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Abstract Artificial input of energy into the flow is neces-
sary to create and maintain a statistically stationary isotropic
turbulence for sampling in studying the statistics. Due
to the nonlinear coupling among different Fourier modes
through the triadic interaction, whether or not various forc-
ing schemes affect the statistics in turbulence is an impor-
tant and open question. We present detailed comparison of
Lagrangian statistics of fluids particles in forced isotropic
turbulent flows in 1283, 2563, and 5123 simulations, with
Taylor-scale Reynolds numbers in the range of 64–171, us-
ing a deterministic and a stochastic forcing scheme, respec-
tively. Several Lagrangian statistics are compared, such as
velocity and acceleration autocorrelations, and moments of
Lagrangian velocity increments. The differences in the La-
grangian statistics obtained from the two forcing schemes
are shown to be small, indicating that the isotropic forcing
schemes used have little effects on the Lagrangian statistics
in the isotropic turbulence.

Keywords Isotropic turbulence · Deterministic forcing
scheme · Stochastic forcing scheme · Lagrangian statistical
quantities

1 Introduction

Following fluid particles in turbulent flows from the La-
grangian viewpoint is conceptually natural and practically
feasible to study turbulent mixing and dispersion of contam-
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inants. Taylor [1] studied the single particle turbulent disper-
sion, Richardson [2] studied the relative turbulent dispersion
of particle pairs. Batchelor [3, 4] built connection between
the concentration field of contaminants and the statistics of
fluid particle motions. Durbin [5] established a stochastic
model of two-particle dispersion which is consistent with
Richardson’s 4/3 law. He and his coworkers developed a
series of elliptic models for two-point, two-time correlation
of Eulerian [6, 7] and Lagrangian [8] velocities, respectively,
which have been powerful tools for turbulence measure [9].
In recent years, direct numerical simulation (DNS) and large-
eddy simulation (LES) have been taken as main tools to ex-
plore the fundamental features of turbulence and its interac-
tion with other physical process [10–23]. In order to obtain
turbulence statistics under stationary conditions in isotropic
turbulent flows, energy is fed into the flow at large scales to
balance the energy dissipation at small scales by molecular
viscosity in DNS or by both molecular viscosity and subgrid
scale (SGS) eddy viscosity in LES. Otherwise, the unsteady
or decaying turbulent flows complicate the analysis of the
statistical quantities.

Different kinds forcing schemes are developed to feed
energy into the flow to maintain statistically stationary con-
ditions, see Ref. [24] and the references therein. In a deter-
ministic forcing scheme [25], the energy in each of the first
two wavenumber shells (0.5 < k � 1.5 and 1.5 < k � 2.5) is
maintained constant and the ratio of the energy between the
two shell is consistent with the Kolmogorov k−5/3 scaling
law. The stochastic forcing scheme developed by Eswaran
and Pope [26] has been widely used in maintaining a station-
ary isotropic turbulence. It is an Uhlenbeck–Ornstein ran-
dom process at each of the forced modes.

The forcing schemes are based on Kolmogorov’s hy-
pothesis [27] of statistical independence between large flow
structure and small-scale structure at high Reynolds num-
ber. However, the nonlinear coupling among different modes
in spectral space implies that the forced large-scale mode
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may affect the small-scale mode through the non-local triadic
interaction involving one mode located in the forced low-
wave number range and two modes located in high wave-
numbers, so it is necessary to justify the validity of the use
of low-wavenumber forcing in DNS. Eswaran and Pope [26]
focused on the effect of forcing parameters with stochastic
forcing scheme, which showed that small scale structures of
the velocity field are insensitive to the details of forcing. Ye-
ung and Pope [28] presented Eulerian energy and dissipa-
tion spectral functions in isotropic turbulence with stochas-
tic scheme. They proved that large scales are much sensitive
than the small scales to the forcing parameters. Overholt
and Pope [29] proposed a deterministic forcing scheme and
make a comparison with stochastic scheme, yielding similar
results. Rosa et al. [25] employed both stochastic and de-
terministic forcing schemes to test the effects of large-scale
driving schemes on the collision-related statistics such as ra-
dial distribution function and radial relative velocity. They
found that the collision statistics were insensitive to the na-
ture of forcing for small inertial particles. Since the relative
dispersion of fluid particles is mainly determined by small-
scale motions [30], the objective of the present study is to
check whether the Lagrangian statistics are affected if differ-
ent forcing schemes are adopted.

