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Abstract The frequency-dependent dynamic effective properties (velocity, attenuation and elastic modulus)
of nanoporous materials with randomly positioned spherical cavities are studied. The surface energy theory
proposed by Huang and Wang (Handbook of micromechanics and nanomechanics. Pan Stanford Publishing
Pte Ltd., Singapore, pp 303–348, 2013) is used to derive the non-traditional boundary condition on the surface
of the nanocavity and further the scattering matrix of a single nanocavity. Then, the total wave field is obtained
by considering the multiple scattering processes among the dispersive spherical cavities. The configuration
average of the total wave field results in the coherent waves or the averaged waves. The numerical examples of
the effective speed, the effective attenuation of the coherent waves and associated effective dynamic modulus
of a nanoporous material are given and shown graphically. The effects of surface elasticity and the residual
surface tension are both considered. Moreover, the influences of the non-symmetric parts of in-plane surface
stress and the out-of-plane parts of the surface stress are also discussed based on the numerical examples.

1 Introduction

The propagation of elastic waves in a composite material with randomly distributed particles was an interesting
subject in the past decades [1–5]. Waterman and Truell [1] studied the multiple scattering effects due to a random
array of obstacles and gave the complex propagation constant of the scattering medium in the limit of vanishing
correlations in position. The effective phase speed and the attenuation of the coherent compressional wave and
shear wave in a particulate-reinforced composite medium were discussed by Datta et al. in [2], and the interface
layer effects in the particulate-reinforced composite medium were considered in [3,4]. Further studies on the
effect of a viscoelastic interlayer between the reinforced particle and the matrix material were presented by
Wei and Huang in [5]. Their investigations showed that the attenuation of the effective waves is related to both
the multiple scattering among reinforced particles and the material dissipation of the viscoelastic interphase.
Because of the complicated nature of the multiple scattering problems, the effective field approximation and
the effective medium are often used to simplify the problem in low filling rate composites. However, they may
not be satisfying approximations for high filling rate composites. In order to describe the effective properties of
high fill rate composites, Varadan et al. [6] studied the multiple scattering waves in a composite by introducing
pair-correlation function to describe the interaction between two scatterers. Using a combination of the pair-
correlation function and the effective field approach, Kanaun [7] calculated the effective properties of dielectric
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matrix composite materials with high filling rate of inclusions. Recently, the pair-correlation function together
with quasi-crystalline approximation was also used by Fang et al. [8] to investigate the multiple scattering of
the P wave and S wave in composite materials with high volume concentrations of particles.

At the atomic scale, the local environment at and near a surface (or an interface) is quite different from
that in the bulk material. This can be described macroscopically by the excess free energy of a surface (or
an interface) and the corresponding surface/interface stresses. The effects of the surface (or the interface)
stresses of embedded inclusions on the overall properties of the composites are not negligible anymore in the
size range of tens of nanometers, where the surface/interface effects are enhanced by a significant surface-
to-volume ratio. During the past half-century, increasing interest has been paid to study the surface/interface
problems among materials scientists and engineers [9–17]. A linearized theory of surface elasticity proposed by
Gurtin and Murdoch [10,11] (G–M model for brevity) has attracted considerable attention and been widely used
to study the elastic behavior of solids at micro/nanoscales [12–15]. However, considerable inconsistence has
occurred in the interpretation of the G–M model, and different versions have been used in the literature without
clear identification of the underlying assumptions as reviewed by Ru [18]. In the wave motion problem, the
diffraction of elastic waves with surface effects has been studied by Wang [19,20]. However, only the dynamic
stress concentration factor of a single scatterer is considered and the multiple scattering waves from dispersive
scatterers were not included in their works. Recently, the effective propagation constants of coherent waves in
nanocomposite materials with dispersive cylindrical nanofibers and nanocavities were discussed by Qiang and
Wei [21,22]. It was shown that the effects of the surface (or interface) stress is evident for nanoscale fibers or
cavities and gradually diminishes when the size of fibers or cavities increases. Based on the effective medium
approximation, Hasheminejad and Avazmohammadi [23] also studied the effective propagation constants of
the elastic waves in a composite reinforced by parallel nanofibers. However, it should be pointed out that in all
above-mentioned works on the wave motion in nanocomposites, the basic equations of the surface/interface
were not properly utilized, as will be explained in the following. According to the surface/interface energy
theory proposed by Huang and Wang [24,25], several key issues should be addressed: (1) It is important to
note that the creation of a surface or interface will generally result in a surface stress (referred to as “residual
surface tension”), thus there will exist a surface or interface-induced residual stress field in the bulk under
no external loading. Therefore, even in infinitesimal deformation approximations, the first and second Piola–
Kirchhoff surface stresses, and the Cauchy surface stress are not the same due to the existence of the residual
surface tension. (2) Generally, the exact position (e.g., the shape and size, and hence the curvature tensor) of
the deformed surface/interface is not known in advance. Therefore, in the study of the mechanical properties of
nanocomposites, it is necessary to use the Lagrangian description of the surface equilibrium equation relative to
the reference configuration. Furthermore, as the first Piola–Kirchhoff surface stress appears in this description,
it is natural to express the surface constitutive relations in terms of the first Piola–Kirchhoff surface stress, and
both in-plane term and out-of plane term of this surface stress should be included. (3) The effects of residual
surface tension and surface elasticity on the effective properties of nanocomposites should be considered and
both of them are shown to be important.

