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Abstract
This paper aims to obtain an analytical expression for the ratio of unloading work of indentation (Wu) to total loading work of indentation (Wt)
(work recovery ratio of indentation) in instrumented spherical indentation. The expanding cavity model and Lamé solution are used. Three
typical stress–strain relations (elastic-perfectly plastic, linear hardening, and power-law hardening) are analyzed. The results of finite-element
method coincide with the expressions. The expressions show that the work recovery ratio of indentation is just related to plastic parameters.
Furthermore, elastic work (We) are obtained, and it is proved that We should be distinguished from Wu in spherical indentation.

Introduction
In recent studies, interest has been intensifying in the develop-
ment of indentation-based methods to extract material elastic–
plastic properties. One category of previous studies aimed to
obtain the stress–strain curve from a load–depth curve.[1] In an-
other category of studies, many fitting parameters were
involved.[2] In this case, it was easy to determine the relation-
ship between the mechanical parameters and the measurement
parameters tested. However, these methods led to complex for-
mulations and the parameters. Ogasawara et al. obtained elas-
tic–plastic parameters from measurements at several depths, a
process that mimics the dual/plural sharp indentation method.[3]

There is a common problem in these methods. That is lack of
sufficient theoretical analysis. In our previous work,[4] it was
found that a stable solution can be obtained by the use of
work recovery ratio of indentation (Wu/Wt). It seemed to be cor-
relative only with plastic parameters in the power-law harden-
ing material by instrumented spherical indentation. To improve
that assumption, and enlarge the scope of the assumption, three
typical stress–strain relations are considered to obtain an analyt-
ical expression for work recovery ratio of indentation.

A general stress–strain relation for the material can be writ-
ten as

s̃ = E1̃ (1̃ , 1y)
f (1̃) (1̃ ≥ 1y)

{
, (1)

where s̃ and 1̃ are the equivalent stress and strain, respectively,
E is the elastic modulus, and εy is the yield strain.

The function f (1̃) is the constitutive equation of material,
which for elastic-perfectly plastic materials takes the form,

s̃ = E1y, (2)

while for linear hardening materials, it can be written as

s̃ = Ep1̃+ (E − Ep)1y, (3)

and for power-law hardening materials, it can be written as

s̃ = E11−n
y 1̃n, (4)

where Ep is the hardening modulus, and n is the hardening ex-
ponent. These three forms of stress-strain relation are shown in
Fig. 1. It should be pointed out that elastic-perfectly plastic ma-
terials is included in linear hardening materials as a special case
(Ep = 0), but it always be considered as a classical constitutive
form. So they are discussed as three separate forms in this
paper.

The problem can be simplified by the assumptions given in
Johnson’s expanding cavity model (ECM)[5] as shown in Fig. 2
(a)[4]: (1) the displacement field produced by the indenter is ap-
proximately spherically symmetric; (2) the material under the
indenter can be divided into a core zone (r < a), a plastic
zone (a < r < c), and an elastic zone (r > c); (3) the material of
core zone is assumed to be an incompressible fluid. To obtain
a better result of the total loading work of indentation,
Johnson’s assumption of an incompressible fluid is replaced
with an incompressible solid for the core zone by Yang
et al.[6] Meanwhile, the state of the material of core zone is
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considered uniform with the same value as that at r = a, i.e., on
the inner boundary of the plastic zone.

In fact, interface friction has influence on Wt and Wu, but it
will make the problem too perplexed to obtain analytical solu-
tions and can be corrected by the finite-element method (FEM).
Therefore, interface friction is neglected in this paper.

Theoretical analysis
Based on the spherically symmetric assumption in ECM, seven
unknown parameters are considered: ur, εr, εθ, εw, σr, σθ, and
σw. Relationships about these parameters are:
the geometric equations

1r = dur
dr

1u = 1w = ur
r

⎧⎪⎨
⎪⎩ , (5)

and the balance equation

dsr

dr
+ 2

sr − su

r
= 0. (6)

The equivalent stress and strain[7] are

s̃ = 1��
2

√
������������������������������������������
(sr − su)

2 + (su − sw)
2 + (sw − sr)

2
√

= su − sr, (7)

1̃ =
��
2

√

3

����������������������������������������
(1r − 1u)

2 + (1u − 1w)
2 + (1w − 1r)

2
√

= 2

3
(1u − 1r). (8)