This paper is organized as follows. In Sect. 2, we de-
scribe the numerical methods for both flow field and fluid
particles. In Sect. 3, we firstly validate the codes by compar-
ing our results with those from the reference with the same
forcing scheme. We then study the effects of forcing time
scale in stochastic forcing scheme and finally compare the
Lagrangian statistics between the results obtained from the
deterministic scheme and those obtained using the stochastic
scheme. We give the conclusions in Sect. 4.

2 Numerical simulations

The governing equations for turbulent flow and fluid parti-
cles motions are briefly described in this section.

2.1 Flow field

In spectral space, the Navier–Stokes equations for a forced
isotropic and incompressible turbulent flow can be repre-
sented as
(
∂

∂t
+ νk2

)
ûuu(kkk, t) = PPP(kkk)�(uuu ×ωωω) + f̂ff (kkk, t), (1)

where ûuu(kkk, t) is a Fourier mode or the velocity in Fourier
space, kkk = (kx, ky, kz) the wavenumber vector and k = |kkk|,
uuu and ωωω fluid velocity and vorticity in physical space, ν
fluid kinematical viscosity. The projection tensor P jm =

δ jm − k jkm/k2 ( j,m = 1, 2, 3) and � denotes a Fourier trans-
form. The random artificial force f̂ff (kkk, t) is used to drive and
maintain the turbulent flow at low wavenumbers.

In this paper, two schemes are used for the random
forcing, one is the deterministic scheme and the other is
the stochastic one. In the deterministic scheme, we keep

the total energy in each of the first two wave number shells
(0.5 < |kkk| < 1.5 and 1.5 < |kkk| < 2.5) constant in time and
fix them at E(1) = α and E(2) = β, respectively, to satisfy
the k−5/3 law by rescaling the Fourier modes in the first two
wave numbers. The rescaling is equivalent to a force term as
follows: we discretize the Navier–Stokes equations into two
sub-steps in time

ûuu∗ = ûuu(n) + [PPP(kkk)�(uuu ×ωωω) − νk2ûuu(n)]dt, (2)

ûuu(n+1) = ûuu∗ + fff (kkk)(n)dt, (3)

where in the wavenumber range 0.5 � k � 1.5

fff (n)(kkk) =
1
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√ α∑
0.5�k�1.5

0.5
∣∣∣ûuu∗(kkk)

∣∣∣2 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ûuu∗(kkk), (4)

and in the wavenumber range 1.5 � k � 2.5

fff (n)(kkk) =
1
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√ β∑
1.5�k�2.5

0.5
∣∣∣ûuu∗(kkk)

∣∣∣2 − 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ûuu∗(kkk). (5)

We set α = 0.555 44 and β = 0.159 843 in this paper [25]. In
the wavenumber range k > 2.5, fff (n)(kkk) = 000.

In the stochastic forcing scheme [26, 31], random ac-
celeration is added to each component of velocity in the
Fourier space modes with |kkk| < √8. The force is a vector-
valued Uhlenbeck–Ornstein stochastic process. It is charac-
terized by two parameters, namely, an acceleration variance
σ2

f and a forcing time scale tf (σ2
f = 447.3, tf = 0.038 in this

paper). The force is determined by

db̂ j = − b̂ j

tf
dt +

√(σ2
f

tf

)
dW, (6)

where dW denotes a random normal distribution (〈dW〉 = 0,
〈dW2 = dt〉), and the Fourier mode of the forcing f̂i can be
determined by the projection of b̂ onto the plane normal to
wavenumber kkk so as to satisfy the divergence-free condition
to avoid the effects of forcing on the pressure of the flow field

f̂i = b̂ jPi j. (7)

The spatial resolution of the simulation was monitored
by kmaxη. All of our simulations have kmaxη values of approx-
imately 1.5 to ensure the accuracy of higher-order quantities
such as dissipation and derivative statistics [28].

