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A numerical study on the interaction of two spherical drops in thermocapillary
migration in microgravity is presented. Unequal drop sizes in the axisymmetric
model lead to strong drop interaction if the leading drop is smaller. The effect of
the ratio of the two drop radii, their initial distance apart, and non-dimensional
numbers on the interaction is studied in the case of non-merging drops in detail.
The Marangoni number adopted in this paper is fairly large (around 100) so as
to reveal the phenomena of real flows. As a result, the heat wake behind the
leading drop plays an important role in drop interaction, and obviously different
final drop distances and transient migration processes are observed for various sets
of non-dimensional numbers. The influence of drop deformation on drop interaction
is also investigated for relatively large capillary number (up to 0.2). Finally, some
simulations are performed to explain the phenomena of drop interaction in previous
experiments, and some suggestions for future experiments are also provided.

Key words: drops and bubbles, multiphase flow, thermocapillarity

1. Introduction
The motion of drops and bubbles is a frequently observed physical phenomenon

in nature, e.g. movement of raindrops and vapour bubbles in boiling water. It is a
classical problem in fluid mechanics, and its study has great scientific value. Moreover,
droplets and bubbles widely exist in various production processes, e.g. fuel droplets
in the combustion chambers of power devices, bubbles in crystal growth, and liquid
drops and bubbles in the chemical process of aggregation and extraction. Hence, the
study of the behaviour of bubbles or droplets has a strong engineering background.

When gravity cannot be neglected, droplets or bubbles migrate due to the buoyancy
caused by density differences. In the microgravity environment, the buoyancy effect
disappears, and some other forces must be induced to drive droplets. A common
practice is making the mother liquid have non-uniform temperature. Since the
interfacial tension decreases with increasing temperature, the liquid near the interface
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is dragged towards the cold end from the hot end, the viscous force then drives the
mother liquid around the drop/bubble towards the colder region, and the counterforce
pushes the drop/bubble towards the hotter region. This phenomenon is termed
thermocapillary migration.

The earliest studies of thermocapillary migration were performed by Young,
Goldstein & Block (1959, the so-called YGB theory). Their linear model dealing
with this problem adopted the Stokes equation, and the steady Marangoni migration
velocity was derived:

vYGB = 2U
(2+ 3α) (2+ λ) , (1.1)

where
α =µ1/µ2, λ= k1/k2. (1.2a,b)

In this paper, symbols with subscript 1 represent physical quantities of the mother
liquid, and those with subscript 2 the physical quantities of the drop; µ is the
kinematic viscosity, and k the coefficient of thermal conductivity. The reference speed
U is defined using the balance of the thermocapillary force and viscous force:

U = |σT | |∇T∞| R/µ1, (1.3)

where σT is the changing rate of interface tension with temperature ∇T∞ the
background temperature gradient of the mother liquid, and R the radius of the
droplet.

Before the phenomena of two-drop migration are discussed, it is necessary to review
the main previous studies of a single drop. Traditionally, the density (ρ), µ, k, and the
specific heat (cp) are assumed to be constants. Hence, seven non-dimensional numbers
are considered in the one-drop system:

α, λ,Ma=UR/κ1, Re=URρ1/µ1, Ca=µ1U/σ0, ξ = ρ2/ρ1, γ = cp2/cp1.
(1.4a−e)

Here, κ = k/ρcp is the thermal diffusivity, σ0 the interface tension at a reference
temperature T0, and Ma, Re and Ca are the Marangoni, Reynolds and capillary
numbers, respectively.

Since the YGB theory was published, there have been many studies on this problem
using theoretical, experimental and numerical tools (see Balasubramaniam & Chai
1987; Chen & Lee 1992; Treuner et al. 1996; Haj-Hariri, Shi & Borhan 1997; Welch
1998; Wozniak et al. 2001; Sun & Hu 2002, 2003; Nas, Muradoglu & Tryggvason
2006; Borcia & Bestehorn 2007; Liu, Zhang & Valocchi 2012; Liu et al. 2013).
Most early findings have been summarized and discussed in the review book by
Subramanian & Balasubramaniam (2001); see also Subramanian, Balasubramaniam
& Wozniak (2002). Due to the fast development of supercomputers, it is possible
to perform more intensive numerical studies on this issue. In particular, Yin et al.
(2008) performed a thorough study on how all non-dimensional numbers influence the
migration process of non-deformable drops. The analytical study of the deformable
drop was first carried out by Haj-Hariri, Nadim & Borhan (1990). With numerical
simulations, the topological structure of the velocity and temperature field for the
deformed drop was studied by Zhao et al. (2011). The corresponding transient
behaviour was studied by Chang, Yin & Hu (2011), showing that changing the
density ratio (ξ ) leads to totally different drop shapes.

Most investigations have so far concentrated on the system of a Fluorinert FC-75
drop and a silicone oil continuous phase. For large Ma (>100), numerical simulation
is more challenging since the temperature boundary layer is very thin and the



438 Z. Yin and Q. Li

migration distance is very long (Brady, Herrmann & Lopez 2011). With the help of a
solver of the dynamic computing zone, the results of experiments in space (Hadland
et al. 1999) have been well explained by numerical simulations (Yin et al. 2012).
With the asymptotic method, Wu & Hu (2013) argued that there will not be a stable
migration velocity for large Ma. Note that this theoretical result is consistent with
the numerical simulations since there is a dramatic increase in computed stable drop
velocities for Ma> 200 (see figure 15 of Yin et al. 2012). Further theoretical studies
were also carried out with a Stokes model (Choudhuri & Raja Sekhar 2013; Lee &
Keh 2013), and the influence of various non-dimensional numbers was studied.

In practice, there are normally two or more drops existing in a mother liquid, so
it is very important to study the interaction between them. The first theoretical study
on two drops was carried out by Anderson (1985), and he found that the interaction
caused by thermocapillary effects is much weaker than that caused by buoyancy. Later,
a two-drop axisymmetric model was adopted by Keh & Chen (1990) and Keh & Chen
(1992). The axisymmetric thermocapillary-driven motion of a pair of unequal spherical
drops in near contact and subject to an ambient temperature gradient was investigated
for the case of non-conducting drops by Loewenberg & Davis (1993). They studied
touching drops in point contact (relative motion for the nearly touching drops resulting
from the contact force balanced by a lubrication resistance). Results for the pairwise
migration velocity, contact force, and the relative and individual drop velocities were
presented for many size ratios and a wide range of viscosity ratios (also, asymptotic
formulae were derived for small size ratios). The interaction between two deformable
drops was investigated by Zhou & Davis (1996).

