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A CONSTITUTIVE EQUATION OF THERMOELASTICITY FOR
SOLID MATERIALS

Q. H. Tang, X. L. Liu, C. Chen, and T. C. Wang
State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese
Academy of Sciences, Beijing, China

A new constitutive equation of thermoelasticity for crystals is presented based on
the interatomic potential and solid mechanics at finite temperature. Using the new
constitutive equation, the calculations for crystal copper and graphene are carried out
under different loading paths at different temperatures. The calculated results are in
good agreement with those of the previous thermoelasticity constitutive equation based
on quantum mechanics, which clearly indicates that our new constitutive equation of
thermoelasticity is correct. A lot of comparisons also show that the present theory
is more concise and efficient than the previous thermal stress theory in the practical
application.

Keywords: Constitutive equation; Finite temperature; Interatomic potential; Thermal stress theory

INTRODUCTION

Rapid progress in the synthesis and processing of materials with structure
on tiny length scales has created a demand for greater scientific understanding of
thermal behavior in microscale devices and nanostructured materials [1].

A lot of experiments on the thermal properties of materials have been
performed. Some important experimental results were obtained, such as elastic
constants [2, 3], heat capacity [4], the specific heat and coefficient of thermal
expansion [4, 5] for Al, Au, Cu, diamond and graphene [6] at different temperatures.
Moreover, anisotropic thermo-mechanical response of Ti–6Al–4V at various
temperatures from 233 to 755 K has been studied by considering the complicated
deformation behavior of materials [7, 8].

While describing thermal phenomena in different manners [9, 10], both
atomistic and continuum models should be considered when considering theoretical
investigations for the thermal properties of materials. In atomistic models, the
total atomic motion consists of structural deformation and thermal vibration.
Finite temperature effects in molecular dynamics simulations are accounted for
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360 Q. H. TANG ET AL.

by combining atom velocity with environment temperature of available heat bath
such as Andersen thermostat, Nose–Hoover thermostat, and the phonon heat bath
method [11–13]. In continuum models, structural deformation and thermal vibration
are treated separately. While the structural deformation part is explicitly modeled
at the continuum level, the thermal oscillation of atoms in the material can only be
expressed in the phenomenological form of heat energy.

To capture the essential features of atomistic physics while retaining the
efficiency of continuum models, many multiscale methods and atomistic-based
continuum theories have been proposed [14–17]. Tadmor et al. [18, 19], Shenoy
et al. [20] and Tadmor and Miller [21] developed the quasicontinuum (QC)
method by combining continuum finite element method with atomistic physics. The
quasicontinuum (QC) method has played an important role to study the fracture.
The QC method was extended to take into account the effect of finite temperature
under local quasiharmonic approximation [22–24]. Shenoy et al. [22] presented a
derivation of an effective energy function to perform Monte Carlo simulation in a
mixed atomistic and continuum setting, namely QC Monte Carlo (QCMC) method.

Tang and Aluru [25] established a multiscale model based on finite element
method for mechanical analysis of silicon nanostructures at finite temperature.
Within the framework of local quasiharmonic model, Jiang et al. [9] studied bulk
thermodynamic properties of graphite and diamond using their finite-temperature
continuum theory developed in terms of the interatomic potential. Tang and Aluru
[25] and Tang et al. [26] investigated three quasiharmonic models, namely QHM
(quasiharmonic model), QHMK (quasiharmonic model in reciprocal space) and
LQHM (local quasiharmonic model). The results reveal that LQHM does not
accurately describe the thermal properties as it neglects the vibration coupling of
the atoms.

Tadmor and Miller [21] pointed out that “the great disparity in scale and
the interdisciplinary nature of the field are what makes modeling materials both
challenging and exciting. There is increased awareness that materials must be
understood, not only by rigorous treatment of phenomena at each of these scales
alone, but rather through consideration of the interactions between theses scales.
This is the paradigm of multiscale modeling. Materials modeling is, at its core, an
endeavor to develop constitutive laws through a detailed understanding of these
microstructural features, and this requires the observation and modeling of material
at each of these different scales.”

