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In this paper, the problem of near continuum gas flows over a sphere is investigated numerically. Three
types of boundary conditions for the sphere surface are adopted: (1) non-slip and constant temperature
surface; (2) velocity slip with considerations of velocity gradient, and temperature jump at the surface;
and (3) velocity slip with considerations of both velocity and temperature gradients, as well as temper-
ature jump at the surface. Navier–Stokes equations in a cylindrical coordinate system for compressible
flows are adopted with the Roe numerical scheme. The numerical simulation results include coefficient
distributions for surface pressure, friction, heat flux, velocity slip, temperature jump and total drag. The
results are obtained with different free stream Knudsen and Mach numbers. Several conclusions include:
(i) the third surface boundary condition does not create significant differences from the second type, (ii)
however, an adoption of non-slip or a slip surface boundary condition can create significant differences in
Cf ;Cq and CD.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Gas flow over a sphere is a fundamental fluid dynamic problem
with numerous applications. Examples include, but are not limited
to, (i) droplets or particulate matters in a smog; (ii) liquid droplets
during a spray; (iii) aluminium powders in combustion chambers;
(iv) solar winds passing a moon of no gravity; (v) mixing processes
in chemical engineering; and (vi) heavy materials separation in
nuclear engineering. Many of these examples are related to rarefi-
cation effects, which can be expressed with the Knudsen (Kn) num-
ber [1]:

Kn ¼ k=L; ð1Þ

where k is the mean free path, for the hard sphere model

k ¼ 1=ð
ffiffiffi
2
p

pd2nÞ; L a characteristic length, d the molecular diameter,
and n the number density. According to different Kn numbers, flows
can be classified as: (i) continuum flow (Kn < 0:001) which can be
solved by the Navier–Stokes Equations (NSEs) and the conditions
of no-velocity-slip, no-temperature-jump boundary conditions at
the surface; (ii) slip flow (0:001 < Kn < 0:01), where the NSEs are
still applicable but the boundary conditions at the surface shall be
modified by considering some gradient effects, examples include
flows related with Micro-Electro-Mechanical Systems (MEMS);
(iii) for most transitional flows (0:01 < Kn < 10), numerical simula-
tions shall be used for investigations; and (iv) free molecular flows
(Kn > 10), where both numerical and analytical results are applica-
ble. The current status for development of low speed sphere flows
can be summarized as follows: (i) in the continuum flow regime,
there are many successful investigations, numerically, theoretically,
and experimentally; (ii) in the slip flow regime, there are some
recent developments for numerical and experimental investigations
which provide some new insights; (iii) in the transitional flow
regime, almost all studies are numerical simulations; for example,
with the direct simulation Monte Carlo (DSMC) [1] method; and
(iv) free molecular flow, analytical expressions for surface proper-
ties [2] for a diffusive or specular reflective sphere were obtained
about half a century ago. The flowfield properties (i.e., density,
velocity, pressure and temperature), were investigated with the
gaskinetic methods, and some such analytical methods are docu-
mented [3]. However, only recently [4], have the detailed flowfield
properties for flows over a diffusive been reflective sphere were
evaluated and validated with several DSMC simulations. In the lit-
erature, there are some efforts to develop unified solvers (e.g.
[5,6]), aiming to simulate the full Kn number flows, and several
kinds of gaskinetic schemes for near continuum flows, e.g. [7].

In this paper, the problem of slightly rarefied gas flows over a
sphere will be investigated numerically. In the literature, theoret-
ical studies are rare, and there are scarce numerical studies with
different simplifications. One major focus of this paper is about
analytical treatment of the velocity-slip and temperature-jump
boundary conditions. In history, more than one hundred years
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ago, Maxwell [8] deduced the well-known velocity slip boundary
condition for macroscopic conservation variables, with an extrapo-
lated asymptotic incident distribution function, after which many
progresses have been made in the related fields, such as the
high-order slip conditions [9]. Further, the Maxwell-Smoluchowski
temperature jump boundary condition (with full accommodation)
can also be recovered automatically [10]. Later, we will address the
differences between this work and those in the literature.

In section II, a detailed problem statement, governing equations,
boundary conditions and numerical schemes will be provided and
discussed; in section III, many comparisons and discussions on the
results will be performed; and in the last section, summaries and
conclusions from the work will be presented.