Based on the space experiments (Balasubramanian et al. 1996), an asymptotic
analysis was applied to two bubbles at large Re and Ma (Balasubramanian &
Subramanian 1999), and it was concluded that the thermal wake of the leading drop
slows down the trailing drop. Lavrenteva & Nir (2003) considered the axisymmetric
motion and related thermal wake interaction of two drops in a viscous fluid under
the combined effect of gravity and thermocapillarity (Re < 1, Ma > 1, Pr � 1,
where Pr := Ma/Re is the Prandtl number). Without an imposed initial temperature
gradient in the external liquid, the analysis was focused on the case of ‘spontaneous’
thermocapillary motion, i.e. Marangoni effects induced on the trailing droplet by
the thermal wake originated from a leading rising drop moving under the effect of
buoyancy forces. They found that thermal boundary layers are present along the
interfaces at large Marangoni number, and thermal wakes are formed downstream
of the drops. The thermal wake behind the leading drop was proven to influence
significantly the temperature distribution on the surface of the trailing drop. They also
found that the induced change in the speed of the trailing drop becomes comparable in
magnitude with its (buoyancy) speed when isolated even for large separation distance
between the drops where the hydrodynamic interaction is negligible, and that in the
extreme case of very large Marangoni effect the direction of the trailing drop can
be reversed. In a subsequent study (Frolovskaya, Nir & Lavrenteva 2006), the above
results were refined by analysing in detail how the induced Marangoni flow results
in the change of the flow pattern, the velocity of both particles, and the equilibrium
separation distance (see also Leshansky & Nir 2001). With the front-tracking scheme,
two- and three-dimensional multi-drop problems were studied by Nas & Tryggvason
(2003), Nas et al. (2006) and Yin et al. (2011). It was found that two drops with
the same radius tend to move away from each other, and there is weaker interaction
between drops thereafter (Yin et al. 2011). In a study with the volume of fluid
method, Lappa (2005) assessed the role played by thermal wake effects in complex
multi-droplet configurations for both small and large values of the Prandtl number.
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However, most past studies on the interaction of droplets in the course of
their Marangoni migration were performed under the assumption of creeping flow
(vanishing Re and Ma, see Subramanian & Balasubramaniam 2001). For real flows, it
is expected that, when the values of the Marangoni number are relatively large, thin
thermal boundary layers will develop along the liquid–liquid interface, leading to the
formation of well-defined thermal wakes at the rear of a moving drop. In principle,
the thermal wake field of a leading drop could wrap around a trailing drop and have
a significant impact on its motion. The main focus of this paper is to further explore
this kind of strong drop interaction.

This research considers the axisymmetric model, for convenient comparison with
the planned space experiment in China. Previous space experiments are not very
informative because only the temperature at a few locations could be measured,
while the temperature field has the most important influence on thermocapillary
migration. With the axisymmetric assumption and digital holographic interferometry
(e.g. see Schedin 2006), it is possible to record the full temperature field without the
need for a large amount of equipment to be shipped for space experiments.

This paper is arranged as follows: the governing equations and numerical methods
are introduced in § 2, and a benchmark simulation is described in § 3. Sections 4
and 5 discuss how the ratio of the radii of the two drops and their initial distance
affect the interaction, § 6 discusses the influence of non-dimensional numbers for
non-deformable drops, and § 7 briefly discusses the case of deformable drops. Some
comparisons between our simulations and previous space experiments are made in § 8,
and our results and those of ‘creeping flows’ are compared in § 9. The conclusions
are presented in § 10.

2. The physical model and numerical solver

In this study, the axisymmetric model is adopted to perform high-resolution
simulations. Two drops are surrounded by the bulk fluid in a cylinder Ω =
[0, r1]× [z0, z1]. The direction of the temperature gradient is along the z-axis (figure 1).
The centreline of the two drops is r= 0. S is the distance between the drop centres,
and S0 the initial distance. We use SF to denote the distance at the final steady
state. (For an isolated drop, the final state means that a steady migration velocity is
reached. For the two-drop system, the final state is reached when both drops have
identical velocities.) The trailing drop is at a relatively low temperature, and the
leading drop is in the hotter region. We select the radius of the trailing drop as the
reference length (R), and Λ is the radius ratio of the leading drop to the trailing
drop. G= S−R−RΛ is the gap between the interfaces of the two drops, and GF the
gap at the final steady state. It is well-known in this field that a larger drop leads
to a larger migration velocity, so there will be weaker interaction for the case of
Λ> 1 because S becomes larger after the simulation is started. Hence, we set Λ< 1
throughout this paper.

The governing equations for the entire domain can be written as

∇ · u= 0, (2.1)
∂(ρu)
∂t
+∇ · (ρuu)=−∇p+∇ · (µ(∇u+∇Tu))+ Fσ , (2.2)

ρCp

(
∂T
∂t
+ u · ∇T

)
=∇ · (k∇T). (2.3)
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FIGURE 1. The schematic diagram for the Marangoni migration.

Here, u= (u, w) is the velocity vector, and Fσ is the body force term produced by
the interfacial tension

Fσ =
∫

B
δ(x− xf )

(
σζn+ ∂σ

∂s
τ

)
ds, (2.4)

where x= (r, z) is the space vector, xf = (rf , zf ) the position of cell f on the interface
B, δ a delta function, σ the interfacial tension, ζ the sum of two principal curvatures
of the interface, and s the natural coordinate along the interface; n= (nr, nz) and τ
denote the normal and tangential unit vectors of the interface, respectively. Note that,
in this paper and most related research in this field, σ usually takes the following
form:

σ(T)= σ0 − σT(T − T0). (2.5)

Hence, when T is high enough, the simulation has to be stopped to avoid σ(T) < 0.
The non-dimensional quantities are defined as

ū= (ū, w̄)= u/U, x̄= (r̄, z̄)= x/R, t̄= t
/
(R/U) , p̄= p/(ρ1U2),

T̄ = T/(|∇T|R), ρ̄ = ρ/ρ1, µ̄=µ/µ1, k̄= k/k1,

C̄p =Cp/Cp1, F̄σ = FσR/(ρ1U2), S̄= S/R. Ḡ=G/R.

 (2.6)

Thus, we have the non-dimensional equations

∇ · ū= 0, (2.7)
∂(ρ̄ū)
∂ t̄
+∇ · (ρ̄ūū)=−∇p̄+ 1

Re
∇ · (µ̄(∇ū+∇Tū))+ F̄σ , (2.8)

ρ̄C̄p

(
∂T̄
∂t
+ ū · ∇T̄

)
= 1

Ma
∇ · (k̄∇T̄). (2.9)
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The boundary conditions on the solid walls are

ū|r̄=r̄1 = ū|z̄=z̄0,z̄1 = 0,
w̄|r̄=r̄1 = w̄|z̄=z̄0,z̄1 = 0,

T̄|r̄=r̄1 = T̄0 + z̄,
T̄|z̄=z̄0 = T̄0 + z̄0,

T̄|z̄=z̄1 = T̄0 + z̄1.


(2.10)

The boundary conditions on the symmetry axis are

ū|r̄=0 = 0,
∂w̄
∂ r̄

∣∣∣∣
r̄=0

= 0,
∂T̄
∂ r̄

∣∣∣∣
r̄=0

= 0. (2.11a−c)

The initial conditions are

ū|t̄=0 = w̄|t̄=0 = 0, T̄|t̄=0 = T̄0 + z̄. (2.12a,b)

The non-dimensional form of the interfacial tension is

σ̄ = σ0 + σT(T − T0)

ρ1U2R
= 1

ReCa
− 1

Re
(T̄ − T̄0). (2.13)

In this paper, T0 is the temperature at the initial centre of the trailing drop (where
x̄ = (0, 3)). Therefore, to avoid the non-physical negative σ in our calculation, the
limitation for the non-dimensional migration distance of the leading drop is

Ml = 1
Ca
− S̄−Λ. (2.14)

In the following, symbols without bars are adopted to indicate non-dimensional
values. The front-tracking method is employed in our simulations (see Tryggvason
et al. 2001; Yin et al. 2008), a dynamic zone is adopted to enlarge the effective
computing domain (Yin et al. 2012), and a hybrid iterative scheme is adopted to
accelerate the code (Li 2013).

