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A finite element model of graphene strip is developed to predict the instability of dynamic
fracture, in which the C–C bonds are represented by Timoshenko beam elements, and the
constitutive relation of beam is derived from the atomic potential. Crack instability and
branching are observed under loading strain rates from �10�5 fs�1 to �10�8 fs�1. Under
low loading rates, the initiated midway crack propagates straight at supersonic velocity,
while kinking and oscillation occur beyond a critical crack velocity �10.33 km/s under high
rates. The results demonstrate that our equivalent models could provide efficient informa-
tion for studying the fracture in graphene.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene has triggered significant interests for its two-dimensional (2D) hexagonal crystal structure and ultrahigh
mechanical strength [1,2]. With graphene being developed as the candidate of toughening nano-composites [3], the fracture
mechanical behaviours, especially under dynamic loading conditions, are drawing the attention of researchers [4,5].
Although pristine graphene has exceptional high strength, defects (e.g. cracks) and grain boundaries are inevitable during
the exfoliation of graphene samples, which could lower the strength and fracture toughness largely. In theoretical modelling,
Le et al. [4] studied edge crack growth in graphene under simple tension using molecular dynamics (MD) simulations, and
reported that the crack speed increases with the time step and decreases with the initial crack length. Zhang et al. [5] inves-
tigated the instability of crack motion in graphene by atomistic MD simulations, which showed that the brittle crack along
zigzag (ZZ) direction branches around 8.20 km/s, equivalent to 0.65 of Rayleigh-wave speed in graphene, and validated the-
oretical predictions of rapid fracture instability in elastodynamics [6]. Omeltchenko et al. [7] also probed the fracture velocity
of graphene by MD modelling based on the Tersoff–Brenner potential. Wang et al. [8] studied the fracture behaviours of
single-layered graphene sheets with edge cracks under simple tension by MD, and stated that cracks propagate faster in
higher strain rates. Zhao et al. [9] showed that temperature has an important effect on fracture strength of graphene. Xu
et al. [10] proposed a coupled quantum/continuum mechanics approach to study crack propagation in graphene, and the
critical stress intensity factors (SIFs) were calculated to be 4.21 MPa

p
m and 3.71 MPa

p
m in ZZ and armchair (AC) sheets

respectively. In experiments, Kim et al. [11] explored the tearing process of suspended monolayer graphene membranes
by high-resolution transmission electron microscopy, and showed that the tearing angle changes occasionally by 30� along
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Nomenclature

A cross-sectional area of beam element
d diameter of beam element
D third-order elastic modulus
E equivalent Young’s modulus of the FE model of verification
E0 Young’s modulus of graphene
Eb Young’s modulus of beam element
F interatomic force due to bond stretching
Gb shear modulus of beam element
h width of the FE strip model of graphene
H width of the FE model of verification
Ib inertia moment of beam element
l length of the strip FE model
L length of the FE model of verification
KIC critical stress intensity factor
kr force constant related to bond stretching stiffness
kh force constant related to bond bending stiffness
ks force constant related to bond torsional stiffness
Ks transverse shear stiffness of the equivalent beam element
r current bond length
r0 initial bond length
rc critical bond length
rcf cut-off bond length
Sc energy release rate
SCF slenderness compensation factor
tg thickness of graphene
tk time for crack kinking
tt total time for analysis
Ur energy of bond stretching
Uh energy of bond angle bending
V crack moving velocity
Vr velocity of Raylaigh-wave in graphene
Vc critical velocity of crack instability in the FE model of graphene
V average velocity of crack in the FE model of graphene
r stress
ryy stress in Y direction
e strain
ec critical strain in the FE model of graphene
_e strain rate in the FE model of graphene
h current angle of adjacent bonds
U shear correction factor
c crack surface energy
l equivalent Poisson’s ratio of the FE model of verification
l0 Poisson’s ratio of graphene
lbk Poisson’s ratio of the Timoshenko beam element
q density of graphene
Dh vertical displacement of edges in the FE model of graphene
Dhc critical Dh
DL normal displacement loading in the FE model of verification
Da increment of crack length
Dt time interval
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AC or ZZ edges. Lee et al. [12] reported the initiation angle of radial cracks of multilayer graphene by using miniaturized bal-
listic tests, and found that the distribution of the angle between adjacent cracks displays preferences for small multiples of
30�. Therefore, it would be interesting to examine the characteristics of dynamic fracture in graphene, as a layer reinforcer, to
prevent catastrophic failure in composite engineering.