2.2 Particle motion

Fluid particles tracking starts from the moment t0 when the
flow becomes statistically stationary. Fluid particles are ini-
tially seeded into the flow domain at random locations xxx0.

Each particle is advected by the fluid flow

dxxx+(t; xxx0, t0)
dt

= uuu+(t, xxx+; xxx0, t0), (8)
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where xxx+(t; xxx0, t0) and uuu+(t, xxx+; xxx0, t0) are the position and ve-
locity of the tracers at time t.

The Lagrangian velocity uuu+(xxx, t) is obtained from the
Eulerian velocity field uuu(xxx, t) by a six-point Lagrangian
interpolation in each spatial direction. Once the veloc-
ity uuu+(xxx, t) is computed, we used a fourth-order Adams-
Bashforth method [32] to calculate particle displacements.

3 Results and discussion

3.1 Statistics of the flow fields under different forcing
schemes

Table 1 lists some key parameters of the flow: the kinematic
viscosity ν, time step δt, Kolmogorov length η, Kolmogorov
time τη, transverse Taylor microscale λ, integral length scale
Ls, large-eddy turnover time Te, integral length scale of the
longitudinal spatial velocity correlation Lf , fluctuating veloc-
ity u′, energy dissipation rate ε, Taylor-microscale Reynolds
number Rλ, spatial resolution parameter kmaxη, CFL number,
skewness S and the flatness F of the velocity gradient.

Figure 1 plots the comparison between the compen-
sated energy spectra of the isotropic turbulent flow fields
in the 5123 grids generated from the deterministic forcing
scheme and stochastic forcing scheme, respectively. We can
observe that the two spectra overlap at most of the normal-
ized wavenumbers, and there is a better resolution of the dis-
sipative scale in the flow generated from the deterministic
forcing scheme. The Kolmogorov constant 1.62 is plotted
for comparison in the inertial range.

Table 1 Parameters and statistics of the simulated flows using the
stochastic and deterministic forcing schemes

Stochastic forcing scheme Deterministic forcing scheme

2563 5123 2563 5123

ν 4.5 × 10−2 2.0 × 10−2 3.5 × 10−3 1.4 × 10−3

δt 3.0 × 10−5 2.3 × 10−5 1.0 × 10−3 4.0 × 10−4

η 1.171 × 10−2 6.850 × 10−3 2.132 × 10−2 1.072 × 10−2

τη 3.430 × 10−3 2.340 × 10−3 1.299 × 10−1 8.210 × 10−2

λ 2.554 × 10−1 1.677 × 10−1 4.352 × 10−1 2.758 × 10−1

Ls 1.002 1.047 1.502 1.469

Te 9.672 × 10−2 9.384 × 10−2 3.618 3.632

Lf 1.895 1.882 3.132 3.150

u′ 19.59 20.06 0.866 0.868

ε 3 980 4 309 0.208 0.210

Rλ 111.20 168.15 107.76 171.02

kmaxη 1.556 1.670 2.697 2.727

CFL 0.17 0.26 0.21 0.20

S −0.521 −0.533 −0.484 −0.528

F 5.493 5.940 5.163 6.162

Fig. 1 Energy spectra of turbulent flow fields generated by the de-
terministic and stochastic forcing scheme, where “D” in the leg-
ends denotes the deterministic scheme and “S” the stochastic forc-
ing scheme