Throughout this paper, unless specified, the computational domain is 4 × 20 with
the resolution of 400× 2000, and the time step is 0.0015. The exceptions are those
simulations with small Λ (§ 5), small Ma (§ 6.1), and larger Ca (§ 7). All simulations
are continued until TF: when the relative velocity difference of two drops remains
<1 % for certain period (about two time units). The migration distance of the leading
drop at t= TF is defined as MF.

3. A benchmark problem
In this section, we adopt the physical parameters of a Fluorinert FC-75 drop and a

continuous phase with DC-200 silicone oil of nominal viscosity 10 cSt (Hadland et al.
1999). For the benchmark problem in this section, the non-dimensional parameters are:
Pr = 83.3, α = 0.14, λ= 0.47, ξ = 1.89, γ = 0.69, Ca= 0.04,Ma= 100, Λ= 0.5, and
S0 = 2.5.

An isolated drop with a fairly large Ma experiences an increase–decrease process
before it reaches its final steady velocity (VF) (e.g. see the curves with ‘plus’



442 Z. Yin and Q. Li

0 20 40 60 80 100 120

0.05

0.10

0.15

0.20

0.25

t
0 20 40 60 80 100 120 140

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

2.55

t

S

(a)

V

(b)

FIGURE 2. Time evolution of drop velocities V (a) and distance between centres
S (b) for the benchmark simulation. Re = 1.2, α = 0.14, λ = 0.47, ξ = 1.89,
γ = 0.69, Ca= 0.04, Ma= 100, Λ= 0.5 and S0 = 2.5.

or triangle marks in figure 2a). When two drops migrate together, there is some
difference in migration velocities. It is clear that the trailing drop starts with a rapid
acceleration and deceleration, forming a sharp overshoot in velocity. By contrast, the
leading drop has a much smaller overshoot, and eventually reaches the same velocity
as the trailing drop (solid and dashed lines in figure 2a). The common speed of
the coupled drops is slower than that of the bigger isolated drop (the ‘+’ curve in
figure 2a), but faster than that of the smaller isolated drop (the triangle-mark curve
in figure 2a).

Figure 2(b) shows the time evolution of S. It decreases before t = 9 because the
trailing drop has a much bigger acceleration, but becomes larger after t=9 because the
trailing drop becomes much slower after the overshoot. After an interaction process
between the two drops, they reach the same velocity, and S becomes a constant.

In the Marangoni phenomenon, the velocity field surrounding the drop is not very
strong because the effective Re is very low. That is, if the reference speed is defined
as the maximal or average speed in the flow field instead of (1.3), Re is lower than
10. In fact, the variation in the temperature field is the most important factor in
the interaction between two drops, and it is worth a thorough investigation. At the
beginning of the simulation, isotherms of the whole flow field are straight (figure 3,
t = 0), or there is fairly large temperature difference along the drop interfaces. This
leads to a large driving force on the drops. When the drops move forwards, the
isotherms wrap around the interfaces. After a while, the temperature differences of
both drops are smaller than those at t= 0 (figure 3, t= 15), and drop velocities begin
to decrease. Figure 4(b) clearly shows that scaled temperature distributions along the
leading drop are almost the same after t= 30, and the drop velocity becomes stable.
(Note that the scales of the y-axis in left-hand plots of figures 4, 10 and 13 are about
twice those in right-hand panels (b).) On the other hand, the trailing drop becomes
stable much more slowly (figure 4a). During t ∈ [15, 60], there are still dramatic
changes in the isotherms inside the trailing drop, and the cold region in the drop
top becomes colder and colder compared with the mother liquid nearby. This change
makes a stronger temperature boundary near the trailing drop, and leads to a larger
temperature difference on the interface and to a larger drop velocity. The trailing
drop does not reach its steady velocity until t= 60.



Thermocapillary migration and interaction of drops 443

2 40

2

4

6
6.5

5.5

4.5

3.5

2.5

1.5

0.5

8

8.5
13.5

8

8

9

9

7.5
12.5

19.5

18.5

12.5
13.5

13
13.5

14.5

15.5

16.5
17

18

19

20

12.5

17.5

16
15
14

17
12

13

10.5

10.5

9.5

8.5

7.5

10

11.5

11

6

6.5

33.5

4.5

3.5
3

2.5

5.5

6.5

5
4

2

4

6

12

8

10

20

16

14

18

2 40 2 40 2 40

7

6

7

7

7

6

6

5

4

3

2

1

0

(a)  (b) (d )(c)

FIGURE 3. Temperature fields of the benchmark simulation at different times. Re = 1.2,
α = 0.14, λ = 0.47, ξ = 1.89, γ = 0.69, Ca = 0.04, Ma = 100, Λ = 0.5 and S0 = 2.5.
(a) t= 0; (b) t= 15; (c) t= 60; (d) t= 120.
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FIGURE 4. Scaled temperature distributions along the drop interfaces for the benchmark
simulation. Throughout this paper, θ is defined as the angle from the interface to the drop
centre. θ = 0 corresponds to the top of the drop, and θ = π to the bottom of the drop.
Re = 1.2, α = 0.14, λ = 0.47, ξ = 1.89, γ = 0.69, Ca = 0.04, Ma = 100, Λ = 0.5 and
S0 = 2.5. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.

Figures 5(a) and 5(c) show temperature fields when two isolated drops migrate to
their steady velocities. They clearly show that the isotherms accumulate around the
drop front, where the temperature gradient along the z axis is very large. On the other
hand, there is a long thermal wake behind the drop, where the temperature gradient
along the z axis is very small. When two droplets migrate together (figure 5b), the
thermal wake caused by the leading drop lowers the temperature gradient around the
trailing drop, and the trailing drop moves more slowly than the isolated drop. On the
other hand, the accumulated isotherms around the head of the trailing drop leads to
a hotter rear stagnation point on the leading drop, so the leading drop moves faster
than if isolated.

At the final steady states, isotherms between two droplets (figure 5b) are denser than
those behind an isolated small drop (figure 5a), and sparser than those in front of an
isolated large drop (figure 5c). This is much clearer in figure 6, where the temperature-
difference curves related to the pair of drops (the solid and dashed lines) are between
those of two isolated drops (the lines with ‘+’ and triangle marks).
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FIGURE 5. Temperature fields of the benchmark simulation and isolated droplets at the
final states. Re= 1.2, α= 0.14, λ= 0.47, ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100, Λ= 0.5
and S0= 2.5. (a) Isolated drop R= 0.5; (b) two drops R1= 1.0, R2= 0.5; (c) isolated drop
R= 1.0.
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FIGURE 6. Scaled temperature distributions along the drop interfaces at the final states.
Re = 1.2, α = 0.14, λ = 0.47, ξ = 1.89, γ = 0.69, Ca = 0.04, Ma = 100, Λ = 0.5 and
S0 = 2.5.

Figure 2(a) also shows that the influence of the trailing drop on the leading drop
takes effect much earlier than that of the leading drop on the trailing drop. To explain
this phenomenon, we draw the temperature perturbation (T(r, z, t)− T(r, z, 0)) for the
isolated droplet. At t= 1.5 (figure 7a), the disturbance from the front stagnation point
(‘stagnation point’ is adopted here because the velocity is zero at the front/rear point
of the drop in the reference frame moving with the drop, see e.g. figure 6(b) in Yin
et al. (2008)) has already spread about 2R ahead, while that from the rear stagnation
point has only spread about R behind. In other words, the disturbance spreads faster
from the front part than the rear part of the drop. In the case of the two-drop system,
this means that the influence of the trailing drop spreads faster than that of the leading
drop at the beginning of the simulation. At t = 15 (figure 7b), the disturbance from
both front and rear parts has spread about 2R away. So in the case of the two-drop
system, the influence of the trailing drop is of the same importance as that of the
leading drop at this stage.
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FIGURE 7. Temperature perturbation for the isolated droplet at different times. The
isotherms labelled zero indicate the undisturbed region. Re = 1.2, α = 0.14, λ = 0.47,
ξ = 1.89, γ = 0.69, Ca = 0.04, Ma = 100, Λ = 0.5 and S0 = 2.5. (a) t = 1.5;
(b) t= 15.