The objective of this article is to establish a new constitutive equation of
thermoelasticity for crystals at finite temperature based on the interatomic potential
and solid mechanics. This article is divided into four sections. The concept of
thermal strain is introduced and the new constitutive relation is presented, followed
by the results, discussion and conclusion. Some calculations of physical quantities
are given in Appendices A and B.

CONSTITUTIVE EQUATION OF THERMOELASTICITY

The previous constitutive relation of thermal stress is reviewed next, and then
the concept of thermal strain is introduced and a new constitutive equation of
thermoelasticity is established, respectively.
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THERMOELASTICITY FOR SOLID MATERIALS 361

THE PREVIOUS CONSTITUTIVE RELATION

A common characteristic of the previous proposed constitutive relations of
thermal stress is based on the Helmholtz free energy function and the atomic
interaction potential [9, 26, 27]. The Helmholtz free energy A can be expressed as
[28]

A = Utot + kBT
3N∑
i=1

ln�2 sinh�
1
2

���i��� � = 1/kBT (1)

Based on the Cauchy-Born rule [29], the continuum deformation can be related to
the motion of atoms in the continuum, and the strain energy at the continuum level
can be calculated by the energy stored in atomic bonds.

The first term Utot in Eq. (1) describes the mechanical deformation under the
applied load, the second term in Eq. (1) is the entropy of system, which describes
the effect of temperature on the system deformation. The Cauchy–Born rule also
indicates that atoms subjected to a homogeneous deformation move according to a
single mapping from the undeformed to deformed configurations. Such a mapping
is characterized by the continuum deformation gradient F of a material point which
represents the collective behavior of many atoms that undergo locally uniform
deformation. The Green strain tensor E can be expressed as

E = �FT F − I�/2 (2)

According to the theory of solid mechanics, the second Piola–Kirchhoff stress
S [9, 25, 30] are determined by

S = 1
V0

	 A

	E
=

{
	Utot

	E
+ ∑

i

Ei

�i

· 	�i

	E

}
/V0 (3)

Ei = ∑
i

(
1
2
��i + ��i

e��i/kBT − 1

)
(4)

The Cauchy stress � can be expressed by

� = F

	Utot

	E
+ ∑

i

Ei

�i

· 	�i

	E
�FT /V (5)

The vibration frequency �i and its derivative
	�i

	E
are dependent on the

interatomic potential and the strain tensor E. Eq. (5) is the previous established
constitutive relation based on the quantum mechanics due to the quantization of
thermal energy Ei.

By applying for the thermal stress theory Eq. (5), some researchers calculated
the frequency �i of graphene and diamond via the local harmonic model [9], the
frequency �i of silicon via the k-space quasiharmonic model [25], and the frequency
�i of metal copper via the periodic boundary condition [31, 32]. These valuable
works promote the development and application of the thermal stress theory.
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362 Q. H. TANG ET AL.

THERMAL STRAIN CALCULATION METHODS

Before the new thermoelasticity constitutive relation is proposed, a concept
of thermal strain is introduced. As an undeformed body without any constraint is
heated from temperature T0 to T, it should be expanding freely, and the strain caused
by temperature change is called the thermal strain. The two methods of calculating
the thermal strain are given as follows.

In Method 1, the thermal strain is given by

�T =
∫ T

T0

dT (6)

where T0 is chosen to be room temperature, �T is the thermal strain from
temperature T0 to temperature T when the crystal is thermally expanding freely, 
is the coefficient of thermal expansion (CTE). The detail calculation for  of copper
is presented in Appendix A.

In Method 2, the lattice constant, r�0��T�, is determined by minimizing the
Helmholtz free energy A.

	A

	V
= 0 (7)

Thermal strain can be expressed [9] by

�T = r�0��T�

r�0��293K�
− 1 (8)

where r�0��T� is the equilibrium bond length at temperature T, r�0��293 K� is the
equilibrium bond length at room temperature T0 = 293 K. The detail calculation for
r�0��T� of graphene is presented in Appendix B.