B. Zhang et al. / Engineering Fracture Mechanics 141 (2015) 111–119 113
Alternatively, equivalent finite element (FE) models based on continuum theory can overcome the limit of calculation
scales in atomic simulations. Li et al. [13] ever developed a structural mechanics approach according to the similarity of
geometry and energy expression form between C–C bonds and beams to investigate elastic properties of single wall carbon
nanotubes (SWCNTs). To imitate covalently bonding in low-dimensional carbon materials by equating the harmonic poten-
tial of bonds with the deformation energy of beams, equivalent macro models can be constructed and analyzed based on
classical structural mechanics. Recently, some researchers [14–17] attempted to use FE methods to study nonlinear or frac-
ture mechanical behaviours of nano-materials by the molecular structural mechanics approach, e.g. Tserpes et al. [14] pro-
posed an atomistic-based progressive fracture model to simulate the fracture behaviours of SWCNTs using ANSYS, where
non-linear characteristic of Euler–Bernoulli (EB) beam elements was obtained from the modified Morse potential. Based
on the fracture FE model of Tserpes et al. [14], Baykasoglu et al. [15] analyzed stress–strain behaviours of pure and defective
monolayer graphene along AC and ZZ directions respectively, and simply explored the crack propagation properties by
MATLAB. Parashar and Mertiny [17] investigated the mode-I fracture properties of graphene by an FE-based atomistic model,
and estimated the strain energy release rate.

To our knowledge, the instability of crack propagation in graphene has rarely been studied by FE methods. Therefore, we
here will construct an equivalent FE model to study dynamic fracture of brittle cracks along ZZ direction in a strip model of
graphene under mode-I displacement loading, in which large deformation and nonlinear bonding interaction are considered.
The crack velocities, critical SIFs, critical energy release rates and other fracture properties under various strain rates are ana-
lyzed afterwards.

2. FE model of graphene for dynamic fracture study

2.1. Equivalent nonlinear Timoshenko beams for C–C bonds

The Timoshenko beams as representative models, enabling deep shear cross-deformations [18], are suitable to consider
realistic distributions of thickness and equilibrium length of C–C bonds and the covalent bond breakage with nonlinear geo-
metric effects. Conversely, slender EB beam elements, ever used by both Tserpes et al. [14] and Baykasoglu et al. [15] to sim-
ulate C–C bonds’ large deformations and nonlinear geometric effects, cannot withstand transverse shear deformation and
can only be theoretically used for small-strain and large-rotation analysis for the cubic interpolation functions [19].
Therefore, the C–C bonds in graphene are equated by nonlinear Timoshenko beams in this paper, which are represented
by the linear planar beam elements (Beam 21) in Abaqus 6.9.

We here employ the constants kr = 84.7 nN Å�1 [20], kh = 9.00 nN Å rad�2 and ks = 2.78 nN Å rad�2 [21] for equivalent
Timoshenko beams of sp2 C–C bonds accordingly (definitions of prefactors can be found therein) because the tensile
force-displacement curves obtained by either the modified Morse potential or the Tersoff–Brenner potential yield the same
before the inflection point [20]. The constants of beam elements are obtained and represented in Table 1.

Since the B21 element could endure stretching deformation and transfer shearing deformation during the whole analysis
procedure, here we mainly consider nonlinear effects of the beam length l [22], and determine the reasonable values of the
shear correction factor U and transverse shear stiffness Ks which are fixed during the large deformation of the beam element
[19]. When the toggle ‘‘Nlgeom’’ is on, Abaqus/Explicit will account for geometric nonlinearity during the step. U is repre-
sented by the slenderness compensation factor (SCF). SCF and Ks of beam elements are 0.5 and 160 GPa nm2 respectively,
which are determined by a trial and error procedure to guarantee that the Young’s modulus and Poisson’s ratio of graphene
FE model (see Section 2.2) are close to their experimental values [1] as far as possible.