To sum up, the process of the interaction between the two drops can be described
as follows:

(a) when S is small, the interaction is stronger, the trailing drop becomes much
slower, and the leading drop becomes faster, which leads to a bigger S;

(b) when S is large, the interaction is weaker, the trailing drop becomes faster, and
the leading drop becomes slower, which leads a smaller S.

Eventually, the equilibrium is reached, and both drops move with the same velocity
with a fixed S.

4. The influence of S0

The non-dimensional parameters in this section are the same as those in § 3, but
with three values of S0: 2.0, 2.5 (the benchmark run), and 3.0.

The discussion of the last paragraph in § 3 implies that the variance of S0 does not
influence SF (figure 8). Also, the values of VF for the three simulations are almost
identical, which is clearly illustrated in figure 9. On the other hand, the variance of
S0 has a direct impact on the migration process (figure 9). It is easy to understand
that, when S0 is fairly large, the migration process of two drops is close to that
of the corresponding isolated ones since the interaction between the drops is small.
Figures 10 and 4 also reveal that the temperature difference between the front and rear
stagnation points of the trailing drop is bigger for larger S0: at t= 15, (T(0)− T(π)≈
1.0 for S0 = 3.0 while it is ≈ 0.9 for S0 = 2.0; see dashed lines on the left-hand
plots). That is, larger S0 values lead to faster migration velocities at the early stages
of simulations, which correspond to the faster decrease in drop distances for larger
S0 in figure 8. The trend of temperature difference of the leading drop is opposite
(dashed lines on the right-hand plots), so even if S0 is fairly large, the two drops are
able to reach their common velocity. Moreover, for the temperature difference on the
trailing drop, the larger S0 means a faster transition to its final states, but it means a
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FIGURE 8. Time evolution of drop distances with different S0. Re=1.2, α=0.14, λ=0.47,
ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100 and Λ= 0.5.
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FIGURE 9. Time evolution of migrating drop velocities with different S0. Re= 1.2, α =
0.14, λ= 0.47, ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100 and Λ= 0.5. (a) Trailing drop:
R= 1.0; (b) leading drop: R= 0.5.

slower transition for the temperature difference on the leading drop (see figure 9 and
the t= 120 curves in figures 10 and 4).

Note that the above discussion is true only when the values of S0 are large enough.
If S0 is very small, the trailing drop might collide with the leading drop. (In our
front-tracking solver, the interpolating function for the interface tension covers two
grids (see more details in Tryggvason et al. 2001), and the region between two drops
covers four grids in total. Thus, in this numerical work, the smallest possible S0 is four
times the grid size (or 0.04R if the computation grid is 400× 2000 on the 4R× 20R
domain).)

5. The influence of Λ (radius ratio between the droplets)
The non-dimensional parameters in this section are the same as those in § 3, but

with Λ= 0.3, 0.4 and 0.5.
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FIGURE 10. Scaled temperature distributions along the drop interfaces for different times
with different S0. Re= 1.2, α = 0.14, λ= 0.47, ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100
and Λ = 0.5. (a) Trailing drop: R = 1.0, S0 = 2.0; (b) leading drop: R = 0.5, S0 = 2.0;
(c) trailing drop: R= 1.0, S0 = 3.0; (d) leading drop: R= 0.5, S0 = 3.0.

As can be seen from figure 11(a), there is almost no difference in the early
processes of the trailing drop for different Λs. Figure 11 also shows that the final
common migration velocity decreases for larger Λ. In a sense, this is counter to our
general knowledge, because larger Λ means a larger leading drop, which should lead
to larger VF according to the results of isolated drops. A careful study of the final
temperature fields shows that SF is shorter for smaller Λ (figure 12), which means
that the isotherms between the droplets are denser. This results in a larger temperature
gradient along the drop interfaces, which finally leads to a larger migration
speed.

The most interesting phenomenon for the leading drops is that the relative
temperature differences between their initial states and their final ones become
bigger for smaller Λ (figures 13b and 4b). In the case of Λ= 0.3, the difference after
t= 15 is approximately 30 % larger than that at t= 0. For smaller Λ, a larger part of
the leading drop is covered by the disturbed region in front of the front stagnation
point of the trailing drop. As discussed in § 3, the isotherms accumulate in front
of the trailing drop; hence, the relative temperature difference of the leading drop
becomes larger. Therefore, although the absolute temperature difference on the leading
drop still increases for larger Λ (T(π)− T(0) is approximately 0.8 for Λ= 0.3, but
approximately 0.9 for Λ= 0.5), the overall temperature gradient is 0.8/0.3= 2.66 for
Λ= 0.3 at the final state, which is larger than that for Λ= 0.5 (0.9/0.5= 1.8). This
clearly explains why VF is smaller for larger Λ.
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FIGURE 11. Time evolution of drop velocities for different Λ. Re = 1.2, α = 0.14, λ =
0.47, ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100 and S0 = 2.5. (a) Trailing drop: R= 1.0;
(b) leading drop: R=Λ.
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FIGURE 12. Temperature fields for different Λ at the final states (t = 120). Re = 1.2,
α = 0.14, λ= 0.47, ξ = 1.89, γ = 0.69, Ca= 0.04, Ma= 100 and S0 = 2.5. (a) Λ= 0.3;
(b) Λ= 0.5.

As already revealed in the benchmark run, the common VF of both drops is
bounded by the VF values of the corresponding isolated ones. This conclusion can be
made stronger, together with our earlier statement that ‘smaller VF for larger Λ’: the
common VF value of both drops with Λ < 0.5 is bounded by the VF values of the
isolated ones when Λ= 0.5. Hence, the final VF difference caused by various Λs is
small, which is approximately 5 % at maximum (figure 11).

To further explore the influence of Λ, we extend the study with Λ = 0.1, 0.15,
0.2, . . . , 0.8. When Λ> 0.3, the same resolution and time step are adopted as defined
in the last paragraph of § 2. For smaller Λ, larger resolutions are adopted to guarantee
enough grid points inside the small leading drops: for Λ= 0.1, 0.15, 0.2 and 0.25, the
resolutions are 1000 × 5000, 800 × 4000, 600 × 3000 and 500 × 2500, and the time
steps are 0.0004, 0.000625, 0.001 and 0.001, respectively. For Λ< 0.1, a much finer
resolution is required and current computers do not have such a capability.

When Λ is larger, the velocity gap between two corresponding isolated drops is
smaller. Therefore, a weaker interaction is needed to maintain a final common speed
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FIGURE 14. (a) Plot of final distance between drop centres and final gap between drop
interfaces versus Λ, and (b) time evolution of gap between drops for different Λ. Note
that, because the sizes of leading drops (RΛ) are not fixed in this section, it is more
convenient to adopt G instead of S here. Re= 1.2, α= 0.14, λ= 0.47, ξ = 1.89, γ = 0.69,
Ca= 0.04, Ma= 100 and S0 = 2.5.

of both drops, which readily leads to a larger SF. This is more clearly shown in our
simulations (figure 14a). When Λ> 0.5, the values of SF increase exponentially.