By assuming material incompressibility (specifically the
Poisson ratio of ν = 0.5), Gao and Jing,[8] radial displacement
is adaptable to the volume of part of the indenter which is
under the surface of sample. It can be written as

V = 2

3
p[(r + ur)

3 − r3] = 2

3
pur(3r

2 + 3rur + u2r ). (9)

It is easy to obtain ur/r =
�����������������
3V/(2pr3)+ 13

√
− 1. By consider-

ing the ratio of depth (h/R) as a constant 0.3,[9] ur/r is not larger
than 0.1 and decreases rapidly. It means that a small

Figure 1. Curves of three typical stress–strain relations. (a) Elastic-perfectly plastic, (b) linear hardening, and (c) power-law hardening.

Figure 2. ECM in which the deformation area below the indenter is divided into three parts. The effect of pile-up or sink-in is equivalent to some fraction of
hydrostatic core volume displaced by indenter. (a) The process of loading, which is equivalent to (b) the stress p acting on the edge of the spherical cavity.[4]
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deformation assumption (ur≪ r) is reasonable and Eq. (9) can
be simplified into

V = 2purr
2, (10)

and ur can be written as

ur = V

2pr2
. (11)

Substituting Eq. (11) into (5) yields

1r = − V

pr3

1u = 1w = V

2pr3

⎧⎪⎨
⎪⎩ . (12)

By substituting Eqs. (12) into (8), the equivalent strain can be
written as

1̃ = V

pr3
. (13)

At the outer boundary of plastic zone

1̃|r=c =
V

pc3
= 1y. (14)

By substituting Eq. (14) into (13), the relationship between
equivalent strain and radius is

1̃ = c3

r3
1y. (15)

Total loading work of indentation and elastic
work of indentation
The energy density can be written as

wt =
∫
s̃d1̃. (16)

Inside the elastic zone (r > c), substituting equivalent stress Eq.
(1) into (16) yields

we
t =

∫
s̃d1̃ =

∫
E1̃d1̃ = 1

2
E1̃2 + C1. (17)

By considering the boundary condition we
t |1̃=0 = C1 = 0, we

get

we
t =

1

2
E1̃2. (18)

Inside the plastic zone (a < r < c), substituting equivalent stress
Eqs. (2)–(4) into (16), and considering boundary condition
wp
t |1̃=1y = we

t |1̃=1y , three different forms of the energy density

with different stress–strain relations can be written as

wp
t = E1y1̃− 1

2
E12y

wp
t =

1

2
Ep1̃

2 + (E − Ep)1y1̃− 1

2
(E − Ep)1

2
y

wp
t =

1

n+ 1
E11−n

y 1̃n+1 + n− 1

2(n+ 1)
E12y

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

. (19)

Inside the core zone (r < a), due to the incompressible assump-
tion, the equivalent stress and strain are equal to the edge of
core zone (r = a). Substituting the radius into Eq. (15),

1̃ = 1̃|r=a =
c3

a3
1y. (20)

Substituting Eq. (20) into (2)–(4), we can get the equivalent
stress. Then substituting equivalent stress and strain into Eq.
(16), three different forms of the energy density within different
stress–strain relations can be written as

wc
t = E12y

c3

a3

wc
t = E12y

Ep

E

c6

a6
+ 1− Ep

E

( )
c3

a3

[ ]

wc
t = E12y

c3(n+1)

a3(n+1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

. (21)

The total loading work of indentation can be determined using

Wt =
∫1
c

2pr2we
t dr +

∫c
a

2pr2wp
t dr + wc

tVc, (22)

where Vc is the volume of core zone [Fig. 2(a)], which can be
determined by

Vc = 2

3
pa3 − V = 2

3
pa3 − pc31y. (23)

Substituting Eqs. (15), (18), (19), (21), and (23) into (22), the
analytical expression of total loading work of indentation is

Wt = pE12y
1

3
a3 + 2c3 ln

c

a
+ c3

a3
2

3
a3 − c31y

( )[ ]

Wt = pE12y
1

3

Ep

E

c6

a3
+ 1− Ep

E

( )
1

3
a3 + 2c3 ln

c

a

( )
+

{
Ep

E

c6

a6
+ 1− Ep

E

( )
c3

a3

[ ]
2

3
a3 − c31y

( )}

Wt = pE12y
2nc3 − n− 1( )a3

3 n+ 1( ) + 2c3

3n n+ 1( )
c3n

a3n
− 1

( )
+

[
c3 n+1( )

a3 n+1( )
2

3
a3 − c31y

( )]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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The elastic work can be determined by