2. Problem descriptions and the simulation scheme

The problem is illustrated as Fig. 1: slightly rarefied, or near
continuum, gas flows over a sphere of a radius R1. The flowfield
is symmetric; hence, only the upper flowfield is studied. There
are three boundaries: (i) free stream flows entering the outer circu-
lar boundary with a radius of R2, with given flowfield properties,
e.g., q1;U1; T1, and p1; (ii) symmetric center lines; and (iii)
sphere surface with boundary conditions of nonslip/slip velocity
and constant/jump temperature.

To be general, compressibility with different free stream Mach
numbers will be considered, and the governing equation for mass
flux is included in this study. We do not adopt an incompressible
fluid simulation solver because by default it assumes the density
is constant; however, rarefied gas flows include density variations.
For the simulations, the outer external boundary edge is set to be
very large compared with the sphere diameter, and setting the free
stream properties at the outer edge is sufficient. A full set of NSEs
are adopted to solve the coupling flow and temperature fields
simultaneously with density, flowfield velocity, and temperature,
q;U;V , and T. The flow is essentially axisymmetric, and the govern-
ing equations are:

@U
@t
þ @ðEin � EvÞ

@x
þ @ðFin � FvÞ

@r
¼ G

r
; ð2Þ

U ¼

q
qu

qv
E

0
BBB@

1
CCCA; Ein ¼

qu

qu2 þ p

quv
uðEþ pÞ

0
BBB@

1
CCCA; Fin ¼

qv
quv

qv2 þ p

vðEþ pÞ

0
BBB@

1
CCCA; ð3Þ
Fig. 1. Model schematic: sphere (cut through) and boundary conditions.
Ev ¼

0
sxx

sxr

usxx þ vsxr þ qx

0
BBB@

1
CCCA; Fv ¼

0
sxr

srr

usxr þ vsrr þ qr

0
BBB@

1
CCCA;

G ¼

�qv
sxr � quv

srr � srx � qv2

usxr þ vsrr þ qr � vðEþ pÞ

0
BBB@

1
CCCA;

ð4Þ

sxx ¼ � 2
3 l 2 @u

@x� @v
@r � v

r

� �
; srr ¼ � 2

3l 2 @v
@r � @u

@x� v
r

� �
; sxr ¼ lð@u

@r þ @v
@xÞ;

srx ¼ � 2
3 l

@u
@xþ @v

@r þ v
r

� �
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ð5Þ

where E is internal energy. The above formulas are similar to those
for two-dimensional flows; the differences include several extra
terms within the shear stress tensor and extra source terms.

The variable hard sphere (VHS) model [1] is used to model the
viscosity variations with temperature, and the thermal conductiv-
ity coefficient k changes correspondingly:

lðTÞ ¼ lref T=Tref

� �x1 ; kðTÞ ¼ cR
c� 1

l
Pr
; ð6Þ

where lref is the reference viscosity at a specific temperature
Tref ;x1 is the viscosity index, and Pr the Prandtl number. The equa-
tion of state is adopted to link the pressure, temperature and
density.

The boundary conditions for the problem are listed as:

T ¼ T1; p¼ p1; U¼U1;q¼q1; at farfield;
v ¼0; @u

@r ¼ @P
@r ¼0; @T

@r ¼0; symmetric lines at the bottom:
ð7Þ

There are some different surface boundary conditions. For con-
venience, the direction normal to the sphere surface is denoted as
‘‘n’’; ‘‘s’’ is adopted to represent the distance along the sphere sur-
face, by starting from the front stagnation point, and ‘‘h’’ is used to
represent the corresponding polar angle, starting from the stagna-
tion point, along a clockwise direction:

un ¼ 0; uh ¼ 0; Tg ¼ Tw; non-slip and constant temperature;
ð8Þ

un ¼ 0; uh ¼ K1
@uh

@n
þ K2

Tg

@Tg

@s
;

Tg � Tw ¼ K3
@Tg

@n
; velocity slip at sphere surface; ð9Þ

where R1 is the sphere radius, and

K1 ¼
2� rM

rM
k; K2 ¼

3
4
m; K3 ¼

2� rT

rT

2c
cþ 1

k
Pr
: ð10Þ

In the past, in the velocity slip and temperature jump boundary
formulas, Eq. (9), the term with the temperature gradient, @T=@s,
was considered to be smaller than the velocity gradient, @uh=@n;
hence, it is usually set to zero for simplicity. In this work, such a
treatment is denoted as a ‘‘partial slip’’ surface model. A more com-
prehensive model with both velocity and temperature gradients is
also investigated as a ‘‘fully slip’’ surface model. The latter pre-
serves the temperature gradient @T=@s, because around the front
stagnation point, the velocity is zero, while the temperature is
the highest; hence, some temperature variations along the front
side of the sphere surface are expected, and may contribute to
the slip velocity. One major goal of this paper is to compare the
contribution due to the latter two different surface boundary con-
ditions. The numerical simulation scheme in this work was the
Roe’s approximate Riemann solver [11,12]. The flow field is divided