In this paper, a new equation of surface given by Huang and Wang [25] is employed. The effective propa-
gation constants of coherent waves and the associated effective dynamic elastic modulus are estimated. Some
numerical examples are given graphically and the comparison with those obtained from two simplified versions
of the present model are presented. The effects of surface elasticity and the residual surface tension are both
considered in the numerical results. The influences of the non-symmetric parts of in-plane surface stress and
the out-of-plane parts of the surface stress are also discussed based on the numerical examples.

2 Governing equations at the surface and in the bulk material

Now consider a smooth surface A0 of a nanocavity in a porous material undergoing neither body force, nor
any external surface traction/displacement on its boundary, which corresponds to the reference configuration.
However, in this reference configuration, there exists the residual stress field σ ∗ in the bulk material induced
by the “residual surface tension”. The covariant base vectors of the surface A0 are Aα(α = 1, 2), with the
unit normal vector to the surface A0 denoted by A3. The contra-variant base vectors of the surface A0 are
Aα(α = 1, 2) satisfying the relation Aα · Aβ = δ

β
α (α, β = 1, 2), where δ

β
α is the Kronecker delta symbol in

a 2-D space. It is noted both Aα and Aβ are in the tangent plane of the surface A0. The displacement u on the
surface can be expressed in terms of the base vectors (A1, A2, A3) in the reference configuration:

u = uβ
0 Aβ + un

0A3 (summation over β). (1)
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The deformation gradient of the surface is given by

Fs = i0 + (u∇0s)
(in) + (u∇0s)

(out) = F(in)
s + F(out)

s , (2)

where i0 is the second order identity tensor in the tangent plane of A0, ∇0s is the gradient operator of the
surface at A0 in the reference configuration. F(in)

s = i0 + (u∇0s)
(in) and F(out)

s = (u∇0s)
(out) = dβA3 ⊗ Aβ

correspond to the in-plane term and the out-of-plane term of the surface deformation gradient, respectively.
(u∇0s)

(in) is the in-plane part of the surface displacement gradient and is defined by

(u0∇0s)
(in) = u0s∇0s − un

0b0 = uλ
0 |βAλ ⊗ Aβ − un

0b0, (3)

where u0 = u0s + u0n(u0s and u0n are the in-plane part and the out-of-plane part of displacement vector) and
dβ = uλ

0b0λβ + un
0|β . b0 = b0λαAλ ⊗ Aα is the curvature tensor of the surface A0.