The comparison of the calculated results and experimental data [5] for thermal
strain of copper is shown in Figure 1, both methods give fairly accurate results
within the range of 800 K temperature. The thermal strain for graphene could be
obtained by similar methods.

THE NEW STRESS-STRAIN RELATIONSHIP

The characteristic of new theory is based on the thermal strain and the large
deformation theory instead of the Helmholtz free energy function, which make it
more convenient in practical application than the previous theories. The effect of
temperature on the mechanical behavior of materials is frequently crucial, and the
physical phenomenon of coupling effect of thermal and mechanical is complicated.
A lot of studies have been carried out in the past years by using the methods of
experiment and theoretical analysis [5, 9]. As a crystal material is subjected to the
external load at the finite temperature, its deformation should include both the
mechanical deformation due to the external load and thermal deformation due to
temperature. Therefore the total deformation of a crystal should be a superposition
of the elastic deformation and the thermal deformation due to the thermal vibration
of the atoms around the crystal lattice.
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THERMOELASTICITY FOR SOLID MATERIALS 363

Figure 1 The thermal strain versus temperature for copper.

Figure 2 (a) Initial configuration; (b) Intermediate configuration; (c) Current configuration.

Figures 2(a)–(c) are the initial configuration, intermediate configuration and
current configuration, respectively. The initial configuration in Figure 2(a) is at the
state of undeformed crystal at room temperature T0. The deformation gradient
F∗ is the free thermal expansion as the temperature rises from T0 to T . As a
result, the intermediate configuration Figure 2(b) is at the zero-stress state. Fe is
the elastic deformation gradient from the intermediate configuration to the current
configuration in Figure 2(c).
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364 Q. H. TANG ET AL.

The total deformation gradient is

F = FeF∗ (9)

The second Piola–Kirchhoff stress [9, 25, 30] can be determined by

S = 	W

	Ee
= 1

V ∗
	Utot�Ee�

	Ee
(10)

The Cauchy stress is given by

� = 1
V

Fe

{
	Utot�Ee�

	Ee

}
FeT

(11)

Based on Eq. (9), the thermal strain tensor, elastic strain tensor and total strain
tensor can be written respectively as

E∗ = �F∗T F∗ − I�/2 (12a)

Ee = �FeT Fe − I�/2 (12b)

E = �FT F − I�/2 (12c)

Substituting Eq. (9) into Eq. (12c), the Green strain tensor E can be
expressed as

E = 1
2

��FeF∗�T Fe F∗ − I�

= 1
2

�F∗T FeT Fe F∗ − I�
(13)

= 1
2

�F∗T �I + 2Ee� F∗ − I�

= 1
2

�F∗T F∗ − I� + F∗T Ee F∗

= E∗ + F∗T EeF∗

Eq. (13) can be rewritten as

F∗T

EeF∗ = E − E∗ (14)

Considering the Polar decomposition of the tensor, the deformation gradients
F, F∗ and Fe can be rewritten respectively as

F = RU

F∗ = R∗U∗
(15)

Fe = ReUe
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THERMOELASTICITY FOR SOLID MATERIALS 365

Without losing generality, one can assume R∗ = I. Then Eq. (14) can be
rewritten as

Ee = �U∗�−1�E−E∗��U∗�−1 (16)

Eq. (12a) can also be rewritten as

E∗ = ��U∗�2 − I�/2 (17)

Then the Taylor expansion of U∗ is,

U∗ = �I + 2E∗�
1
2 = I + E∗ − 1

2
�E∗�2 + · · · (18)

If the thermal strain E∗ is small, the following equations can be obtained,

U∗ � I + E∗ (19)

and

U∗ � I (20)

Substituting Eq. (20) into Eq. (16), the elastic Green strain tensor Ee can be
expressed as

Ee = E − E∗ (21)

Combining Eq. (11) with Eq. (21), the following equation can be obtained,

� = 1
V

Fe

{[
	Utot�Ee�

	Ee

]
Ee=E−E∗

}
FeT

(22)

Eq. (22) is the new constitutive equation of thermoelasticity, and the thermal
strain E∗ is temperature dependent.