3.2 Validation of the Lagrangian statistics against published
results

In order to validate our codes for capturing the Lagrangian
statistics, we choose several quantities, including the La-
grangian velocity and acceleration autocorrelation functions,
moments of Lagrangian velocity increments, to make com-
parisons with the modeling results of Yeung and Pope [28]
in which the same stochastic forcing scheme was used. The
Lagrangian velocity autocorrelation function is defined as

ρL(τ) =
〈u+(t)u+(t + τ)〉
〈u+(t)u+(t)〉 , (9)

where u+ denotes a component of Lagrangian velocity uuu+.
The velocity increment over a time interval τ is defined
as Δτu+(t) = u+(t + τ) − u+(t), its m-th-order moment,
namely, the m-th-order Lagrangian velocity structure func-
tion, is denoted using DL

m(τ) = Δm
τ u+(t). The flatness factor

is μ4(τ) ≡ DL
4 (τ)/DL

2 (τ)2, and the acceleration is aaa+(t+h/2) =
(1/h)Δhuuu+(t), where h is a time interval.

Figure 2a presents the comparison of Lagrangian veloc-
ity autocorrelation functions obtained from our DNS simu-
lations and the results from Ref. [28]. It shows a good agree-
ment against the normalized time lag with the Lagrangian in-
tegral timescale TL =

∫ ∞
0
ρL(τ)dτ. Figure 2b presents the ac-

celeration autocorrelation functions against the normalized
time lag τ/τη for different Reynolds numbers. The lines de-
note the data from Ref. [28]. All the cases overlap well: both
of the case with Rλ = 64 and the case with Rλ = 84 are quite
similar to those from Ref. [28] with Rλ = 63 and Rλ = 90,
respectively. Figure 2c presents the second-order structure
functions DL

2 (τ) against the normalized time scale τ/τη. We
compare the data of 1283 calculation at Rλ = 64, and 90 from
Ref. [28] with our results. The agreements of the cases with
Rλ = 64 and Rλ = 84 suggest that the second-order statistics
in our simulations are sufficiently accurate. Figure 2d shows
the flatness factors of the velocity-increment against the nor-
malized time lag τ/τη, which is the normalized fourth-order
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Fig. 2 Comparison of Lagrangian statistics from the 1283 simulations using the stochastic forcing scheme with the results from Ref. [28].
a Lagrangian velocity autocorrelation functions ρL(τ) against the normalized time lag τ/TL; b Autocorrelation functions of acceleration
components against the normalized time lag τ/τη; c The second-order Lagrangian velocity structure functions DL

2 (τ) against τ/τη; d Flatness
factors of velocity increments against τ/τη. The horizontal dashed line denotes the value of a Gaussian distribution

moment providing a quantitative measure apart from being
Gaussian. At small time lags, the values of the flatness fac-
tors, which increase with the Reynolds number, are much
higher than the Gaussian value 3. As can be seen from
the curves, our result are in agreement with the results from
Ref. [28] at similar Reynolds numbers except at a very short
time lags (τ < τη). All of the above comparisons indicate that
our simulation can capture accurate results for Lagrangian
statistics.

3.3 Effects of the time scale tf in stochastic forcing scheme

In the former subsection we have introduced two forc-
ing schemes, namely, the deterministic and stochastic forc-
ing scheme. The deterministic scheme injects energy into
the flow depending on a given energy spectrum, while the
stochastic scheme involves two parameters, the time scale tf
and the variation σ2

f . Thus, in order to study the effects of
tf and σ2

f on Lagrangian statistics, we performed four simu-
lations with different parameters (tf = 0.014, 0.026, 0.038,
0.050).