Under in-plane deformations without torsion for graphene, total potential energy can be written as Utotal = RUr + RUh,
where Ur and Uh are the bonding energy due to bond stretching and bending respectively, and r is the current bond length.
As only the stretching energy Ur dominates the fracture behaviours of graphene [15,16], Uh (responsible for stabilizing the
molecular structure) is neglected afterwards.

At room temperature, the atomic scale fracture process in graphene is governed by brittle breaking of atomic bonds at
crack tips [23]. Belytschko et al. [20] studied the fracture of CNTs by molecular mechanics simulations, and reported that
the fracture of C–C bonds depends primarily on the interatomic potential before the inflection point, after which, the form of
the potential function is no more important as material damage occurs. Once the length of a C–C bond exceeded a critical
distance rc, the interatomic force would drop rapidly to zero, and the bond is regarded as broken. This fracture criterion
for C–C bonds can be realized by distanced-based detection method [24].
Table 1
Constants of B21 element [18].

Bond cross-sectional diameter, d 0.89 Å
Bond length, r0 1.42 Å
Cross-sectional area, A 0. 622 Å2

Moment of inertia, Ib 0.0308 Å4

Young’s modulus, Eb 19.5 TPa
Poisson’s ratio, lb 0.23
Shear modulus, Gb 7.93 TPa
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As an accurate atomistic interaction expression, the Tersoff–Brenner potential [25] is used to simulate the fracture of
graphene, which involves large deformations and geometric nonlinear effects of C–C bonds. For each C–C bond, the
Tersoff–Brenner potential is employed before its fracture, after which the broken C–C bonds (beam elements) disappear
(are deleted), namely, fracture evolution of the whole model is shown by the successional breakages of bonds (beams).
Many-body interactions of atoms (nodes) are not considered here. Accordingly, we derived the nonlinear constitutive rela-
tion of B21 element from the stretching portions of the Tersoff–Brenner potential. To avoid unphysical spurious bond forces
[5], the interaction range of carbon atoms is considered only within a distance rc = 1.7 Å. Therefore, the cut-off distance 1.7 Å,
which corresponds to the inflection point (i.e., the peak force) at approximately 19.7% strain, is employed. The
bond-stretching energy Ur is then as
Fig. 1.
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where the potential parameters De = 6.0 eV, b = 2.1 Å�1, S = 1.22, re = 1.39 Å [25].
Moreover, the second generation version of the Tersoff–Brenner potential [26] considers the effect of the third class dis-

tance atoms by adding a term Bp
ij to Bij, which leads to the initial length of C–C bond changing from 1.45 Å to 1.42 Å [27].

Thus, the modified Bij is obtained by assuming Fr¼1:42Å = 0, and the F–r curve is obtained and shown in Fig. 1. By use of
r = F/A and e = (r–r0)/r0, and substituting geometric constants of the Timoshenko beam and Tersoff–Brenner potential param-
eters into Eq. (2), the nonlinear constitutive relation of the equivalent beam for a C–C bond can be derived as
r ¼ 20:852 �e�4:685e þ e�3:817e� �
ð3Þ
The stress–strain curve of the equivalent beam is also depicted in Fig. 1.
2.2. Numerical examples and verifications