There are two fundamental equations of the surface. The first one is the constitutive relation of the surface
and the second one is the equation of motion (equilibrium) of the surface. In the following, only the infinitesimal
deformation is considered and the surface is assumed to be isotropic. In the Lagrangian description, the
constitutive relation of the surface expressed in terms of the first Piola–Kirchhoff surface stress can be written
as

Ss = σ 0i0 + �S(in)
s + �S(out)

s , (4)

where

�S(in)
s = (

σ 0 + λs) (trEs) i0 + 2
(
μs − σ 0) Es + σ 0(u∇0s)

(in), (5)

�S(out)
s = σ 0F(out)

s = σ 0(u∇0s)
(out). (6)

In the above equation, σ 0i0 is the residual surface stress, λs and μs are láme constants of the surface. Es =
1
2 [(u∇0s)

(in) + (∇0su)(in)] is the surface strain.
The second fundamental equation of the surface is the equation of motion (equilibrium) of the surface. For

a surface with zero thickness, the inertia force of the surface can be neglected. Hence only the equilibrium
equation of the surface, i.e., the Young–Laplace equation needs to be considered. The Lagrangian descriptions
of the Young–Laplace equation relative to the reference configuration can be written as

A3 · [[
�S0]] · A3 = −

(
�S(in)

s

)
·̇b0 −

[
A3 ·

(
�S(out)

s

)]
· ∇0s, (7a)

P0 · [[
�S0]] · A3 = −

(
�S(in)

s

)
· ∇0s −

[
A3 ·

(
�S(out)

s

)
· b0

]
, (7b)

where �S0 = S0 − σ ∗, S0 and σ ∗ are the first Piola–Kirchhoff stress and the residual stress in the bulk
material respectively, P0 = I − A3 ⊗ A3 is the projection operator on the tangent plane of the surface. I is the
second-rank identity tensor in 3-dimensional space.

[[
�S0

]]
is the discontinuity of �S0 across the surface.

Next, consider the governing equations in the matrix material. A linearized constitutive relation with
residual stress has been given by Hoger [26] and was discussed by Huang et al. [24,25]. The infinitesimal
strain in the matrix material relative to the reference configuration is defined by

ε = 1

2
(u∇0 + ∇0u), (8)

where u is the displacement from the reference configuration to the current configuration, ∇0 denotes the
gradient operator in 3-D space. The linearized elastic constitutive relation with the residual stress in the bulk
material expressed in terms of the first Piola–Kirchhoff stress can be written as

S0 = σ ∗ + (u∇0) · σ ∗ + L : ε, (9)

where L is the elastic stiffness tensor. In the case that σ ∗ has the same order in magnitude as L : ε, the term
(u∇0) · σ ∗ in the above equation can be neglected. Therefore, for an isotopic elastic material, we have

�S0 = S0 − σ ∗ = L : ε = λ(trε)I + 2με, (10)

where λ and μ are the láme constants in the matrix material. The equation of motion in the bulk material is
given by

S0 · ∇0 + ρ0f = ρ0ü, (11)
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where f is the body force and ρ0 is the mass density. It is noted that the residual stress σ ∗ satisfies the equilibrium
equation σ ∗ · ∇0 = 0, hence in the absence of body force, we have

�S0 · ∇0 = ρ0ü. (12)

It is seen that the surface stress includes two parts, one is the in-plane parts and the other is the out-of-plane part,
and both parts are non-symmetrical. These are consistent with the surface stress model proposed by Gurtin
and Murdoch (G–M model). In both models (H–W model and G–M model), the deformation of bulk solid
and the surface under external loading are thought to be a finite-deformation problem due to the existence of
surface tension, even for an infinitesimal deformation. However, in a sense of Cauchy elasticity, Gurtin and
Murdoch [10] presented a surface stress as the function of the deformation gradient. Huang and Wang [24,25]
derived the surface constitutive relations for the hyperelastic media at finite deformation, where, in the Green
elasticity, the surface stress is expressed in terms of the surface free energy. It is emphasized by Huang and
Wang that the surface constitutive relation should be established based on the reference configuration without
the external loading but with the residual stress field in the bulk caused by the surface tension. Equations (5)
and (6) are the results of the infinitesimal deformation approximation and are same with the surface stress in
the G–M model, i.e., Eq. (2) in [11]. It should be pointed out that there are two simplified versions which are
specially interesting. One ignores the out-of-plane surface stress, i.e., �S(out)

s (SM-I for brevity); The other
further ignores the non-symmetric term of in-plane surface stress, i.e., σ 0(u∇0s)

(in) (SM-II for brevity).