CALCULATION PROCEDURES

To verify the correction of the present constitutive Eq. (22) of thermoelasticity,
a series of comparisons for calculated results should be carried out between the
two thermal stress theories. The EAM potential proposed by Mishin et al. [33] for
copper and Brenner potential for graphene [31, 34] are adopted in the following
calculations.

For the previous thermal stress theory, the first step is to calculate vibration
frequency �i of lattice. For copper and graphene, the frequency �i is obtained from
Eqs. (A.5) and (B.6) with the Born-Karman boundary condition [25], respectively,
then the stresses are obtained from Eq. (5) at the different loading paths, and the
incremental loading is performed at specified temperature T. It is easy to note that
the frequency �i varies with deformation.
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366 Q. H. TANG ET AL.

For the present thermal stress theory, the first step is to determine the thermal
strain E∗, then calculate the stress from Eq. (22). As soon as the coefficient of
thermal expansion is obtained, the thermal strain can be calculated from Eq. (6).
The coefficient of thermal expansion could be obtained either from calculation
[9, 26, 27] or from experiments [6]. For copper, the frequencies �i, the specific heat
CV and the coefficient of thermal expansion are calculated from Eq. (A.5), Eq. (A.6)
and Eq. (A.7), respectively. For graphene, the frequencies �i, the specific heat CV ,
the coefficients of thermal expansion and the thermal strain are calculated from Eq.
(B.6), Eq. (B.7), Eqs. (B.9) and (B.10), and Eq. (B.13), respectively.

SIMULATION RESULTS AND DISCUSSION

The four different loading paths are performed at different temperatures. They
are the uniaxial tension, pure shear and biaxial tension (�11 � �22 = 1 � 2 and �11 �
�22 = 1 � 3), respectively. The stress-strain curves of copper are obtained at 300 K,
500 K and 800 K, and the stress-strain curves of graphene are calculated at 600 K,
1200 K and 1800 K.

Figure 3 shows the comparison of stress-strain curves for copper. Figures 3(a)–
(f) are the results of uniaxial tension, pure shear, biaxial tensions (�11 � �22 =
1 � 2� �33 = �22) and (�11 � �22 = 1 � 3� �33 = �22) at 300 K, 500 K and 800 K,
respectively. Similarly, Figure 4 shows the comparison of stress-strain curves
for graphene. Figures 4 (a)–(f) are the results of uniaxial tension, pure shear,
biaxial tensions (�11 � �22 = 1 � 2) and (�11 � �22 = 1 � 3) at 600 K, 1200 K and 1800 K,
respectively. All calculated results of the current thermal stress theory are in good
agreement with that of the theory based on quantum mechanics [9, 16, 27], which
indicates that the present constitutive equation is correct.

For the previous theory, the normal vibration frequency should be computed
from the force constant matrix, and the force constant matrix depends on the
second-order derivative of the potential energy from Eqs. (A.1), (A.2) and (A.5).
Therefore, the thermal stress depends on the accuracy of third-order derivative of
the potential energy, it is a quite high demand to the interatomic potential. But
for the new theory, the calculated result depends on the accuracy of the first-order
derivative of the potential energy. Figures 3(c)–(f) show the curves of stress along x
and y directions under biaxial load mode, as the strain increases, the little difference
appears between the calculated results of two theories, which may be attributed
to accuracy of the high order derivative of interatomic potential demanded by the
previous theory.

The present constitutive Eq. (22) is quite compact and efficiency in comparison
with the previous constitutive Eq. (5). There are several methods to get the thermal
strain E∗ either from experiment [5] or Eq. (8). The thermal strain E∗ is only
depended on temperature T. According to our new constitutive model, at the
specified temperature T, the thermal strain E∗ only need to be calculated once,
however the stress tensor � can be calculated from Eq. (22) for different applied
strain, which is different from that of the previous theory.