Fig. 2. Illustration for near surface ghost cell treatment.
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Fig. 3. Numerical simulation residual development histories: with Kn ¼ 0:001 and
Ma ¼ 0:05.
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into small cells, and the finite volume method is adopted for the
simulation. Ghost cells are distributed along the simulation
domain boundaries, and the one at the wall surface is illustrated
as Fig. 2. At the surface, the gas velocity ug and temperature Tg

are not the same as the corresponding surface properties, and both
will be updated at each numerical simulation step.

The treatment of the wall boundary conditions in this work is
crucial. For the non-slip boundary condition, the velocity and tem-
perature gradients are important properties, and they are handled
with second order extrapolations. At locations sufficiently close to
the surface, the velocity is nonslip and can be assumed to behave
as:

uð�Þ ¼ aþ b�þ c�2; uð�¼ 0Þ ¼ 0; uð�¼ d1Þ ¼ u1; uð�¼ d2Þ ¼ u2;

ð11Þ

where � is the distance from the sphere surface along the normal
direction; and d1; d2 are the distances from the surface to the centers
of the 1st and 2nd layers of cells (see Fig. 2), with two computed
properties u1ð� ¼ d1Þ;u2ð� ¼ d2Þ at the two cell centers. The coeffi-
cients of a; b, and c can be derived. The ghost cell properties are
updated to satisfy the nonslip and constant temperature boundary
conditions:

ughð� ¼ �d1Þ ¼ �uð� ¼ d1Þ; vghð� ¼ �d1Þ ¼ �vð� ¼ d1Þ;
Tghð� ¼ �d1Þ ¼ 2Tw � Tð� ¼ d1Þ: ð12Þ

For the velocity slip and temperature jump boundary condi-
tions, the temperature solution shall be solved first as its gradient
presents in the velocity slip boundary conditions. It can be
assumed that at locations sufficiently close to the sphere surface,
the relation between the temperature and its gradient is also gen-
erally applicable; hence, the 3rd formula in Eq. (9) can be treated as
a first order ordinary differential equation (along the normal n-
direction) for the temperature, and the analytical solution for tem-
perature is:

Tgð�Þ ¼ Tgðd1Þ � Tw
� �

eð��d1Þ=K3 þ Tw; ð13Þ

where Tgðd1Þ is the corresponding gas bulk temperature at the cen-
ter for the first layer cells. Then, it is evident that:

dTg

dn
j�¼0 ¼

e�d1=K3

K3
Tgðd1Þ � Tw
� �

; ð14Þ

or may be obtained from Eq. (9) quite conveniently. As the results
from Eq. (13), the gas temperature distributions, Tgð� ¼ 0Þ, along
the surface are obtained; hence, @T=@s can be computed with a sim-
ple finite difference method.

For the ‘‘partial’’ velocity slip model, the treatment for the
velocity at the sphere surface is quite similar with the temperature
distributions. The 2nd formula in Eq. (9) can be considered as a 1st
order ordinary differential equation as well, and the solution is:

uhð�Þ ¼ uhðd1Þeð��d1Þ=K1 ; ð15Þ

correspondingly, for the ‘‘full’’ slip model which further considers
the temperature gradient, the solution is:

uhð�Þ ¼ uhðd1Þeð��d1Þ=K1 þ K2

Tg

@Tg

@s

� �����
�¼0

: ð16Þ

The above semi-analytical formulas only require some input from
the 1st and the 2nd cells adjacent to the surface. Within each
numerical simulation step, they are updated; hence, the computa-
tions are quite convenient. Temperature, velocity, and their gradi-
ents at the surface are via interrelated and the boundary effects to
the flowfield via the flux contributions from the ghost cells.

We adopted Roe’s approximate Riemann solver [11,12] for the
simulations. The flow field is divided into small cells, and the finite
volume method is adopted for the simulation. Ghost cells are dis-
tributed at the three boundaries; and one at the wall surface is
illustrated as Fig. 2. At the surface, the gas velocity ug and temper-
ature Tg are not the same as the corresponding surface properties,
and are updated within every simulation step.