3 The individual scattering of a nanocavity

Let’s consider a spherical cavity of radius a embedded in an infinite isotropic material. The time harmonic
longitudinal wave with circular frequency ω is assumed to propagate along z-axis through the matrix material,
which can be expressed by a displacement potential

φi = φ0ei(kpz−ωt), (13)

where φ0 is the amplitude of incident P wave. kp is the wavenumber of P wave. When the incident wave
impinges the spherical cavity, the scattered P wave and S wave are induced outside the cavity. The symmetry of
spherical cavity results in uϕ = 0 and the independence of displacement ur and uθ on the spherical coordinate
ϕ. Thus, the incident wave and the scattered wave can be expressed as

φi = φ0

∞∑

n=0

(2n + 1)in jn(kpr)Pn(cos θ)e−iωt , (14a)

φr = φ0

∞∑

n=0

(2n + 1)in Anh(1)
n (kpr)Pn(cos θ)e−iωt , (14b)

χr = φ0

∞∑

n=0

(2n + 1)in Bnh(1)
n (ksr)Pn(cos θ)e−iωt , (14c)

where φ and χ are the dilatational and distortional displacement potentials. ks is the wavenumber of S wave.
jn(x), h(1)

n (x) and Pn(x) are the nth order spherical Bessel function, spherical Hankel function and Legendre
function, respectively. An and Bn are the unknown coefficients to be determined by the Young–Laplace equation
and the surface constitutive relation of the nanosized spherical cavity in the present problem.

In the spherical polar coordinate system,

A3 = er , b = −[(1/r)eθeθ + 0 · eθeϕ + 0 · eϕeθ + (1/r)eϕeϕ], (15)

(u ∇0s) = (us
r er + us

θeθ + us
ϕeϕ) ·

(
∂

r∂θ
eθ + ∂

r sin θ∂ϕ
eϕ

)

= (u∇0s)
(in) + (u∇0s)

(out), (16)

(u∇0s)
(in) = us∇0s − ur b0

=
(

∂uθ

r∂θ
+ ur

r

)
eθeθ +

(
∂uθ

r sin θ∂ϕ
− uϕ

r
cot θ

)
eθeϕ
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+∂uθ

r∂θ
eϕeθ +

(
∂uθ

r sin θ∂ϕ
+ uθ

r
cot θ + ur

r

)
eϕeϕ, (17)

Es = 0.5

[
(u∇0s)

(in) +
(
(∇0su)(in)

)T
]

, (18)

F(out) = (u∇0s)
(out) =

(
∂ur

r∂θ
− uθ

r

)
er eθ +

(
1

r sin θ

∂ur

∂ϕ
− uϕ

r

)
er eϕ. (19)

Let �S(in)
s = σ s

αβeαeβ, �S(out)
s = σ s

rβer eβ, (α, β = θ, ϕ), then, the explicit expressions of Eq. (7) are

tb
r = −

(
∂σ s

rθ

r∂θ
+ ∂σ s

rϕ

r sin θ∂ϕ
+ σ s

rθ

r
cot θ − σ s

θθ + σ s
ϕϕ

r

)
, (20a)

tb
θ = −

(
∂σ s

θθ

r∂θ
+ ∂σ s

θϕ

r sin θ∂ϕ
+ σ s

θθ − σ s
ϕϕ

r
cot θ + σ s

rθ

r

)

, (20b)

tb
ϕ = −

(
∂σ s

ϕθ

r∂θ
+ ∂σ s

ϕϕ

r sin θ∂ϕ
+ σ s

θϕ + σ s
ϕθ

r
cot θ + σ s

rϕ

r

)

, (20c)

where tb
r and (tb

θ , tb
ϕ) are the normal and the tangential components of tractions tb

i

(
=σ b

i j n j

)
of the bulk material

near the surface, respectively. Consider uϕ = 0 and (ur , uθ ) are independent of the spherical coordinate ϕ in
the case of incident P wave. The surface stress can be expressed as