In the stochastic forcing scheme, the average dissipa-
tion rate (which is also the average rate of energy input)
could be expressed as [26]

ε = 4Nfσ
2
f tf × 1

1 + tf (σ2
f tf Nfk2

0)1/3/β
, (10)

where the total number of forcing modes Nf = 80, the low-
est wavenumber k0 = 1 and the fitting coefficient β = 0.8.
Since the term tf (σ2

f tf Nfk2
0)1/3 roughly represents the ratio of

the forcing time scale to the time scale of large-scale flow
and tf must be much smaller than the large eddy turnover
time [33], we set the term σ2

f tf to be a constant so that the
Reynolds numbers could be kept approximately equivalent
for all the simulations. Several key parameters are listed in
Table 2, such as the forcing time scale tf , acceleration vari-
ance σ2

f , Kolmogorov length scale η and time scale τη and
Taylor-microscale Reynolds number Rλ.

Figures 3a–3c represent the Lagrangian velocity, accel-
eration autocorrelation functions and the second-order La-
grangian velocity structure functions from the 2563 simula-

Table 2 Parameters and statistics of the simulated flows for
different forcing time scale tf

tf σ2
f η τη TL Rλ

0.014 1 214.1 0.011 84 0.003 12 0.035 82 115

0.026 653.7 0.012 21 0.003 31 0.036 00 111

0.038 447.3 0.012 36 0.003 40 0.040 15 111

0.050 339.9 0.012 99 0.003 75 0.040 45 106



Lagrangian statistics in isotropic turbulent flows with deterministic and stochastic forcing schemes 29

Fig. 3 Effect of forcing time scale on Lagrangian statistics. a Lagrangian velocity autocorrelation functions ρL(τ) against the normalized
time lag τ/TL; b Autocorrelation functions of acceleration components against the normalized time lag τ/τη; c The second-order Lagrangian
velocity structure functions DL

2 (τ) against τ/τη. From 2563 simulations, Rλ ≈ 111

tions, respectively. The curves corresponding to each time
scale demonstrate a remarkable consistency in these plots,
which implies that these statistics are insensitive to the forc-
ing time scale. As the acceleration variance σ2

f changes with
the time scale tf , the results outlined above seem to show a
fact that, for a given Reynolds number and forcing modes in
stochastic forcing scheme, the values of small scale statistics
can be expected to be independent of the choice of forcing
time scale, while the large scale statistics show a slightly de-
pendence on tf in terms of the integral time scale TL.

3.4 Lagrangian statistics from the deterministic and stochas-
tic forcing schemes

In this section, we report the DNS results of Lagrangian
statistics obtained from the 2563 and 5123 simulations at sev-
eral Reynolds numbers. We focus on the effects of two types
of forcing schemes, i.e., the deterministic and stochastic
ones on the Lagrangian statistical quantities, such as the La-
grangian velocity autocorrelation functions, acceleration au-
tocorrelation functions, Lagrangian velocity structure func-
tion and its local scaling exponents.

Firstly, we present the Lagrangian velocity autocorre-
lations, ρL(τ), which is important for single-particle turbu-
lent diffusion. Figure 4 shows the Lagrangian velocity au-
tocorrelation functions against time lag normalized by the
Lagrangian integral timescale TL, τ/TL. By comparing the
cases at similar Reynolds number obtained from different
forcing schemes, we find that all the curves overlap together,
which indicates that TL is a proper timescale to character-
ize the Lagrangian velocity autocorrelations and the forcing
scheme has little effects on the normalized correlation func-
tions.

We now consider the autocorrelation function of accel-
eration, ρa(τ). Figure 5 shows the 2563 and 5123 simula-
tion results against the normalized time lag τ/τη. The au-
tocorrelation functions of acceleration take negative values
at large time lags and have little gaps on the zero-crossing
time for different Reynolds number Rλ when normalized
by τη. The rapid decorrelation of Lagrangian acceleration

implies that the correlation of Lagrangian acceleration is a
short timescale process and the overlaps of the curve ob-
tained from different forcing scheme indicates that the forc-
ing schemes have little effects on small-scale processes.