Eqs. (2)–(4) can be expressed with the following discrete
format:

@Uj

@t
¼ Sj �

1
A

X4

l¼1

Eindr � Findxð Þl

" #
j

� Resj; ð17Þ

where Sj contains Gj=r; Ev ; Fv ; the very right hand side term is
defined as ‘‘Residual’’ for the jth cell, A is the cell area.

3. Results and discussions

Several simulations were performed, with those three types of
surface boundary conditions. During the simulations, R2 is set to
20R1, the Mach number is set to small values to achieve an incom-
pressible flow state, and the Kn number is set between 0.001 and
0.01, within the velocity slip and temperature jump regime. The
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simulation results obtained with nonslip boundary conditions are
for comparison, while the simulation results using the slip bound-
ary condition are more reliable. Both mesh resolution and size
dependence are studied. A 200� 200 mesh size along the circum-
ferential and radial directions is adopted to discrete the flowfield,
and mesh convergency examinations indicate such a mesh size is
sufficient to resolve the flowfield.

Fig. 3 shows the residual development histories during one set
of numerical simulations with the three kinds of velocity boundary
conditions, with Kn ¼ 0:001 and Ma ¼ 0:05. There are minor differ-
ences among the three curves; however, they are not appreciable
in log-scales. The residuals decrease almost twelve orders smaller
and the convergence is evident. The X-axis is normalized by the
characteristic time, while the y-axis by the free stream pressure:
1
2

3

x/R1

-2 -1 0 1 2
0

Fig. 5. Mach number contours and an attached vertex at the back of the sphere, full
slip condition, with free stream conditions Kn ¼ 0:001 and Ma ¼ 0:05.
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Fig. 4 shows the normalized pressure distributions with the full
velocity slip boundary condition model with Kn ¼ 0:001 and
Ma ¼ 0:05. The stagnation pressure is slightly larger than other
locations, and the smallest pressure adjacent to upper right surface
indicates larger flow velocity happening there. Fig. 5 shows the
Mach number contours with the model of full velocity slip bound-
ary condition. In front of the sphere, flows are compressed or
squeezed, due to the narrower passage between streamlines;
hence, the streamline gradient along the sphere normal direction
varies. The streamlines are not only functions of h, but also of r
and other variables. At the wake zone with vortex circulations,
the average Mach number decreases. Evidently, as shown in this
figure, flow separations occur on the surface and a small vortex
is plotted. Fig. 6 shows the normalized v velocity component, with
the full slip boundary condition. These contours change from posi-
tive to negative values and are effective to show flowfield patterns.

The above three figures are for the combinations of Kn ¼ 0:001
and Ma ¼ 0:05 with the full velocity slip boundary conditions,
while the next five figures present various surface properties by
comparing the partial and full slip boundary conditions. Fig. 7
shows sphere surface pressure distributions, CpðhÞ ¼ ðpðhÞ � p1Þ=
ðq1U2

1=2Þ, for the non slip, partial and full slip boundary condi-
tions. Essentially there are no appreciable differences. Fig. 8 shows
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Fig. 4. Normalized pressure distributions, p=p0, full velocity slip condition, with
Kn ¼ 0:001 and Ma ¼ 0:05.
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Fig. 6. Normalized velocity component v=U0, full slip condition, with Kn ¼ 0:001
and Ma ¼ 0:05.
the normalized surface friction distributions, Cf ðhÞ ¼ sðhÞ=
ðq1U2

1=2Þ. The friction coefficient for the non slip boundary condi-
tion is significantly larger than the slip boundary condition results.
A larger shear stress coefficient at the front side indicates larger
velocity changes in the local flowfield; and Cf ¼ 0 around 150�

reflects a flow separation there. Fig. 9 shows the sphere surface
heat transfer coefficient CqðhÞ ¼ kð@T=@nÞ=ðq1U3

1=2Þ. The heat flux
for the non-slip boundary case has a much larger value than the
slip boundary condition results; this may be due to the larger fric-
tion. Eq. (9) indicates that for both the partial and full flip scenar-
ios, the heat flux is proportional to the surface temperature
gradient and the surface temperature differences. The stagnation
temperature is the highest, indicating the highest stagnation point
heat flux. Fig. 10 shows normalized sphere surface slip velocities,
ugð0Þ=u1, and the differences between the partial-slip and full-slip
conditions are minor. Along the surface, around h � 150�, the slip
velocity value changes signs, reflecting a flow separation. Fig. 11



angle

C
p

0 30 60 90 120 150 180
-1

-0.5

0

0.5

1

1.5

2

no slip
partial slip
full slip

Stagnation
Point

Fig. 7. Cp with non-slip, ‘‘partial’’ and ‘‘full’’ slip boundary conditions, respectively,
at Kn ¼ 0:001 and Ma ¼ 0:05.