σ s
θθ = (

λs + 2μs) ∂uθ

r∂θ
+ (

λs + σ 0) uθ

r
cot θ + (

2λs + 2μs + σ 0) ur

r
, (21a)

σ s
ϕϕ = (

λs + σ 0) ∂uθ

r∂θ
+ (

λs + 2μs) uθ

r
cot θ + (

2λs + 2μs + σ 0) ur

r
, (21b)

σ s
rθ = σ 0

(
∂ur

r∂θ
− uθ

r

)
, σ s

rϕ = 0, σ s
θϕ = σ s

ϕθ = 0. (21c)

Then, the surface equilibrium conditions can be further expressed in the displacement form

σ b
rr

∣
∣∣
r=a

= 1

a2

(
σ 0 + 2λs + 2μs)

(
2ur + uθ cot θ + ∂uθ

∂θ

)∣∣∣
∣
r=a

−σ 0

a2

(
∂2ur

∂θ2 − ∂uθ

∂θ
+ ∂ur

∂θ
cot θ − uθ cot θ

)∣
∣∣
∣
r=a

, (22a)

σ b
rθ

∣
∣∣
r=a

= 1

a2

[(
2σ 0 + λs) uθ + (

λs + 2μs)
(

uθ cot2 θ − ∂uθ

∂θ
cot θ − ∂2uθ

∂θ2

)]∣∣
∣∣
r=a

− 2

a2

[
(
σ 0 + λs + μs) ∂ur

∂θ

]∣
∣∣
∣
r=a

. (22b)

For the simplified models of surface stress, the surface equilibrium conditions reduces to

σrr |r=a =
(
σ 0 + 2λs + 2us

)

a2

(
2ur + uθ cot θ + ∂uθ

∂θ

)∣∣
∣∣
∣
r=a

, (23a)

σrθ |r=a = 1

a2

[(
λs + σ 0) uθ + (

λs + 2μs)
(

uθ cot2 θ − ∂2uθ

∂θ2 − cot θ
∂uθ

∂θ

)]∣∣
∣∣
r=a

− 1

a2

[
(
2λs + 2μs + σ 0) ∂ur

∂θ

]∣
∣∣
∣
r=a

, (23b)



1206 F. Qiang, P. Wei

for the simplified model SM-I and

σrr |r=a = (2λs + 2us)

a2

(
2ur + uθ cot θ + ∂uθ

∂θ

)∣∣
∣∣
r=a

, (24a)

σrθ |r=a = 1

a2

[
(
λs + σ 0) uθ + (

λs + 2μs − σ 0)
(

uθ cot2 θ − ∂2uθ

∂θ2 − cot θ
∂uθ

∂θ

)]∣
∣∣
∣
r=a

− 1

a2

[(
2λs + 2μs) ∂ur

∂θ

]∣∣
∣∣
r=a

(24b)

for the simplified model SM-II.
Using the surface equilibrium condition, the coefficients An and Bn in Eq. (14) can be determined. In the

far-field, the scattered waves can be asymptotically expressed as

ϕr = Fp(θ, ϕ)
eikpr

r
+ o

(
1

r

)
, χr = Fs(θ, ϕ)

eiksr

r
+ o

(
1

r

)
, (25)

where

Fp(θ, ϕ) =
∞∑

n=0

1

ikp
(2n + 1)An Pn(cos θ), (26a)

Fs(θ, ϕ) =
∞∑

n=0

1

iks
(2n + 1)Bn Pn(cos θ) (26b)

are the far-field amplitude of the scattered P and S waves, respectively.