The mechanical properties and dynamic fracture of graphene model are simulated in ABAQUS/Explicit which is an explicit
dynamic solver based on central difference method [19], and the 2D FE models are constructed by Beam21 (shear) and Mass
elements. In our model of graphene, a node at either end of beam element represents a carbon atom, while the beam only
reflects the reaction between nodes. In order to simulate the real system of C–C bonds and dynamic effects as far as possible,
approximately 99% mass of carbon atoms is deployed at nodes. Equivalent Young’s modulus E and Poisson’s ratio l of the
graphene FE models are examined by verification samples under uniaxial tension along ZZ and AC directions. The sample
model consists of 14490 nodes and 21565 beams with its width H = 190.3 Å and length L = 196.8 Å, shown in Fig. 2, where
ZZ and AC edges are along the X and Y axes respectively. The material constitutive relation of beam is coded as VUMAT sub-
routine in ABAQUS/Explicit, and the VUMAT will be called to update stress tensor and other variables for material calculation
points of the beam element within each increment. When material points satisfy the failure criterion (axial stress of B21
element) defined according to rc, the beams (atomic bonds) will be removed from the model so that the dynamic fracture
process of the model is fulfilled. Only the valid material points are returned at the end of each increment.

To obtain the mechanical properties of graphene model, uniform normal loadings of displacement DL = 13.0 Å are applied
gradually to nodes on one edge step by step in Fig. 2, and the other edge is fixed. All the simulations are carried out
quasi-statically [19], and explicit marches a solution forward with possible small time increment, which is similar to
The constitutive relation of the equivalent beam for C–C bond according to the Tersoff–Brenner potential truncated after the inflection point (dash
avoid unphysical spurious bond forces.



Fig. 2. The FE model of pristine graphene with a width H and a length L. Tensile deformations are imposed along AC (Y) or ZZ (X) direction.
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velocity-Verlet integration algorithm in MD simulations [5]. The nodal coordinates of the carbon atoms are perturbed at each
time increment.

The stress–strain curves during tensile deformations along ZZ and AC orientations are obtained, which falls within the
ranges of experimental results [1] in Fig. 3(a). Moreover, the latest study conducted by density functional theory calculations
[28] indicates that the stress–strain curves overlap each other under small strains <15%, and ZZ edge graphene strip is stiffer
than AC graphene under strains >15%, which are agreed with our results despite of overlapping under smaller strains <4%.
The obtained Poisson’s ratios are also close to the experimental value [29] under small strains in Fig. 3(b).

2.3. Fracture model of graphene

The geometric parameters of graphene ribbon are chosen to match the strain rates in our previous MD simulations [5] for
comparisons. A strip model with an initially straight crack (five bonds removed) is constructed with a size of
l � h = 491.9 Å � 49.7 Å, in which 9624 nodes (i.e. atoms) and 14207 beam elements (i.e. bonds) are used, shown in Fig. 4.
As cracks along ZZ edges in graphene usually propagate self-similarly [30], only ZZ crack models are studied here. The orig-
inal crack will grow under pure opening load of displacement Dh displaced away at strain rate _e = Dh/(h�tt). The thickness tg

of graphene is assumed to be 3.34 Å under plane stress condition. The deformation-control method is implemented by apply-
ing uniform increment Dh/2 of Y-displacement (less than 0.25 � 10�3 Å per step) gradually to the top and bottom nodes,
while X-displacement of a bottom node at the middle of the model is constrained and its adjacent B21 elements are clamped.
Five strain rates, _e = 1.959 � 10�5 fs�1, 9.796 � 10�6 fs�1, 4.898 � 10�6 fs�1, 9.796 � 10�7 fs�1 and 9.796 � 10�8 fs�1 respec-
tively, are imposed, and the total time periods tt for analysis are 8 ps (equals the total loading period of the model), 16 ps,
32 ps, 160 ps and 1600 ps respectively, and the uniform time increment is 0.25 fs.

Here time increment in ABAQUS/Explicit algorithm (central difference method) is small enough to guarantee the conver-
gence during the whole process of model fracture. Firstly, time increment is automatically estimated and changed by
ABAQUS/Explicit for trial calculations. Then we select the minimum 0.25 fs among these time increments as the fixed value
for new calculations at every strain rates. The damping parameters are not defined here for ideal condition.
Fig. 3. Pristine grapheme model under tensile loading applied in AC and ZZ directions, respectively. (a) The stress–strain curves, comparing with
experimental results (dot lines) r ¼ Eeþ De2 (E = 1018 ± 150 GPa and D = 2066 ± 359 GPa, normalized by thickness 3.34 Å) [1]; (b) Poisson’s ratio vs. strain,
comparing with 0.165 (dot line) [29].