angle

C
f

C
f,n

o 
sl

ip

0 30 60 90 120 150 180
-0.0002

0

0.0002

0.0004

0.0006

0.0008

-0.1

0

0.1

0.2

0.3

0.4

no slip
partial slip
full slip

Stagnation
Point

Fig. 8. Cf , with non-slip, ‘‘partial’’ and ‘‘full’’ slip boundary conditions, respectively,
at Kn ¼ 0:001 and Ma ¼ 0:05.

angle

C q
,s

lip

C q
,n

o 
sl

ip

0 30 60 90 120 150 180
-1

0

1

2

3

4

-30

0

30

60

90

120

150

no slip
partial slip
full slip

Stagnation
Point

Fig. 9. Cq distributions with non-slip, ‘‘partial’’ and ‘‘full’’ slip boundary conditions,
respectively, at Kn ¼ 0:001 and Ma ¼ 0:05.

angle

U s
lip

/U
0

0 30 60 90 120 150 180
-2E-05

0

2E-05

4E-05
partial slip
full slip

Stagnation
Point

Fig. 10. Normalized uslip , with ‘‘partial’’ and ‘‘full’’ slip boundary conditions,
respectively, at Kn ¼ 0:001 and Ma ¼ 0:05.

66 C. Cai, Q. Sun / Computers & Fluids 111 (2015) 62–68
shows the normalized temperature jump along the sphere surface,
ðTgð� ¼ 0Þ � TwÞ=Tw. Eq. (9) shows that the temperature is actually
proportional to the local gradients, and the full and partial slip
velocity boundary conditions yield almost the same patterns.

The above five figures illustrate that the full and partial velocity
slip conditions create almost identical flowfield and surface prop-
erty patterns, only small differences happen in the slip velocity.
This indicates that the term containing the temperature gradient
@T=@s, in Eq. (9), provides negligible contribution to the flow solu-
tions. However, as shown, slip and non-slip boundary conditions
truly create different results of larger friction, total drag, and heat
flux at the sphere surface.

One major concern about flows over a spherical object is the
total drag coefficient. For the total drag coefficient variations with
the free stream Mach and the Kn numbers, the ‘‘partial’’ and ‘‘full’’
velocity slip boundary conditions do not create differences, and
this fact can be clearly explained with Figs. 7 and 8. For compress-
ible flows in the continuum regime, there are some curve fitting
results between the Reynolds number and the drag coefficient
[15]:
CD �
24
Re
þ 6

1þ
ffiffiffiffiffiffi
Re
p þ 0:4; 0 < Re < 2� 105: ð19Þ

In addition, there is a relation among the Kn;Ma and Re numbers for
compressible flows:

Re ¼ q0U0D0

l0
¼

ffiffiffiffiffiffi
pc
2

r
Ma
Kn

: ð20Þ

It is very similar to the Von Karman relation [16,17].
It is heuristic to understand the patterns with these parameters,

Kn, Ma, and Re; for example, an increase of the Mach number leads
to a smaller total drag coefficient. Fig. 12 shows the drag coeffi-
cients CD with different Reynolds number, which can be computed
from Ma and Kn numbers via Eq. (20). The figure illustrates several
features:

1. using non-slip and slip boundary conditions can lead to quite
appreciable differences, even at the Kn ¼ 0:001 limiting value;

2. at large Re number, e.g. Re > 150, the simulation results with
and without velocity slip boundary conditions agree relatively
better with White’s curve fitting results [15], i.e., Eq. (19); -this
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Table 1
Surface flow separation angles, varying with different Kn and Ma numbers, in degree
(�).