4 The effective propagation constants in nanoporous materials

In the context of multiple scattering of waves, the total wave field at any point r in the matrix material can be
expressed by

u(r; r1, r2, . . . , rN ) = ui (r) +
N∑

k=1

Ts(rk)ui (r) +
N∑

m=1

Ts(rm)

N∑

k=1,k �=m

Ts(rk)ui (r) + · · · , (27)

where Ts(rk) is the scattering operator which transforms the incident wave into the scattered wave. The first
term in Eq. (27) gives the incident wave, the second term gives the primary scattering wave of the incident
wave, the third term is the rescattering wave of the incident wave and so on. The configurational average of
the total wave field is

〈u(r; r1, . . . , rN )〉 =
∫

. . .

∫
u(r; r1, . . . , rN )p(r1, . . . , rN )dV1 . . . dVN , (28)

where p(r1, r2, . . . , rN ) is the joint probability distribution of scatterers. The configurational average of the
total wave field is called the averaged wave or coherent wave. In order to simplify the multiple scattering
problems, the effective field approximation and the effective medium approximation are often used. Compared
with the effective field approximation, the effective medium approximation results in two interfaces and thus
makes the scattering problem of single scatterer more complicated. Therefore, the effective field approximation
is used in this paper. In this approximation, each scatterer is assumed to be excited by an effective field. Then
Eq. (27) can be approximately replaced by

〈u(r; r1, . . . , rN )〉 = ui (r) +
N∑

k=1

Ts(rk)ue(r|rk; r1, · · ·′ · ··, rN ). (29)

After performing the configurational average, we obtain the averaged wave

〈u(r; r1, . . . , rN )〉 = ui (r) + n
∫

Ts(rk)
〈
ue(r|rk; r1, · · ·′ · ··, rN )

〉
dVk, (30)
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where n is the number density of scatterers and is related to the volume fraction f by n = f/(4πa3/3). The
quantity

〈
ue(r|rk; r1, · · ·′ · ··, rN )

〉
represents the exciting field acting on the kth scatterer averaged over all

possible configurations of the other scatterers. Actually, it is the averaged total field with the absence of one
scatterer and is not distinguished from the averaged total field when the number of scatterers is very large.
Hence, Eq. (29) becomes a self-consistent equation. The wave number of the coherent wave can be estimated
by means of an iterative process [1]

(
k(i+1)

p

k(i)
p

)2

=
(

1 + 2πn

(k(i)
p )2

F (i)
p (0, φ)

)2

−
(

2πn

(k(i)
p )2

F (i)
p (π, φ)

)2

, (31)

where F (i)
p (0, ϕ) and F (i)

p (π, ϕ) are the forward and backward scattering amplitudes of the individual scat-

terer. To start the iteration, the initial value k(0)
p is taken to be that in the matrix material. The effective

wave number k∗
p can be obtained by repeating the iterative process until the convergence condition, namely,∣

∣∣(k(i+1)
p − k(i)

p )/k(i)
p

∣
∣∣ < δ, is satisfied.

The effective wave numbers are associated with the expansion coefficient of the scattered waves and are
complex value, in general. The imaginary part of the complex wavenumber means that the averaged wave is a
decaying wave. In other word, the energy carried by the averaged wave decreases gradually when it propagates
in a randomly distributed nanoporous material just like that the viscoelastic wave propagates in a viscoelastic
medium. However, it should be noted that the attenuation of viscoelastic wave results from the dissipation of
material but the attenuation of the averaged wave results from the multiple scattering effects of the randomly
distributed nanocavities. The phase speed and the attenuation of the averaged wave are our main concern. The
normalized effective speed and attenuation of the averaged P waves can be expressed as

c∗
p/cp = Re

(
kp/k∗

p

)
, αp = Im

(
k∗

p

/
kp

)
. (32)

The effective dynamic modulus of nanoporous composites can be obtained by

K ∗

K
= ρ∗

ρ

⎧
⎨

⎩

(

Re

(
kp

k∗
p

))2

+ 4

3

μ

K

⎡

⎣

(

Re

(
kp

k∗
p

))2

−
(

Re

(
ks

k∗
s

))2
⎤

⎦

⎫
⎬

⎭
, (33)

where the effective density ρ∗ = (1 − f )ρ. μ and K are the shear modulus and the bulk modulus of the
matrix material, respectively. K ∗ is the effective dynamic elastic modulus of the nanoporous composites. It
should be pointed out that the effective dynamic modulus should tend to the effective static modulus when
the normalized wavenumber ka tends to zero. The effective static modulus of the nanocomposites with the
interface energy effects considered can be estimated by the Mori-Tanaka method, namely [25],