However, the frequency �i and its derivative
	�i

	E
are dependent on the applied

strain E in the previous constitutive Eq. (5). When the applied strain E increases or
decreases, all of frequencies and their derivatives should be calculated repeatedly,
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THERMOELASTICITY FOR SOLID MATERIALS 367

Figure 3 Comparison of simulation results in stress-strain curves between the present theory and the
theory based on quantum mechanics for copper at 300 K, 500 K and 800 K. (a) Uniaxial tension; (b)
pure shear; (c) biaxial tension, �11 � �22 = 1 � 2� �33 = �22. Stress along x direction versus strain; (d)
biaxial tension, �11 � �22 = 1 � 2� �33 = �22. Stress along the y direction versus strain; (e) biaxial tension,
�11 � �22 = 1 � 3� �33 = �22. Stress along the x direction versus strain; (f) biaxial tension, �11 � �22 = 1 �

3� �33 = �22. Stress along the y direction versus strain.
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368 Q. H. TANG ET AL.

Figure 4 Comparison of simulation results in stress-strain curves between the present theory and the
theory based on quantum mechanics for graphene at 600 K, 1200 K and 1800 K: (a) Uniaxial tension;
(b) pure shear; (c) biaxial tension, �11 � �22 = 1 � 2. Stress along the x direction versus strain; (d) biaxial
tension, �11 � �22 = 1 � 2. Stress along the y direction versus strain; (e) biaxial tension, �11 � �22 = 1 � 3.
Stress along the x direction versus strain; (f) biaxial tension, �11 � �22 = 1 � 3. Stress along y direction
versus strain.

costing more time. A comparison of the calculation efficiency has been carried out,
the calculation speed of the new theory is about 30 times higher for copper and
60 times higher for grapheme than that of the previous theory due to its structure
of non-Bravais lattice. The big difference of calculation efficiency between the two
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THERMOELASTICITY FOR SOLID MATERIALS 369

thermal stress theories is attributed to that the terms �i and 	�i

	E need to be calculated
repeatedly with deformation for the previous theory. Since the thermal strain is the
intrinsic property of the materials, which does not depend on the applied strain,
hence the Cauchy stress could be obtained directly by Eq. (22).

Another significance of the new theory of thermal stress is that it could be
applied to different kinds of solid materials extensively. For amorphous materials,
such as the metallic glass,it is difficult to calculate the frequencies of atoms, and it
is quite difficult to obtain the theoretical prediction by using the previous thermal
stress theory. However, if the thermal expanding coefficient and the thermal strain
can be obtained from the experimental data and Eq. (6) respectively, the theoretical
prediction of the thermal mechanical behavior could be calculated with the new
thermoelasticity theory.

CONCLUSION

In this article, a constitutive equation of thermoelasticity for the solid
materials is proposed. The thermal stresses are calculated for crystal copper and
graphene under different loading paths at different temperatures. The calculated
results are in good agreement with those of the previous constitutive equation of
thermoelasticity based on quantum mechanics at the different temperatures. A lot
of comparisons also show that the present theory is more concise and efficient in
comparison with the previous thermal stress theory in the practical applications.

APPENDIX A

A.1. Vibration Frequencies of Copper

The force acting on atom i is equal to

f i = −	Utot

	ri

= − ∑
j∈�i

	Utot

	rij

	rij

	ri

= ∑
j∈�i

fijeij

(A.1)

eij = rij

rij

fij = 	Utot

	rij

The dynamic equation of atom k is given by Tang et al. [32]

mkük = ∑
j∈�k

Kkj • �uj − uk�

(A.2)

Kkj = fkj�rkj�

rkj

I + �f
′
kj�rkj� − fkj�rkj�

rkj

�ekj ⊗ ekj

where uj is the displacement of atom j, I is the second-order unit tensor, and ⊗ is
the tensor multiplication operator.

Equation (A.2) can be solved as

uj = Aje
i��t−rj•q� (A.3)
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370 Q. H. TANG ET AL.

A calculation system of parallelepiped cells is selected in this study, and the
size of the simulation cell is N1a1, N2a2 and N3a3, respectively, where a1, a2 and a3

are the three basis vectors of Bravais lattice, and N1, N2 and N3 are integers. The
Born–Karman boundary condition [25] is applied.