We =
∫1
a

2pr2we
t dr = 3pE12y

c6

a3
. (25)

Unloading work of indentation
During unloading, little plastic deformation occurs in the materi-
al being tested, and this behavior has been confirmed by finite-
element analysis.[10] Based on this behavior, we assume that
only elastic deformation occurs during unloading. According
to the assumption of spherically symmetric strain distribution
in Johnson’s expanding cavity model, the stress p acting at the
edge of the spherical cavity [Fig. 2(b)] is reduced to zero during
unloading. This behavior can be equivalently replaced by adding
to the elastic–plastic stress field at the end of loading. The elastic
stress field can be described by Lamé’s solution[7]

s̃ = 3

2

a3

r3
p. (26)

The energy density can be written as

wu =
∫
s̃d1̃ =

∫
s̃d

s̃

E
= 1

2E
s̃2. (27)

Substituting Eq. (26) into (27) yields

wu = 9

8E

a6

r6
p2, (28)

and the unloading work of indentation can be written as

Wu =
∫1
a

2pr2wudr =
∫1
a

2pr2
9

8E

a6

r6
p2

( )
dr

= 3

4

p

E
a3 p2, (29)

where p = − σr|r=a comes from the end of loading.
Substituting Eqs. (2)–(4) into (6), three different forms of σr

within different stress–strain relations can be obtained as

sr = 2E1y ln
r

c
− 2

3
E1y

sr = − 2

3
Ep1y

c3

r3
− 2

3
(E − Ep)1y + 2(E − Ep)1y ln

r

c

sr = − 2

3n
E1y

c3n

r3n
+ 2(1− n)

3n
E1y

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

. (30)

At r = a, p can be written as

p = 2

3
E1y − 2E1y ln

a

c

p = 2

3
Ep1y

c3

a3
+ 2

3
(E − Ep)1y − 2(E − Ep)1y ln

a

c

p = 2

3n
E1y

c3n

a3n
+ 2(n− 1)

3n
E1y

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

. (31)

Substituting Eqs. (31) into (29) yields

Wu = 3pE12ya
3 1

3
− ln

a

c

( )2

Wu = 3pE12ya
3 1

3

Ep

E

c3

a3
+ 1− Ep

E

( )
1

3
− ln

a

c

( )[ ]2

Wu = 1

3n2
pE12ya

3 c3n

a3n
+ n− 1

( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (32)

Comparing Eqs. (25) and (32) can result in that We should be
distinguished from Wu, and their equivalence suggested in
ISO14577[11] is not proper. An analogous conclusion has
been obtained by Yang et al. in conical indentation.[12]

Work recovery ratio of indentation
By combining Eqs. (32) and (24) and simplifying, work recov-
ery ratio of indentation can be written for elastic-perfectly plas-
tic, as

Wu

Wt
= 1− 3 ln a/c

( )[ ]2
1+ c3/a3

( )
2+ 6 ln a/c

( )− 3 c3/a3
( )

1y
[ ] (33)

and for linear hardening, as

Wu

Wt
= Ep/E

( )
c3/a3
( )+ 1− Ep/E

( )
1− 3 ln a/c

( )[ ]{ }2
3 Ep/E
( )

c6/a6
( )

1− c31y/a3
( )+

1− Ep/E
( )

1+ c3/a3
( )

2+ 6 ln a/c
( )− 3c31y/a3

[ ]{ }
(34)

and for power-law hardening, as

Wu

Wt
= c3n/a3n+n−1

( )2
/n2

2nc3/a3− n−1( )[ ]
/ n+1( )+ c/a

( )3 n+1( )
2−3c31y/a3
( )+

2 c3/a3
( )

c3n/a3n−1
( )

/ n n+1( )[ ]

(35)

when Ep = 0 Eq. (34) will equal to Eq. (33), it means that
elastic-perfectly plastic materials is included in linear harden-
ing materials as a special case.

