimental data.

Table 2 compares the Kármán coefficients obtained by the different approaches mentioned
above. In the vegetation layer, kv is determined based on the fitting experimental data, and
kv1 was obtained by Yang and Choi[33]. kv2 was obtained by Wang[35], in which the drag
coefficient Cd = 1.13 by Dunn[36] was used in Eq. (42). This value of Cd matches the analytical
estimates of Li and Shen[37] and has been widely used by many other researchers[33,38–40]. kv3

was obtained by Kubrak et al.[30] using numerical methods. For the Kármán coefficient in the
free water layer, kn denotes the value fitting the experimental data, and kn1 was the result
obtained by Kubrak et al.[30].

Table 2 Comparison of Kármán coefficients by different methods

Data source
Ref. [34] Ref. [30]

Exp.13 Exp.14 Exp.16 Run 3.1.1 Run 3.2.1 Run 4.2.1

kv 0.170 0.140 0.330 0.140 0.120 0.150
kv1 0.410 0.410 0.410 0.410 0.410 0.410
kv2 0.052 0.016 0.033 0.030 0.013 0.027
kv3 — — — 0.105 0.115 0.130
kn 0.170 0.150 0.200 0.100 0.140 0.080
kn1 — — — 0.110 0.095 0.090

Figure 5 compares the measured velocity with the predicted velocity of this analytical model.
The theoretical results are in good agreement with the experimental data, demonstrating that
the theoretical formula can be used to predict the streamwise velocity distribution of flow
through large bending flexible vegetation.

Fig. 5 Comparison of measurements and analytical results
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4 Discussion

In Table 2, we see that kv1 and kv2 are deviated from kv, suggesting that these two
approaches[33,35] are not suitable for the experimental data used here. However, the values
of the Kármán coefficients in Ref. [30] for the whole flow region are close to those obtained
using our analytical model even though different models were used, i.e., kv3 and kn1 are close
to kv and kn, respectively. Moreover, the values of the Kármán coefficients in these five cases
are different from that of Kármán constant κ = 0.41, because the Kármán coefficients obtained
here are affected by many factors such as the vegetation density, the bed slope, the water depth,
the shear velocity, and the velocity at the top of vegetation[33,35], which results in difficulty of
determining the Kármán coefficients.

Due to the difficulty of determining the Kármán coefficient in explicit formulas, the effec-
tive bulk drag coefficient A (Eq. (21) embeds the Kármán coefficient kv) here is calculated by
Eq. (36), which is determined by the data of Dunn et al.[34] and verified by the data of Kubrak
et al.[30]. The results show that this equation is applicable to the cases adopted in this paper.
Although this equation proves effective in the model verification, one should notice that this A-
IFA relationship may be different for other situations owing to limited cases to obtain Eq. (36).
A more effective approach is needed to investigate the effective bulk drag coefficient in future
investigation.

Figure 5 shows that our analytical model is applicable for flexible vegetation in an open
channel flow in the case of large deflection. Based on the data adopted in the model verification,
in which the minimum averaged bending angle (Run 3.1.1) is 30◦, the large deflection in this
paper indicates that the averaged bending angle is larger than 30◦.

5 Conclusions

An analytical model of vertical distribution which is suitable for the open channel flow with
large bending flexible vegetation is established. This model is convenient in predicting the
velocity distribution compared with numerical solutions and field investigations. We present a
new linear drag force-velocity relationship, which is a new attempt to describe the vegetation
drag when significant bending occurs. This is consistent with observations by other researchers
in recent years. The velocity distribution for each layer is presented, and the good agreement
between the model results and previous data demonstrates that this linear streamwise drag
force-mean velocity is effective for the open channel vegetated flow when the averaged bending
angle is larger than 30◦. Although this trial is proved to be successful, further detailed studies
are required to provide more effective approaches for determining the Kármán coefficients and
the effective bulk drag coefficient.

References

[1] Nepf, H. and Ghisalberti, M. Flow and transport in channels with submerged vegetation. Acta
Geophysica, 56(3), 753–777 (2008)

[2] Baptist, M., Babovic, V., Rodr�guez-Uthurburu, J., Keijzer, M., Uittenbogaard, R. E., Mynett,
A., and Verwey, A. On inducing equations for vegetation resistance. Journal of Hydraulic Research,
45(4), 435–450 (2007)

[3] Stephan, U. and Gutknecht, D. Hydraulic resistance of submerged flexible vegetation. Journal of
Hydrology, 269(1), 27–43 (2002)

[4] Abdelrhman, M. A. Modeling coupling between eelgrass Zostera marina and water flow. Marine
Ecology Progress Series, 338(24), 81–96 (2007)

[5] Wilson, C., Stoesser, T., Bates, P., and Pinzen, A. B. Open channel flow through different forms
of submerged flexible vegetation. Journal of Hydraulic Engineering, 129(11), 847–853 (2003)



Analytical solution of velocity distribution for flow through submerged flexible vegetation 119

[6] Ghisalberti, M. and Nepf, H. The structure of the shear layer in flows over rigid and flexible
canopies. Environmental Fluid Mechanics, 6(3), 277–301 (2006)

[7] Chen, L., Stone, M. C., Acharya, K., and Steinhaus, K. A. Mechanical analysis for emergent
vegetation in flowing fluids. Journal of Hydraulic Research, 49(6), 766–774 (2011)

[8] Luhar, M. and Nepf, H. M. Flow-induced reconfiguration of buoyant and flexible aquatic vegeta-
tion. Limnology and Oceanography, 56(6), 2003–2017 (2011)

[9] Huai, W. X., Wang, W. J., and Zeng, Y. H. Two-layer model for open channel flow with submerged
flexible vegetation. Journal of Hydraulic Research, 51(6), 708–718 (2013)

[10] Hoerner, S. F. Fluid Dynamic Drag, Published by the author, Bricktown (1965)

[11] Kouwen, N. and Fathi-Moghadam, M. Friction factors for coniferous trees along rivers. Journal
of Hydraulic Engineering, 126(10), 732–740 (2000)

[12] Vogel, S. Life in Moving Fluids: The Physical Biology of Flow, Princeton University Press, Prince-
ton (1981)

[13] Gosselin, F., de Langre, E., and MacHado-Almeida, B. A. Drag reduction of flexible plates by
reconfiguration. Journal of Fluid Mechanics, 650, 319–341 (2010)

[14] Vogel, S. Drag and reconfiguration of broad leaves in high winds. Journal of Experimental Botany,
40(8), 941–948 (1989)
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[39] López, F. and Garćıa, M. H. Mean flow and turbulence structure of open-channel flow through
non-emergent vegetation. Journal of Hydraulic Engineering, 127(5), 392–402 (2001)

[40] Konings, A. G., Katul, G. G., and Thompson, S. E. A phenomenological model for the flow
resistance over submerged vegetation. Water Resources Research, 48(2) (2012) DOI 10.1029/
2011WRD11000