Fig. 4. The initial FE strip model of graphene (blue lattice) under uniform opening loads of displacements (depicted by orange arrows on both top and
bottom nodes) in Y direction perpendicular to the crack line. The strip model has a width h and a length l with an initially straight crack by removing five
bonds (snapshot). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Stress contours of crack propagation at different stages (a–e): initiation (top); propagation (middle); final failure (bottom). (a–c) crack branching, (d–
e) straightforward fracture. Strain rate _e = (a) 1.959 � 10�5 fs�1; (b) 9.796 � 10�6 fs�1; (c) 4.898 � 10�6 fs�1; (d) 9.796 � 10�7 fs�1 and (e) 9.796 � 10�8 fs�1.
The colour scale bar on the right side of (a) represents the magnitudes of stresses ryy, which is applicable to all contours.
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3. Results and discussions

3.1. The characteristics of dynamic fracture

The dynamic fracture of the graphene FE models is illustrated in Fig. 5. As the displacements of the top and bottom edges
increase bit by bit, energy from external work flows from the border to the centre of the model. At the same time, beam ele-
ments of the whole model are tensed, and stress concentrates quickly around crack tips. Initial crack propagates instantly
after the breakage of C–C bond reaching the critical length rc at the crack fronts.

The position of crack tip is determined by finding the final breakage of the C–C bond ahead. The velocity V = Da/Dt at
every crack length a is measured over relevant distance Da just before the crack tip within a time interval Dt. The distances
used to calculate V are selected every ten lattices (lattice spacing 2.46 Å) at smooth crack edges/surfaces or every five lattices
densely at irregular edges/surfaces. Combining with Fig. 5, we can observe that V increases sharply within a short distance
once the crack is initiated, then reaches a relatively stable value as crack grows straight and smoothly in a ‘‘mirror’’ style. The
cracks in all cases move forward, and the first three in Fig. 6(a)–(c) begin to kink and oscillate at higher strain rates after
propagation of different distances, while cracks keep straight in Fig. 6(d)–(e) at lower rates.

As shown in Fig. 6(a)–(c), instabilities appear and the velocities fluctuate significantly once the kinking occurs. Then, the
cracks tend to deviate from their straight paths and the crack edges become more irregular accompanied with oscillatory
overhangs, topological defects, and carbon chains (beams) bridging. The cracks under lower strain rates move straight,
and the velocities remain almost unchanged in Fig. 6(d)–(e).
Fig. 6. Velocity V of crack motion in graphene. Straight cracks start to kink when V is beyond 10.33 km/s, about 82% of the Rayleigh-wave speed (12.56 km/
s), which can be observed in the morphologies of fracture edges in (a)–(c) accompanied with oscillations of velocity (zooming in), while cracks undergo
along straight lines enduringly without branching/kinking at lower velocities in (d)–(e).



Fig. 7. The stress contours of the whole models at the moments just before the first kinking/branching under three strain rates _e = (a) 1.959 � 10�5 fs�1; (b)
9.796 � 10�6 fs�1; (c) 4.898 � 10�6 fs�1.

Table 2
The strain e and critical SIF KC, velocity VC, energy release rate SC, average velocity V at crack initiating, kinking and completely ending at five strain rates.

Strain rate _e (fs�1) Strain e KC (MPa
p

m) VC (km/s) SC (TPaÅ) V (km/s)

Initiating (%) Kinking (%) Ending (%)