When Λ is very small (Λ = 0.1), the big trailing drop dominates the interaction
between drops, and the system reaches its final state quickly (figure 14b). When Λ is
bigger, because the bigger leading drop causes a larger impact on the drop interaction,
the interplay between two drops takes a longer time. Hence, a longer time and larger
migration distance are needed to reach the final state for larger Λ. For Λ > 0.8,
because of the migration distance limitation defined by (2.14), the two drops cannot
reach a common migration speed.

Although GF becomes smaller for smaller Λ, it does not drop down to zero
as one might initially expect. The small-Λ lines in figure 14(b) show that the
distance between the drops experience a more direct decrease at the beginning of
the simulation, and becomes stable before the two drops collide. On the other hand,
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Section Ma Re α λ γ ξ

6.1 10, 25, 50, 1 1 1 1 1
75, 100,
125, 150

6.2 50 1, 5, 10, 1 1 1 1
15, 20,
25, 30

6.3 100 1 2/5, 1/2, 1 1 1
2/3, 1, 3/2,

2, 5/2
6.4 100 1 1 2/5, 1/2, 1 1

2/3, 1, 3/2,
2, 5/2

6.5 100 1 1 1 2/5, 1/2, 1
2/3, 1, 3/2,

2, 5/2
6.6 100 1 1 1 1 2/5, 1/2,

2/3, 1, 3/2,
2, 5/2

TABLE 1. The non-dimensional numbers for all simulations in § 6. S0 ≡ 2.5 and Λ≡ 0.5.

the trend of the GF line in figure 14(a) seems to show that the minimum value of
GF is around 0.3 even for the smallest Λ. Apparently, when Λ is small and Ma is
fairly large, the accumulated isotherms around the head of the trailing drop become
dominant in the system and effectively drive the small leading drop faster, and thus
the drop collision is avoided.

6. The influence of non-dimensional numbers on non-deformable drops
In experiments in space, different Ma and Re can be set by changing the drop

sizes and temperature gradients, whereas most other non-dimensional numbers are
determined after experimental materials are chosen. To provide better support for
future experiments, we will not focus on the parameters in space experiments in
this section, but study the influence of each non-dimensional number with the others
unchanged. Throughout this section, S0≡ 2.5 and Λ≡ 0.5. Ca is set to 0.04, hence the
drops can be assumed to be non-deformable. Other parameters adopted in §§ 6.1–6.6
are specified in table 1.

Note that this study is dealing with drops (not bubbles), so their densities,
viscosities, thermal conductivities, and specific heats are not very different from
those of their mother liquids. Thus, the parameters in table 1 should be roughly
sufficient to cover most situations in reality.

6.1. The influence of Ma
Not all time steps in this subsection are the same: 0.00025 for Ma= 10, 0.0005 for
Ma= 25, 0.001 for Ma= 50 and 75, and 0.0015 for Ma> 75.

In a sense, the time evolution of migration velocities for double drops is just like
the isolated ones (Yin et al. 2008): the variance of Ma leads to a similar initial
accelerating process, but a larger Ma causes a bigger speed overshoot at the early
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FIGURE 15. Time evolution of drop velocities for different Ma with Ca= 0.04 and Re=
α = λ= γ = ξ = 1. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.
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FIGURE 16. Temperature fields at final states for different Ma: (a) Ma = 10 (t = 50);
(b) Ma = 50 (t = 80); (c) Ma = 100 (t = 120); (d) Ma = 150 (t = 210). Ca = 0.04 and
Re= α = λ= γ = ξ = 1.

time of the simulation, longer and more complicated process to reach the VF, and
lower VF. Of course, due to the interaction process discussed earlier in this paper, the
VF of the double drops is lower than that of the isolated trailing drop (see figure 15).

It should be noted that the reference length is the radius of the trailing drop, and
that the actual Ma of the leading drop is much smaller, so the velocity overshoots
of the leading drops are never large (figure 15b). Figure 16(a) shows that the
temperature distribution inside the leading drop for small Ma is quite close to that
of the surrounding liquid at the same height, which means that the driving force
determined by the temperature gradient experiences no dramatic decrease. This is
unlike the cases with larger Ma (figure 16b–d). Therefore, there is no velocity
‘overshoot’ at all for the leading drop with a small Ma.

Compared with the corresponding plots with parameters from space experiments
(figures 4, 10 and 13), the t 6= 0 temperature distributions along the trailing drop tend
to gather in a relatively small region in this section, and they will not be discussed
further in the following.

Earlier studies show that, for an isolated drop, a larger Ma leads to longer heat
wake behind the drop (e.g. see figure 7 of Yin et al. 2012). To get a strong enough
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FIGURE 17. Time evolution of G for different Ma with Ca= 0.04 and Re= α= λ= γ =
ξ = 1.

interaction in the two-drop system, SF needs to be smaller for a smaller Ma. Figure 17
shows that all simulations reach stable gaps eventually: GF is approximately 1.4 for
Ma = 150, while as low as 0.045 for Ma = 10. When Ma is even smaller, the heat
wake behind the leading drop is even weaker, and so is the isotherm-gathering effect
just above the trailing drop. Thus, the interaction mechanism between the drops is
even weaker, and our numerical study shows that GF will be so small that there
is a good chance that the trailing drop may catch up with the leading drop when
Ma< 10.

Most other simulations in this paper have Ma high enough (>50) that GF is always
positive. Further comparison and discussion for creeping flows (Ma < 10) will be
continued in § 9.3.

6.2. The influence of Re
Figure 18(a) shows that, for the trailing drops, small Re leads to bigger initial
accelerating rates, sharper speed ‘overshoots’, and shorter periods to reach their VF.
These phenomena fit well with the conclusion drawn from the migration process
of isolated drops (Yin et al. 2008). Without speed ‘overshoots’ for leading drops,
figure 18(b) only shows that it takes a longer time with larger Re for the final
states to be reached. Due to the interaction between drops, VF mildly increases
with increasing Re, and the corresponding isolated trailing drops show a much more
obvious increase.

Despite the different Re, the temperature fields at the final states look identical
(figure 19), the SF are close to each other, and T(0) − T(π) ≈ 1.6 for all trailing
drops and ≈1.2 for all leading drops. The variance of Re does not change the final
temperature differences along the interfaces of drops, but a bigger Re means that the
temperature curve converges more slowly to the final state.
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FIGURE 18. Time evolution of drop velocities for different Re with Ma= 50, Ca= 0.04
and α = λ= γ = ξ = 1. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.
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FIGURE 19. Temperature fields at the final state (t= 80) for different Re with Ma= 50,
Ca= 0.04 and α = λ= γ = ξ = 1. (a) Re= 1; (b) Re= 10; (c) Re= 20.

6.3. The influence of α (viscosity ratio between the mother liquid and the drop)
According to previous results (Yin et al. 2008), α is the most important parameter for
isolated drops because its variance leads to a dramatic difference of drop velocities.
For the two-drop system, the time evolutions for different α are also obviously
distinguished from each other, and there is no overlap for any curves in both figures
20(a) and 20(b).

There are two mechanisms that influence the VF of drops for different α:

(a) smaller α leads to better isothermal wrapping around the drops (figure 21),
smaller temperature difference along the drop interface, and weaker driving force
on the drops;

(b) smaller α also means smaller drop viscosities, or faster flow motion inside the
drop, and the continuity of the flow speed near the interface makes the drop move
faster.