Fig. 4 Lagrangian velocity autocorrelation functions ρL(τ) against
time lag normalized by the Lagrangian integral timescale TL, τ/TL,
where “D” denotes the cases for deterministic forcing, and “S” for
stochastic forcing

Fig. 5 Autocorrelation functions of acceleration components as a
function of time lag normalized by the Kolmogorov scale simulated
for different forcing schemes (“S”: stochastic, “D”: deterministic).
The autocorrelations are nearly zero for time lags beyond the range
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shown

In the following, we shall analyze the statistical prop-
erty of the Lagrangian velocity increments. The second-
order Lagrangian structure function DL

2 (τ) is defined as the
variance of the velocity increment. For very small τ, DL

2 (τ)
is in proportion to τ2. Thus we have

DL
2 (τ)

v2
η

= a0(τ/τη)2, (11)

where a0 is a universal constant and vη is the kolmogorov ve-
locity scale. The second-order structure functions are shown
in Fig. 6 by using a log-log plot where we can observed a
line with the slope of 2 for small τ < 2τη, in agreement with
Ref. [28]. The constant a0 is found to vary with Reynolds
number.

Fig. 6 The second-order Lagrangian velocity structure functions
DL

2 (τ) against normalized time τ/τη, “D” and “S” denote the deter-
ministic and stochastic forcing schemes, respectively

For large τ/τη, the normalized second-order structure
function DL

2 (τ)/v2
η is observed to take value of 2u′2/v2

η, in-
creasing with Rλ, as expected, where u′ is the root mean
square (rms) of the fluctuation velocity. It consists with the
fact that the second-order structure function is twice the ve-
locity variance at large times (t 
 TL).

We shall now present the scaling exponents of high-
order moments of the velocity increments. In the inertial
range of an isotropic turbulent flow, τη � τ � TL, differ-
ent moments of the structure functions could be expressed
as DL

p(τ) ∼ (ετ)p/2 if we do not consider the intermittence
effect [34]. However, the tail of the probability density func-
tions (p.d.f.) of Δτu+(t) becomes non-Gaussian at small time
lags, implying the existence of intermittency. It means that
the exponents χ(p) of the dimensional law DL

p(τ) ∼ τχ(p)
is

not equal to p/2. In this work, we calculate the local scal-
ing exponents relative to another moment versus the second
order

χ(p)(τ) ≡ d log DL
p(τ)

d
log DL

2 (τ), (12)

which are related, in presence of pure power-law scaling.

In Fig. 7 we show the local exponents for p = 4,
6, 8, 10. We can observe that the Lagrangian scaling re-
flects strong intermittency. All of our cases show underesti-
mated value of the scaling exponents as expected, which is in
agreement with the results of Ref. [34]. The structure func-
tion scaling exponents characterize the small scale proper-
ties of the turbulence. The deterministic and stochastic forc-
ing schemes give the same results for the exponents of the
structure function. Thus, we can know that different forcing
schemes have little influence on the small-scale statistics.

Fig. 7 Lagrangian local scaling exponents for hyper-structure func-
tions, χ(p)/χ(2) for p = 4, 6, 8, 10. Simulations with deterministic
forcing are labeled as “D” and those with stochastic forcing are la-
beled as “S”. Dashed line and error bars represent DNS results at
Rλ = 600, obtained by Benzi et al. [34]

4 Conclusions

In conclusion, we study the Lagrangian statistical quantities
through direct numerical simulations of a forced isotropic
turbulence using the deterministic and the stochastic forcing
schemes, respectively. The code was validated by comparing
our results with those from Ref. [28] both using the stochas-
tic forcing scheme. Small-scale Lagrangian statistics, such
as acceleration autocorrelation function and structure func-
tion scaling exponents, were proved to be little affected by
the forcing schemes used in the paper. Our results justify the
use of forcing in Lagrangian turbulence, which also implies
that it is possible to apply large-scale forcing to the study of
small scale behavior in particle-laden turbulence and turbu-
lent combustion.
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