1.959 � 10�5 4.99 7.17 13.40 3.70 10.42 0.131 11.11
9.796 � 10�6 5.07 6.90 9.66 3.59 10.30 0.123 10.09
4.898 � 10�6 5.11 6.45 7.52 3.34 10.28 0.107 9.69
a4.898 � 10�6 4.14 4.68 8.72 3.59 9.94 0.123 10.36
9.796 � 10�7 5.14 – 5.64 – – – 9.33
9.796 � 10�8 5.15 – 5.20 – – – 9.30

a Larger model l � h = 983.81 Å � 100.82 Å.
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The crack kinking occurs earlier at higher strain rates, while later at lower strain rates in Fig. 7, and even vanishes in
Fig. 6(d)–(e) where the crack speeds cannot reach the threshold value. The initial strains are smaller than the results in
[8], and decrease slightly with the increase of strain rate, which is different from [8]. Critical strain eC is calculated by
eC = (tk�Dh)/(tt�h), where tk is the time for crack kinking. Critical strains are 7.17%, 6.90% and 6.45% respectively at high strain
rates, as shown in Table 2.
3.2. Analysis of SIF, energy release rate and velocity

The critical SIFs of graphene when crack kinking occurs under three strain rates are calculated by
KC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðh� l02hÞ

p
E0Dhc (where DhC ¼ 0:5heC , Young’s modulus E0 = 1.025 TPa and Poisson’s ratio l0 = 0.165 for graphene)

[5], yields KC = 3.70, 3.59 and 3.34 MPa
p

m at critical strains eC = 7.17%, 6.90% and 6.45% respectively, as shown in Table 2
and Fig. 7(a)–(c). Compared with reported data 3.16 MPa

p
m [30] and 4.21 MPa

p
m [10], our results are reasonable.

As the crack motion is triggered after the first bond breakage, the potential energy stored around the crack tip is released
and transformed into surface energy or atomic vibration energy. The crack continues to grow with external energy flowing
into crack tip field and forming fresh surfaces with enough surface energy. The energy release rates
SC ¼ 0:5he2

CE0ððE0 � ð1� l02ÞV2
CqÞ=ðE

0 � V2
CqÞÞ [31] are then obtained as 0.131, 0.123 and 0.107 TPa Å, which are very close

to MD results 0.130, 0.119 and 0.125 TPa Å respectively. The energy release rate at crack tip is reasonably larger than the
energy cost of breaking a graphene sheet, i.e. the surface energy 2c = 1.0997 TPa Å (averaged over thickness tg = 3.34 Å), indi-
cating that energy dissipation is considerable here.

The critical velocity of crack instability VC is obtained by averaging over possible small interval of crack increment
before occurrences of kinking in Fig. 6(a)–(c). The average velocities at five strain rates are calculated by V = Da/Dt (where
Fig. 8. The velocity of crack motion changes with strain rates.
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Da = 477.15 Å is the whole length of the crack, and Dt is the corresponding total time interval), which yields 11.11, 10.09,
9.69, 9.33 and 9.30 km/s correspondingly. All the five values are relatively larger than those in [5]. These differences may
be due to the different intrinsic mechanism between continuum models and MD ones. V increases with strain rates (loading
rates), while VC remains 10.33 km/s approximately in Fig. 8, which confirms that a threshold velocity of crack instability does
exist. By use of the phase velocity of Raylaigh-wave Vr = 12.56 km/s [5], VC � 0.82Vr appears at three high strain rates, which
is larger than Yoffe’s theoretical predictions �0.73Vr [6] and Zhang’s MD result �0.65Vr [5]. Our results of larger FE model of
graphene show that the initial strain, critical strain and critical velocity are a little smaller than those of small model, as
shown in Table 2, these differences should be considered in further giant-scale parallel calculations.

4. Conclusions

We have studied the velocities and instabilities of moving cracks in equivalent FE models of graphene strips under mode-I
displacement loading, in which C–C bonds are represented by Timoshenko beam elements. The nonlinear constitutive rela-
tion of beams is derived from the modified reactive empirical bond-order potential of carbon. The cracks propagate straight
along zigzag direction supersonically under low strain rates 9.796 � 10�7 fs�1 to 9.796 � 10�8 fs�1. While under high strain
rates 1.959 � 10�5 fs�1 to 4.898 � 10�6 fs�1, the cracks kink beyond a critical velocity around 10.33 km/s equivalent to 0.82
Vr (Rayleigh-wave speed in graphene), which is comparable with the results of theoretical predictions and MD simulations.
Thus our FE model would be potential to investigate the rapid fracture behaviours of 2D hexagonal crystals.
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