In the case of isolated drops, the first mechanism is much weaker than the second
one, so VF increases super-linearly with the decrease of α. The existence of the
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FIGURE 20. Time evolution of drop velocities for different α with Ma= 100, Ca= 0.04
and Re= λ= γ = ξ = 1. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.
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FIGURE 21. Temperature fields at the final states (t= 120) for different α with Ma= 100,
Ca= 0.04 and Re= λ= γ = ξ = 1. (a) α = 0.5; (b) α = 2.0.

leading drop makes the first mechanism stronger for the trailing drop. Hence, VF for
the two-drop system does not experience very dramatic variance for different α.

The slower flow motion inside the leading drop for larger α results in the
temperature at the bottom of the leading drop being closer to that of surrounding
liquid at the same height, or results in a weaker heat wake. Hence, larger α means
smaller SF (figure 21), and this readily leads to a larger overall temperature difference
for the leading drop. When α = 2.0, the final temperature difference on the leading
drop is higher than the initial difference.

6.4. The influence of λ (thermal conductivity ratio between the mother liquid and
the drop)

Figure 22 clearly shows that a smaller λ causes stronger heat convection inside
the drop, more isotherms accumulating around the front stagnant point, smaller
temperature difference along the drop interface, and slightly smaller VF. In comparison,
the VF of isolated drops shows a similar trend but more obvious difference for various
β (β := (λ/ξγ ), and β = λ in this subsection because γ = ξ = 1 (Yin et al. 2008)).
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FIGURE 22. Temperature fields at the final states for different λ with Ma=100, Ca=0.04
and Re= α = γ = ξ = 1. (a) λ= 0.5 (t= 140); (b) λ= 2.0 (t= 100).
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FIGURE 23. Time evolution of drop velocities for different λ with Ma= 100, Ca= 0.04
and Re= α = γ = ξ = 1. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.

In general, the time evolution of velocities of trailing drops shows almost no
difference for different λ, and those of leading drops differ more greatly from each
other (figure 23). For all leading drops in this subsection, there are small overshoots
in velocities. The leading drop velocity for λ= 0.5 becomes steady after the overshoot
around t = 20, and that for λ = 2.0 has a quite long acceleration process after the
overshoot and does not become steady until t≈ 40.

According to the definition of λ, larger λ means larger thermal diffusivity inside the
drop, which results in the temperature at the bottom of the leading drop being closer
to that of the surrounding liquid with the same height, or results in a weaker heat
wake. Hence, larger λ means smaller SF (figure 22).

On the other hand, larger thermal diffusivity causes fewer isotherms to accumulate
around the front stagnant point of the trailing drop for larger λ. This accumulation
decreases the temperature difference along the leading drop, and weakens the effect
caused by smaller SF. As a result, almost equivalent VF values for different λ are
obtained.
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FIGURE 24. Time evolution of drop velocities for different γ with Ma= 100, Ca= 0.04
and Re= α = λ= ξ = 1. (a) Trailing drop: R= 1.0; (b) leading drop: R= 0.5.
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FIGURE 25. Temperature fields at the final states for different γ with Ma = 100,
Ca= 0.04 and Re= α = λ= ξ = 1. (a) γ = 0.5 (t= 80); (b) γ = 2.0 (t= 220).

6.5. The influence of γ (specific heat ratio between the mother liquid and the drop)
For the trailing drops, there is almost no difference in the early velocities for different
γ (figure 24a). After the initial acceleration process, the speed of the γ = 0.5 drop
quickly decreases to VF, while that of the γ = 2.0 drop takes a longer time.

From the definition of γ , we know that larger γ means that the temperature fields
inside the drops are less influenced by the background liquid, which means a smaller
temperature difference along the drop interface (figure 25). For the leading drop, the
temperature difference along the drop interface for γ = 0.5 keeps increasing until
it reaches the steady state, while that for γ = 2.0 is always lower than the initial
temperature difference. Hence, larger γ leads to lower VF.

Previous studies on isolated drops clearly show that smaller γ leads to an obviously
shorter heat wake behind the drop at the final states (e.g. see figure 28 in Yin et al.
2008). The large variance in the heat wake indicates that γ is an important factor
that affects the interaction between two drops. For smaller γ , the shorter heat wake
results in a smaller SF, and the isotherms gathering around the front stagnant point of
the trailing drop are closer to the leading drop, which further increases the overall
temperature difference along the leading drop interface. The interaction makes the
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FIGURE 26. (a) Common velocity, (b) final distance between drops, (c) migration distance
of the leading drop and (d) stable time, for various non-dimensional numbers (α, λ, ξ , γ )
with Ma= 100 and Re= 1. Note that the x-axes have logarithmic coordinates here.

drop with a smaller γ move even faster, or the variance of γ leads to a bigger VF
difference of pairs of drops than that of isolated drops.

6.6. The influence of ξ (density ratio between the mother liquid and the drop)
The variance of ξ has a similar effect on the drop interactions to that of γ , though the
physical mechanism here is totally different. Larger ξ means that the drops are heavier,
thus resulting in lower VF. The faster motion of the drop with a smaller ξ leaves a
shorter heat wake, and thus a smaller SF. Also, the isotherms gathering around the
front stagnant point of the trailing drop are closer to the leading drop for a smaller ξ ,
which further increases the temperature difference along the leading drop interface. In
general, the drop interaction makes the drop with a smaller ξ move even faster, or the
variance of ξ leads to a bigger VF difference of pairs of drops than that of isolated
drops.

6.7. Final states
The variance of VF for various non-dimensional numbers is summarized in
figures 26(a), 27(a) and 28(a). It is clear that VF decreases with larger Re and
λ, or with smaller α, ξ, γ , and Ma. On the other hand, the value of SF seems to
decrease with larger α, Re and λ, or with smaller ξ, γ and Ma (figures 26b, 27a and
28a). Although the variance of λ has almost no influence on the value of VF, it has
an obvious impact on SF. Note that the variances of ξ and γ have almost the same
effects on VF and SF.
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FIGURE 27. (a) Common velocity and final distance between drops, (b) migration distance
of the leading drop and stable time, for various Ma with Re, α, λ, ξ , γ = 1.
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FIGURE 28. (a) Common velocity and final distance between drops, (b) migration distance
of the leading drop and stable time, for various Re with α, λ, ξ , γ = 1 and Ma= 50.

For reference in future space experiments, it is useful to discuss the migration
distance required for the two-drop system to reach its final states. The biggest
limitation in previous space experiments is that the tank was not long enough
(Hadland et al. 1999), so we only study the migration distance of the leading drop
(MF). Figures 26(c), 27(b) and 28(b) show that larger Ma, Re, ξ and γ , or smaller α
and λ, lead to longer migration distances.

Most variances of TF with non-dimensional numbers show similar trends to those
of MF (figures 26d, 27b and 28b). One exception is the influence of α. Although TF

slightly increases for larger α, MF obviously decreases because of the dramatically
decreasing VF for larger α.

7. The interaction of deformed drops

For creeping flow, Haj-Hariri et al. (1990) showed that, depending on whether the
drop density is larger or smaller than that of the exterior fluid, the deformed drop
shape will be a prolate (for ξ > 1) or an oblate spheroid (for ξ < 1), respectively. For
fairly large Ma and Re values, Chang et al. (2011) observed similar phenomena with
a numerical simulation.
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FIGURE 29. (Colour online) Temperature fields at t= 20.0 for different ξ with Ca= 0.2,
Re= 50.0, Ma= 50.0, α= γ = 0.5, λ= 0.25. The solid black circles indicate the locations
of interfaces, and the dashed grey circles (red online) indicate the interfaces if there is no
drop deformation at all. (a) ξ = 0.5; (b) ξ = 1.0; (c) ξ = 2.0.