K̄ = K0 + f (K̄1 − K0)Am, (34)

where K̄1 = K1 + 2(σ 0 + 2λs + 2μs)/3a is the equivalent bulk modulus of the inclusion when the interface
energy effects is taken into consideration and K1 is the bulk modulus of the inclusion without consideration
of the interface energy effects. In the present study, K1 is taken to be zero for cavities. K0 is the bulk modulus
of the matrix material. The strain concentration factor can be written as

Am = K0

K0 + (1 + f )(K̄1 − K0)Sm
, Sm = 3K0

3K0 + 4μ0
. (35)

5 Results and discussion

In this numerical example, the matrix material is assumed to be isotropic aluminum (ρ = 2706kg/m3, μ =
26.7GPa, λ + 2μ = 110.5GPa). The iterative stop condition of Eq. (31) is

∣
∣∣(k(i+1)

p − k(i)
p )/k(i)

p

∣
∣∣ < 0.001.

Three parameters, namely k1 = λs+2μs

2μa , k2 = λs

2μa and k3 = σ 0

2μa , are introduced to characterize the properties
of the surface. Atomic simulations demonstrated that the elastic constants λs and μs can be either positive or
negative, λs/μ and μs/μ are in the order of angstroms (10−10m) [27]. For a macroscopic cavity, the parameter
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Fig. 1 Effective speed of coherent P wave obtained for different surface characteristic parameters (the porosity f = 0.3). a
Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)
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Fig. 2 Effective attenuation of coherent P wave obtained for different surface characteristic parameters (the porosity f = 0.3).
a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)

k1 and k2 tend to zero because (λs + 2μs)
/
μ and λs

/
μ are very small. The surface effects disappear and Eq.

(22) reduces to the solution of the classical elasticity theory without the surface effects. However, the parameter
k1 and k2 increase gradually and become notable when the radius of cavity, a, shrinks to nanometers. In this
situation, the surface effect becomes significant and can not be ignored anymore.

Figure 1 shows that the propagation speed of the coherent P wave increases due to the surface effect in the
frequency range considered. It is also noticed that the propagation speed is influenced not only by the surface
elastic constants λs and μs , which represent the surface elasticity, but also by the residual surface tension σ 0.
The surface effects on the attenuation of coherent P wave are shown in Fig. 2. It is noted that the attenuation
coefficient has a peak value within the frequency range considered. Both the surface elasticity reflected by the
surface elastic constants (λs, μs) and the residual surface tensor σ 0 make the peak of attenuation decreasing.
If the inhomogenous material with randomly positioned spherical cavities is replaced by a homogenous solid
medium, and keep the same propagation constants (speed and attenuation), the equivalent homogenous solid
medium should have complex elastic constants just like a viscoelastic material. The real part of the elastic
constant represents the actual elastic modulus, and the imaginary part of the elastic constant represents the
attenuation nature of the equivalent homogeneous solid medium.

Figures 3 and 4 are the effective speed and effective attenuation obtained from the simplified model SM-I.
Compared with Figs. 1 and 2, it is found that the effective speed obtained from the simplified model SM-I is
smaller than that from the Huang’s model and the effective attenuation obtained from SM-I is greater than that
from Huang’s model for the same surface parameters, although these differences between the two models are
very small for relative smaller surface residual stress σ 0 but increase gradually as the surface residual stress
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Fig. 3 Effective velocity of coherent P wave obtained from the simplified model SM-I for different surface characteristic
parameters (the porosity f = 0.3). a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)
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Fig. 4 Effective attenuation of coherent P wave obtained from the simplified model SM-I for different surface characteristic
parameters (the porosity f = 0.3). a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)

σ 0 increases. The observation implies that the effects of out-of-plane parts of the surface stress on the effective
speed and attenuation are not prominent under relative smaller surface residual stress σ 0.