Substituting Eq. (A.3) into Eq. (A.2),

−mkAk�
2 = ∑

j∈�k

Kkj • �Aje
−irkj•q − Ak� k = 1� � � � � N (A.4)

where N is the total number of atoms in the system.
For copper, per unit cell contains only one atom. All atoms have the same

magnitude, Ak = Aj = A.
As a result, each copper atom interacts with 54 neighbors, which include the

nearest neighbors, second nearest neighbors up to fourth-nearest neighbors.
Hence for atom k the characteristic equation can be written as∣∣∣∣∣m�2I +

54∑
j=1

Kkj • �e−irkj•q − 1�

∣∣∣∣∣ = 0 (A.5)

In order to obtain valuable results, the EAM potential proposed by Mishin et
al. [26] for copper is adopted in this article.

A.2. Specific Heat and Coefficient of Thermal Expansion

The specific heat CV is given in [27],

E = ∑
q

3∑
s=1

(
1
2
��s�q� + ��s�q�

e��s�q�/kBT − 1

)
(A.6)

CV = dE�T�

dT
= ∑

q

3∑
s=1

kB

���s�q�/kBT�2 e��s�q�/kBT

�e��s�q�/kBT − 1�
2

where �s�q� is the vibration frequency of the crystal lattice. The bulk modulus of
crystal can be calculated by K0 = V0

(
d2Utot

dV 2

)
V0

. Where, V0 is the volume prior to

deformation and Utot is the total potential energy. The calculation result is K0 = 138
GPa, which is in good agreement with experimental data 137 GPa [29].

According to the Grüneisen’s law, the coefficient of thermal expansion  of
copper is given by

 = 1
3

V = �

3K0

CV

V
(A.7)

For copper, � is a constant and taken to be 2.0.
The thermal strain is given by

�T =
∫ T

T0

dT (A.8)

which is the same as Eq. (6) in main text.
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APPENDIX B

B.1. Vibration Frequencies of Graphite

For graphite, the interlayer interaction is van der waals force which is quite
small compared to the in-plane interaction. As a result, the interlayer interaction
could be neglected in the dynamic equation of the carbon atom. Therefore graphene
can be a substitute for graphite when the vibration frequencies of the system are
calculated.

As is shown in Figure 5, carbon atoms in graphene can be classified into two
types A and B.

For a two-dimensional graphene crystal, wave vector q can be expressed as

q = k1

N1

b1 + k2

N2

b2� k1 = 1� � � � � N1� k2 = 1� � � � � N2 (B.1)

where b1 and b2 are the basis vector of the reciprocal lattice.
The cut-off function of carbon’s Brenner potential [31, 34] can be written as

fC

(
rij

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 r < R�1�

1
2

{
1 + cos

[
�
(
r − R�1�

)
/
(
R�2� − R�1�

) ]}
R�1� < r < R�2�

0 r > R�2�

(B.2)

where R�1� = 0�17nm, R�2� = 0�2nm. As a result, for one carbon atom A, it interacts
with 3 nearest neighbors B. The dynamic equations therefore can be expressed by

müAi
=

3∑
j=1

K�rAiBj
� • �uBj

− uAi
�

(B.3)

müBi
=

3∑
j=1

K�rBiAj
� • �uAj

− uBi
�

Figure 5 A schematic diagram of the atomic structure of a graphene with a representative atoms. The
open circles represent the carbon atom A, and the shaded circles represent the carbon atom B.
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where A and B represent the two types of the atom, and i and j are serial numbers
of the atoms.

In graphene, A and B atoms have different amplitudes. The solutions of lattice
wave are

uAi
= Aei��t−rAi

•q�

(B.4)

uBi
= Bei��t−rBi

•q�

Substituting Eq. (B.4) into Eq. (B.3), we get

(
m�2I − J

) (
Ax� Ay� Az� Bx� By� Bz

)T = 0 (B.5)

where J is a 6 × 6 matrix, and Ax, Ay, Az, Bx, By, and Bz are the components of the
amplitudes of the atoms.

The characteristic equation can be written as∣∣m�2I − J
∣∣ = 0 (B.6)

Hence six vibration frequencies can be obtained for each q.