To make this paper concise, except for Ca and ξ , we do not vary other parameters
as we did in § 6. In this section, Ca is set to be fairly large to achieve clear drop
deformation, and three values are chosen: 0.1, 0.15 and 0.2. Also, ξ = 0.25, 0.5, 1,
2.0 and 4.0 are chosen. For the rest of the parameters, Λ= 0.5, S0 = 2.5, Re= 50.0,
Ma= 50.0, α= γ = 0.5 and λ= 0.25. Note that Re in this section is also fairly large
to achieve clear deformation. In this section, the resolution is 300 × 1500, and the
time step is 0.0001.

Note that Ca was set to 0.04 in simulations in other sections, which means that
the migration limitation defined by (2.14) need not be a concern since MF in those
simulations is always below 20.0. However, to avoid negative interfacial tensions, the
simulations in this section are stopped much earlier than those non-deformable cases.
For example, because Ml = 2.0 for Ca = 0.2, all simulation must be stopped before
TS = 20.

To keep this paper concise, only figures for Ca= 0.2 runs are presented. Figure 29
clearly shows that there is no obvious drop deformation for ξ = 1.0, the ξ = 0.5 drops
become flattened while the ξ = 2.0 drops are elongated in the z direction. This is
in good agreement with the corresponding findings for single deformed drops (see
figure 13 in Chang et al. 2011).

The heat wakes behind the leading drops are quite different from those of non-
deformable drops. For large-Ca runs, the elongated leading drop with ξ = 2.0 has
a much weaker heat wake than the flattened leading drop with ξ = 0.5; the non-
deformable drops show the opposite trend (see the discussion in § 6.6). It is clear that
the short migration distance is not enough for the two drops to reach their common
velocity (figure 30), so there is no discussion on final states in this section.

When Ca is smaller, the drop deformation is also smaller in the same migration
period. In the case of Ca = 0.1, there is almost no deformation for all ξ values at
t= 20. On the other hand, because small Ca means larger Ml, the small-Ca runs can
be continued much longer before they are stopped (for Ca = 0.1, TS = 54 for ξ =
0.25 and TS = 82 for ξ = 4.0). Eventually, the drop deformations are also quite large.
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FIGURE 30. Time evolution of drop velocity for different ξ with Ca = 0.2, Re = 50.0,
Ma= 50.0, α = γ = 0.5, λ= 0.25. (a) Trailing drops; (b) leading drops.

When Ca is even smaller (e.g. Ca = 0.04, as for the rest of the simulations in this
paper), it takes a longer time for drop deformations to become noticeable, and the two
drops may have a better chance of reaching a common velocity.

8. The comparison between numerical solutions and experimental results
In Balasubramanian et al. (1996) and later in § 7.11.3 of Subramanian &

Balasubramaniam (2001), some space experiments on drop interactions were described
with Fluorinert FC-75 drops and the continuous phase of DC-200 silicone oil of
nominal viscosity 50 cSt. The Marangoni number for their trailing drop is 102, and
Λ = (2.40 mm/4.72 mm) = 0.508, both of which are close to those adopted in
§ 3. The effect of the leading drop heat wake on the trailing drop was analysed by
Balasubramanian & Subramanian (1999), assuming Ma and Re→∞.

It should be noted that there are quite different initial conditions between numerical
simulations and experiments.

(a) In our numerical simulation, both drops start to migrate simultaneously. There
is only a very weak interaction between drops initially, hence the trailing drop
accelerates at a rate close to that of an isolated one. Before the heat wake behind
the leading drop takes effect, the trailing drop has already achieved a relatively
high migration velocity.

(b) In space experiments, the leading drop is first injected into the tank, and it
starts to migrate immediately, leaving the heat wake behind. The trailing drop is
injected when the original constant temperature gradient is changed by the heat
wake of the leading drop, and it has a much slower acceleration than if isolated.
In fact, the heat wake may also lead to a more difficult injection process for the
trailing drop since the thermocapillary driving force is also weaker. This might
be one of the reasons why the interaction experiments are ‘relatively difficult’ to
perform (Balasubramanian et al. 1996).

To have a better understanding of why there are only a few successful space
experiments on this subject, we adopted the parameters of the ‘successful’ one
(Balasubramanian et al. 1996): Ma = 102.0, Re = 0.26, ξ = 1.89, α = 0.028, λ =
0.47, γ = 0.69, Λ = 0.508, Ca = 0.04, and performed the following two simulations:
Run 1 for two drops; and Run 2 for an isolated drop.
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FIGURE 31. Run 2: temperature distributions around the drop at t= 60 with Ma= 102.0,
Re= 0.26, ξ = 1.89, α = 0.028, λ= 0.47, γ = 0.69, Λ= 0.508 and Ca= 0.04. Different
parts of the same temperature field are shown here: a) behind the drop, b) above the drop.
In each plot, the temperature gradient indicated by the dashed arrow is higher than that
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Figure 31 show the temperature distribution around the drop at the final state of
Run 2. Figure 31(a) clearly shows that, for the region just behind the drop, the
temperature gradient in the vertical direction (solid arrow) is lower than that slanting
to its right (dashed arrow). In experiments, this means that if the two drops are
close and in aligned arrangement the system is unstable because the trailing drop
will move towards the direction with the highest temperature gradient. Hence, the big
trailing drop most likely will override the small leading drop. And without the big
drop trailing behind, the small drop may migrate more slowly at a speed close to
that of its corresponding isolated drop. When the big drop becomes the leading drop,
it will move even faster, and leave the small drop far behind. Each drop will migrate
at the same speed as its corresponding isolated one, the distance between two drops
becomes larger and larger, and there is almost no drop interaction then.

On the other hand, α is very small in these two simulations, which means that it
takes a very long time for the drops to reach their VF. Figure 32 shows that the time
evolution of S in Run 1 is much more complicated than that of the benchmark run in
§ 3 (figure 2b), and that S keeps decreasing until a very late time. This means that the
drop interaction is never strong, and the symmetry-breaking mechanism discussed in
the previous paragraph never happens. So in space experiments, it has been observed
that the leading drop moves virtually as if it were isolated. However, the trailing drop
moves more slowly than if it were isolated. Apparently, the leading drop influences
the trailing drop, but the trailing one does not affect the leading one.

For the successful implement of corresponding experiments, we provide two
suggestions.

(a) Carefully design the experimental setup: the experimental materials, drop sizes,
the temperature gradient, etc. With proper non-dimensional parameters, the strong
drop interaction can be avoided.

(b) Introduce some other mechanism to keep the symmetry of the system. One
possible way is choosing a slender tank. The temperature gradient on the
boundary (solid arrow in figure 31b) is lower than that in the centre (dashed
arrow in figure 31b), and drops near the wall tend to move away from the
boundary. With a slender tank, drops will be confined in the central region of
the tank, and the symmetry adopted in this paper will not be broken even if the
drop interaction is strong.
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FIGURE 32. Run 1: time evolution of the drop distance with Ma = 102.0, Re = 0.26,
ξ = 1.89, α = 0.028, λ= 0.47, γ = 0.69, Λ= 0.508 and Ca= 0.04.