Kn Ma

0.3 0.2 0.15 0.1 0.05 0.04 0.03

0.001 (non slip) 117.3 124.6 129.3 135.9 147.0 151.0 156.3
0.001 (partial slip) 122.1 128.3 132.9 138.3 150.1 154.8 160.5
0.001 (full slip) 122.1 128.3 132.9 138.9 150.1 154.2 161.0

0.005 (non slip) 124.5 131.1 135.3 141.3 153.8 159.3 No separation
0.005 (partial slip) 128.1 133.5 138.4 144.9 158.1 165.3 No separation
0.005 (full slip) 128.1 133.5 138.3 144.9 158.0 165.3 No separation
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indicates the simulation algorithm including the sphere surface
condition treatment, are reliable and the simulation results are
solid;

3. the Re number range is limited by Eq. (20), the largest Re value
happens with the largest Mach number = 0.3, and the smallest
Kn number = 0.001, to satisfy the incompressible and near con-
tinuum flow state conditions. Beyond this largest Re number,
the flows can be either compressible or not near continuum.
Close to this limit, the curve fitting CD results vary mildly, and
the agreement with numerical simulations is relatively good;

4. with a smaller Ma number or larger Kn number, the flow regime
has smaller Re number; unfortunately, the curve-fitting formula
by White [15] changes rapidly with small Re numbers, and the
simulation data scatter around the curve. This indicates at smal-
ler Re number range, a consideration of rarefication effects may
lead to much larger differences;

5. the drag coefficients distribute within a wide range due to the
Kn number effect. With a fixed Reynolds number, rarefication
can create appreciable effect on drag coefficients. Consequently,
cautions shall be exercised during the simulations, especially
for the selection of velocity slip or non-slip surface boundary
conditions.
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Table 1 shows the flow separation angles with different Kn and
Mach numbers, by using the sphere diameter as the characteristic
length. The angles are measured along the surface, clockwise-ly,
starting from the stagnation point. It is evident that: (i) With a
fixed Kn number, an increase of the Mach number results in an ear-
lier separation; this may be related to the larger Re numbers; (ii)
for a fixed Mach number, the non-slip boundary condition create
earlier separations; (iii) a larger Kn number delays separations
due to a smaller Re number; (iv) there may be no separations at
all with high Kn but low Mach numbers, i.e. with a smaller Rey-
nolds number; and (v) the separation angles for partial and full slip
boundary conditions are essentially the same. In addition, the flow
simulations are based on laminar flow, and there may be flow
instabilities which are not considered; hence, the separation angles
are only for reference.

Before the end of this section, we would like to point out the dif-
ferences between this work and the past ones. In this work, the
velocity slip and temperature jump boundary conditions are trea-
ted as ordinary differential equations, at the neighborhood of the
surface; also we concentrate on special case of a classical problem
of low Reynolds number sphere flow. In the work by Li and Fu [5,6],
the surface boundary conditions are treated with the gaskinetic
theory, the results are related to the work here; however, they
relied on numerical simulations, and used high Reynolds number
flows over a sphere as a test case. There are experimental results
available in the literature to validate their results, but the drag
coefficients are different. There is other different treatment on
the velocity slip boundary conditions. For example, Myong [13]
argued to achieve true Maxwellian boundary conditions, higher
order terms which may account for the curvature effect shall be
added. In our modeling, we consider that effect may already be
considered in the governing Eqs. (4) and (5), i.e., the source terms
and the extra shear stress terms. In this sense, the work in paper
maybe not exactly base on a Maxwellian boundary condition, how-
ever, the velocity boundary conditions are much concise, and its
simplicity allows the treatment as solutions to an ODE at the
neighborhood of the surface possible. Another paper [14] argued
higher order but more complex terms can be added into the slip
boundary conditions, such as second order velocity gradients and
density gradient, however, the work is very complex and the
effects seem not appreciable. It can be considered as a good review
paper for higher order velocity-slip boundary conditions. For the
work by others, e.g. Maxwell [8], Kennard [10], and Beskok [9],
are rather pure theoretical or modeling, without real validations.
4. Summary

In this paper, we presented investigations on compressible, near
continuum gas flows over a sphere. Three types of surface bound-
ary conditions, non-slip, partial or full slips, were incorporated
with the full set of Navier–Stokes equations. The chosen simulation
parameters are within special Kn and Ma number ranges, to create
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near continuum and incompressible flows. The numerical scheme
was the Roe’s approximate solver. The adoptions of surface bound-
ary conditions created several analytical solutions for the temper-
ature and velocity at locations close to the sphere surface.

In this study, we investigated the flow and temperature fields
without adopting many assumptions and simplifications which
were used by many other papers in the literature. The results indi-
cated that the full or partial slip boundary conditions lead to neg-
ligible effects on the flowfield and surface properties; hence, we
confirm that the traditional treatment of slip boundary conditions
is proper. However, adoptions of velocity slip and non-slip bound-
ary conditions may lead to quite differences in Cf ;Cq, and CD, -we
shall be quite cautious during simulations of near continuum flows
over a sphere.
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