B.2. Specific Heat and Coefficient of Thermal Expansion of Graphite

The CV for graphite can be composed of two components [34]:

CV = 2
3

CV�a + 1
3

CV�c (B.7)

where CV�a is the in-plane specific heat at constant volume, CV�c is the out-of-plane
specific heat at constant volume. CV�a and CV�c take the forms

CV�a = ∑
q

4∑
s=1

kB

���a
s �q�/kBT�2 e��a

s �q�/kBT

�e��a
s �q�/kBT − 1�

2

(B.8)

CV�c = ∑
q

6∑
s=5

kB

���c
s�q�/kBT�2 e��c

s �q�/kBT

�e��c
s �q�/kBT − 1�

2

where �a
s �q� is the in-plane frequency, �c

s�q� is the out-of-plane frequency.
Since thermal expansion of graphite is anisotropic, the expression of

Grüneisen’s law for graphite is different from that for copper. As pointed by
Morgan [34], in-plane CTE and out-of-plane CTE are the functions of CV�a and
CV�c:

a = �a

V
�S11 + S12�

2
3

CV�a + �c

V
S13

1
3

CV�c + CT (B.9)

c = �a

V
�S31 + S32�

2
3

CV�a + �c

V
S33

1
3

CV�c + NT (B.9)
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where S11� S12� S13 and S33 are the elastic flexibility coefficients of the crystal; C
and N are the parameters; V is the mole volume and is equal to 5�31 cm3/mole;
We set �a = 2�05 and a as the in-plane and out-of-plane Grüneisen parameters,
respectively.

According to references [34, 35], at room temperature, we have

S11 + S12 = 1�05 × 10−13cm2/dyn

S13 = −2�49 × 10−13cm2/dyn
(B.11)

S33 = 26�3 × 10−13cm2/dyn

B.3. Lattice Spacing of Graphite

Since the CTE of graphite in a-direction and c-direction are different, the a-
spacing and c-spacing of graphite are also different, which can be expressed as the
functions of a and c, respectively:

a�T� = a0�1 +
∫ T

0
adt�

(B.12)

c�T� = c0�1 +
∫ T

0
cdt�

where, a0 = 0�24618nm, c0 = 0�66818nm [35], and they are lattice a-spacing and
lattice c-spacing at absolute zero temperature, respectively.

B.4. The Thermal Strain of Graphite

From Eq. (B.12), one can obtain the thermal strain in a-direction �a�T� and
the thermal strain in c-direction �c�T� as follows

�a�T� = a − a0

a0

=
∫ T

0
adT

(B.13)

�c�T� = c − c0

c0

=
∫ T

0
cdT

Then the thermal strain tensor E∗ for graphite can be expressed as

E∗�T� =
⎡
⎣�a�T� 0 0

0 �a�T� 0
0 0 �c�T�

⎤
⎦ (B.14)

NOMENCLATURE

A Helmholtz free energy
� Planck constant
kB Boltzmann constant
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Utot Total potential energy of the system
W Strain energy density
F Deformation gradient
Fe Elastic deformation gradient
�j Thermal deformation gradient
R Rotation tensors
R∗ Thermal rotation tensors
Re Elastic rotation tensors
U Stretch tensors
U∗ Thermal stretch tensors
Ue Elastic stretch tensors
E Green strain tensor
Ee Elastic Green strain tensor
E∗ Thermal strain tensor
S Second Piola-Kirchhoff stress
�i Frequency of the ith normal vibration mode
Ēi Thermo energy
� Cauchy stress
V0 Volume at the initial configuration
V ∗ Volume at the intermediate configuration
V Volume at the current configuration
�T Thermal strain
r�0��T� Lattice constant
eij Unit vector from atom i to atom j
rkj Bond length between atom i and atom j
�i Set of all atoms which interact with the atom i
fij Interaction force between atom i and atom j
uj Displacement of atom j
⊗ Tensor multiplication operator
CV Specific heat
E Total thermal energy
� Grüneisen’s parameter
K0 Bulk modulus of the crystal
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