9. Comparisons between the current results and those of creeping flows
9.1. Some comparisons on the interactions of bubbles

Meyyappan, Wilcox & Subramanian (1983) investigated the axisymmetric
thermocapillary migration of two bubbles in the quasi-static state by using the
bispherical coordinate system (mathematical model similar to that used by Stimson
& Jefferey 1926). As expected, they found that the interaction effect between two
bubbles increases as the separation distance is decreased. A small bubble moves more
rapidly in the presence of a larger bubble than in its absence, whether it leads or
trails the larger bubble. However, they found that the velocity of the large bubble is
reduced compared to the case when it is isolated, but to a lesser extent. Also, they
illustrated that two equal-sized bubbles move with the same velocity as if they were
isolated (when the bubbles are of equal diameter, they exert no influence on each
other’s velocity for all separation distances and such remarkable result is due to the
exact cancellation of the thermal and fluid mechanical two-body interactions). Later,
Feuillebois (1989) presented a theoretical confirmation of this numerical conclusion.

However, the above scheme cannot provide the details of the transient process as
we do in this paper, so only the results of the final steady states are compared in the
following. In our research, the small drop is always the leading one, and it always
moves faster than the case when it is isolated, which is just the same as shown in
the above paragraph. But because of the stronger heat wake in this study, our findings
have two major differences from those of creeping flows:

(a) according to figure 2(a), the velocity difference between the big trailing drop and
the corresponding isolated one is bigger than the difference with the small drop
(see the italic text in the above paragraph);

(b) from figure 14(a), it can be concluded that SF will be larger for larger Λ. It can
be expected that, when SF is quite large, drops may also move with the same
velocity as if they were isolated, just like the case of bubbles. However, because
of the limitation of Ml (2.14), the final states when Λ> 0.8 are never reached.

9.2. Some comparisons on the interactions of non-deformable drops
Spherical drops undergoing thermocapillary migration in a dilute dispersion were
studied by Zhang & Davis (1992). With conducting drops considered, they found
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that increases in the thermal conductivity and/or viscosity of the drop fluid decrease
the collision efficiency due to the effects of hydrodynamic and thermocapillary
interactions. In particular, the relative velocity of two unequal drops can change sign
as they become very close to each other, if the thermal conductivity of the drop fluid
is sufficiently large compared with that of the surrounding fluid (the relative drop
velocity can reverse its sign when the two drops become close because the smaller
drop experiences an increased temperature gradient resulting from the larger drop
distorting the imposed temperature gradient; and as a result, the smaller drop moves
away from the larger one). Under these conditions, drop collision does not occur
unless there are other driving forces such as an attractive van der Waals force.

In comparison, the large-Ma simulations in this paper reveal more complicated
processes. If we concentrate on figure 2(a), it can be seen that the relative velocity
of the two drops changes sign twice: around t= 8 and t= 60. For the simulations in
§ 6, the situations are much more complicated:

(a) in § 6.1, there is no sign changing for Ma < 25, correspondingly there is no
overshoot in drop velocities, and the heat wakes are very weak;

(b) in § 6.2, all Re > 5 runs change sign twice because higher Re can cause more
fluctuations in flows;

(c) there is one sign change for each of the other simulations in § 6.

9.3. Some comparisons on the interactions of deformable drops
Before this work, the effect of deformability was studied mostly by a perturbation
technique assuming small deformations; some recent analyses within the framework
of boundary integral methods (Re→ 0) are due to Zhou & Davis (1996), Berejnov,
Lavrenteva & Nir (2001) and Rother, Zinchenko & Davis (2002).

(a) The axisymmetric motion and deformation of two viscous drops in a temperature
field with an imposed gradient along their line of centres were studied by Zhou
& Davis (1996). The effects of the capillary number, the drop size ratio, and the
drop-to-medium conductivity ratio on drop motion and deformation are illustrated.
It is found that the hydrodynamic interactions between the drops has a stronger
effect on the smaller of the two drops, in terms of both drop motion and drop
deformation. Deformation has a large effect on the rate of drainage of the thin
film between the drops, but relatively little effect on the velocities of the drop
centres. The numerical results also verify that small drop deformations reduce
the film drainage rate and prevent drop coalescence in the absence of attractive
forces.
As a comparison, the main mechanism leading to deformation in their study is
G→ 0, which only corresponds to the Ma< 10 simulations in § 6.1 of this paper.
The drop coalescence has to be taken into consideration when G→ 0, which will
be done in our future investigation. The above investigation may also neglect
the limitation on Ml, and the interfacial tension may become negative in some
simulations (see figure 2(e) in Zhou & Davis 1996).

(b) Berejnov et al. (2001) focused on equal-viscosity fluids and on cases when
drops are of equal radii or when a smaller drop trails behind a larger drop. For
equal-sized drops, they found that the motion of a leading drop is retarded while
the motion of the trailing one is enhanced compared with the undeformable
case, and that the distance between the centres of equal-sized deformable drops
decreases with time. When a small drop follows a large one, two patterns of
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behaviour may exist. For moderate or large initial separation the drops separate.
However, if the initial separation is small there is a transient period in which
the separation distance initially decreases and only afterward the drops separate.
They considered the fact that the interfacial tension may become negative in
their simulations. With ξ = 1, either near-zero G or near-zero interfacial tension
is necessary to cause the drop deformation in their simulations (see figures 9(a)
and 12 in Berejnov et al. 2001).
Rother et al. (2002) performed a full three-dimensional simulation on this issue.
Relative trajectories for two deformable drops were calculated for different values
of the drop size ratio, drop-to-medium thermal conductivity ratio, and viscosity
ratio, and then compared with those for spherical and slightly deformable drops.
Results indicate that deformation increases the minimum separation and inhibits
coalescence.
We stop the code before Ml is reached, but Rother et al. (2002) avoid the
limitation of migration distance by moving the reference point of interfacial
tension along with the leading drop. It is clear that our treatment is closer to
the physical reality than theirs. Also, the main reason for drop deformation in
our simulations is ξ 6= 1, which has not been investigated in their studies. The
negative or near-zero interfacial tension is avoided in our research.

10. Conclusions
In this paper, we study the thermocapillary migration of a smaller drop followed

by a bigger one under the axisymmetric assumption. Various cases are considered by
changing the relevant non-dimensional numbers. The order of magnitude of the studied
Marangoni number is O(100), and thus some phenomena related to real flows are
revealed. When Marangoni numbers are relatively large, thin thermal boundary layers
develop along the liquid–liquid interface, leading to the formation of thermal wakes at
the rear of a moving drop. The thermal wake field of the leading drop wraps around
the trailing drop, and has a significant impact on its motion.

Our study find that, unless two drops are very close initially, the variance of
initial distance between the drop centres, S0, does not influence the final state but
leads to obviously different migration processes. When the leading drop is larger,
the interaction process takes a much longer time for the two drops to reach their
common velocities. For large Ma, no matter how small Λ is, the trailing drop cannot
catch up with the leading one.

The influence of six non-dimensional numbers on drop interactions is also studied.
It is found that VF decreases with larger Re and λ, or with smaller α, ξ, γ , and Ma;
the value of SF decreases with larger α, Re and λ, or with smaller ξ, γ and Ma. The
variance of λ has almost no influence on the value of VF, but it has an obvious impact
on SF. The variances of ξ and γ have almost the same effects on VF and SF.

The interaction between deformed drops is also studied when ξ 6=1 and the capillary
number is fairly large. The elongated leading drop with ξ > 1 has a weaker heat
wake than the flattened leading drop with ξ < 1, while non-deformable drops show
the opposite trend.
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