Equations (33)–(35) show that work recovery ratio of inden-
tation is related to plastic parameters (εy, Ep/E, or n) and geo-
metrical parameters (a, c). Based on the geometrical
relationship [see Fig. 2(a)], we can obtain

a =
����������
2Rh− h2

√
, (36)

V = 1

3
ph2(3R− h), (37)

where R is the radius of indenter, and h is the indentation depth.
Substituting Eqs. (37) into (14), c is determined by

c =
������������
h2(3R− h)

31y

3

√
, (38)
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and c/a can be written as

c

a
=

�������������������
h2 3R− h( )/ 31y

( )
3

√
����������
2Rh− h2

√ =
��������������������������
h/R
( )2

3− h/R
( )

/ 31y
( )3

√
�������������������
2 h/R
( )− h/R

( )2√ (39)

By considering the ratio of depth (h/R) as a constant 0.3,[9] c/a
can be simplified as

c

a
= 0.6061−(1/3)

y . (40)

Substituting Eqs. (40) into (33)–(35) yields, the simplified work
recovery ratio can be written for elastic-perfectly plastic, as

Wu

Wt
= 1y(0.503+ ln 1y)

2

1y − 0.372− 0.445 ln 1y
, (41)

and for linear hardening, as

Wu

Wt
= 0.223Ep/E− 1−Ep/E

( )
0.5031y+1y ln1y
( )[ ]2

0.117Ep/E+ 1−Ep/E
( )

12y −0.3721y−0.4451y ln1y
( )

(42)

and for power-law hardening, as

Wu

Wt
= (n+ 1)1n+1

y (0.223n1−n
y + n− 1)2

− n2(n− 1)1n+1
y + 0.446n(n2 − 1)1ny+

2× 0.223n+1(n3 + n2 + n)− 3× 0.223n+2n2(n+ 1)

.

(43)

Equations (41)–(43) show that work recovery ratio of indentation
is related to plastic parameters (εy, Ep/E or n). The plastic param-
eters can be obtained by solving the work recovery ratio of in-
dentation and Meyer’s coefficient simultaneously.[4,9]

Finite-element method
FEM is used to determine the accuracy of the analytical ex-
pressions. Plastic parameters used in the FEM calculations
cover most of metal materials. Elastic modulus (E) is 210
GPa, because numerical simulations are dimensionless and
the effect of the elastic modulus is linear. To make these sim-
ulations consistent with reality, we chose to approximate the
elastic modulus of steel using the value of 210 GPa.
Poisson’s ratio (v) is 0.3. Different plastic parameters chosen
cover the following range: εy of 10−3

–10−2, Ep/E of 0.02–
0.10 (for linear hardening) and n of 0.1–0.5 (for power-law
hardening), which encompass most engineering metals.
Interface friction is neglected to match the assumption in the-
oretical analysis.

The detail parameters and results are shown in Fig. 3. The
curves are analytical results from Eqs. (41)–(43), and the points
are FEM results. It can be found that they coincide well.
Figure 3 shows that there is a relationship of quadratic function

between the work recovery ratio and the yield strain. By fitting
the parameters, the more simplified work recovery ratio can be
written for elastic-perfectly plastic, as

Wu

Wt
= −241.7312y + 11.9621y + 0.0040, (44)

and for linear hardening, as

Figure 3. Analytical results (curves) and FEM results (points) of work
recovery ratio of indentation for three stress–strain relations. (a)
Elastic-perfectly plastic, (b) linear hardening, and (c) power-law hardening.
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Wu

Wt
= −1002.2

Ep

E

( )2

+ 444.85
Ep

E

( )
− 241.73

[ ]
12y

+ 14.201
Ep

E

( )2

− 15.923
Ep

E

( )
+ 11.962

[ ]
1y

+ 0.0532
Ep

E

( )2

+ 0.4183
Ep

E

( )
+ 0.0040

[ ]
,

(45)

and for power-law hardening, as

Wu

Wt
= (− 915.51n2 − 823.37n− 237.46)12y

+ (7.0211n2 + 18.843n+ 11.790)1y

+ (0.1891n2 − 0.0170n+ 0.0064).

(46)

Conclusion
In this paper, analytical expressions for the work recovery ratio
of indentation for three typical stress–strain relations are ob-
tained. It is proved that the work recovery ratio of indentation
is just related to plastic parameters, and there is positive corre-
lation between the work recovery ratio of indentation and plas-
tic parameters. It is also proved thatWe should be distinguished
fromWu in spherical indentation as well as that is in conical in-
dentation. It provides us with a method to estimate the ability of
plastic deformation of an unknown material by instrumented
spherical indentation. Furthermore, by solving the work recov-
ery ratio of indentation and Meyer’s coefficient simultaneously,
the plastic parameters can be obtained exactly.
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