Figures 5 and 6 are the effective speed and effective attenuation obtained from the simplified model SM-II.
Compared with Figs. 3 and 4, it is found that the effective speed decreases and the effective attenuation increases
and the differences become more pronounced as the surface residual stress σ 0 increases. The observation
implies that the non-symmetrical term in the in-plane surface stress, i.e., σ 0(u∇0s)

(in) in Eq. (5), has evident
influences on the effective speed and attenuation. Compared with the out-of plane term, i.e., σ 0(u∇0s)

(out),
the non-symmetrical term in the in-plane surface stress plays a more important role.

Figure 7 shows the dynamic effective bulk modulus of the porous material for different surface elastic
constants and the residual surface stresses. Similar to the discussion on the effective speed, both the surface
elastic constants (λs and μs) and the surface residual stress (σ 0) influence the bulk modulus, and in general, the
bulk modulus increases with the increasing of these parameters. This implies that the porous material becomes
harder and thus the coherent wave propagates faster when the surface effect are considered if the surface elastic
constants (λs and μs) and the surface residual stress (σ 0) are assumed to be positive.

In order to study the size effect of nanocavity on the effective dynamic bulk modulus of the porous
composites, the relationship between the normalized effective dynamic elastic modulus K ∗/K (K is the bulk
modulus of the matrix material) and the radius of spherical cavity at a fixed volume fraction ( f = 0.3) is shown
in Fig. 8. In the numerical calculation, the surface parameters are taken to be λs = 6.84 (N/m), μs = −0.376
(N/m) and σ 0 = 0.05 (J/m2) [28]. In order to compare with the static effective bulk modulus, the static
effective bulk modulus [obtained from Eq. (34)] is also calculated and shown in Fig. 8. K ∗

dynamic and K ∗
static are
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Fig. 5 Effective velocity of coherent P wave obtained from the simplified model SM-II for different surface characteristic
parameter (the porosity f = 0.3). a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)
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Fig. 6 Effective attenuation of coherent P wave obtained from the simplified model SM-II for different surface characteristic
parameter (the porosity f = 0.3). a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)
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porosity f = 0.3). a Effects of surface elastic constants (λs and μs ). b Effects of surface residual stress (σ 0)
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the effective dynamical bulk modulus and the effective static bulk modulus with the surface effects considered,
respectively. It is observed that the surface effect is prominent when the radius of the nanocavities decreases to
nanoscale. It is also noted that the surface effect is more evident for the effective dynamic modulus than for the
effective static modulus. As it is expected, the effective dynamic bulk modulus reduces to the corresponding
effective static bulk modulus at a long wave limit ksa → 0. This can be seen as a validation of our numerical
results to some extent.

6 Conclusions

The surface effects on the effective propagation constants of the coherent P wave in a nanoporous material
with randomly positioned spherical cavities are studied. The surface effects include the effects of the surface
elasticity and the effects of residual surface tension. The previous works about the surface effects on the
wave motion problem only concerned with the surface elasticity and the residual surface tension were rarely
considered. In this paper, both surface elasticity and the residual surface tension are discussed. The numerical
results show that both the surface elasticity and the residual surface tension influence evidently the effective
propagation constants of the coherent waves. In general, the surface elasticity and the residual surface tension
make the propagation speed increasing and the attenuation coefficient decreasing. The surface stresses are
non-symmetrical and include an in-plane part and an out-of-plane part. The non-symmetrical part of the in-
plane surface stress is important and cannot be ignored, in general. The out-of-plane part of the surface stress is
less important compared with the non-symmetrical part and can be ignored at relative smaller surface residual
stress. However, both should be considered when the surface residual stress is relative larger. Moreover, the
bulk modulus of the equivalent homogenous solid medium with same propagation speed and attenuation of
the porous material becomes larger when the surface stress and the residual surface tension are considered.
By comparison with the static effective bulk modulus, it is observed that both the static effective modulus and
the dynamic effective modulus increase evidently when the size of the cavities shrinks to nanoscale. However,
the size effects are more pronounced for the effective dynamic bulk modulus than for the effective static bulk
modulus.
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