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Sliding Contact Between a
Cylindrical Punch and a Graded
Half-Plane With an Arbitrary
Gradient Direction
Contact behavior of a rigid cylindrical punch sliding on an elastically graded half-plane
with shear modulus gradient variation in an arbitrary direction is investigated. The gov-
erning partial differential equations and the boundary conditions are achieved with the
help of Fourier integral transformation. As a result, the present problem is reduced to a
singular integral equation of the second kind, which can be solved numerically. Further-
more, the presently general model can be well degraded to special cases of a lateral gra-
dient half-plane and a homogeneous one. Normal stress in the contact region is predicted
with different material parameters, which is usually used to estimate the possibility of
surface crack initiation. The moment that is needed to ensure stable sliding of the cylin-
drical punch on the contact surface is further predicted. The result in the present paper
should be helpful for the design of novel graded materials with surfaces of strong
abrasion resistance. [DOI: 10.1115/1.4029781]
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1 Introduction

Gradient property in materials is widely found in stratigraphic
and biological structures, for examples, soil, bamboos, plant
stems, teeth, and bones, which gives them special mechanical
characteristics, in contrast to the corresponding homogeneous
ones [1,2]. Inspired by nature, human beings increasingly aim to
fabricate functionally graded materials (FGMs) with some
unique features, such as thermo-shock resistance, antiwear per-
formance, oxidation resistance, hardness, even surface, or inter-
face adhesive strength, which would be appreciated in the field
of advanced manufacturing industry, aerospace, biomimetic fab-
rication, automotive engineering, and so on. Surface contact of
such gradient materials is unavoidably involved, no matter with
gas, liquid, or solid. How to assess the surface properties, espe-
cially the surface abrasion resistance, is one of the important
problems in the design of novel graded materials. As an effective
technique, indentation and scratch hardness tests are usually
adopted to measure surface properties of homogeneous materials
and now extended to predict surface characteristics of graded
materials [3–5].

Generally, gradient of graded materials is often described by
the Young’s modulus or the shear one varying in depth according
to a power or exponential law with Poisson’s ratio remaining a
constant. On the premise of this assumption, many researches
have been carried out. With regard to an axisymmetric contact
problem of a graded half-space subjected to a concentrated force,
or a flat, spherical or conical punch, Giannakopoulus and Suresh
[6,7] found that stress distributions in the frictionless contact
region could be significantly influenced by gradient features. Guler
and Erdogan [8–10] studied the frictional contact problem of an
FGM-coated substrate punched by a rigid indenter and the contact
one of two deformable solids with graded coatings. Receding con-
tact between a functionally graded coating and a homogeneous
substrate was investigated by El-Borgi and his coworkers [11,12].
Choi and Paulino [13,14] analyzed a thermo-elastic contact

problem of a coating/substrate system with graded properties and
the corresponding one coupled with a crack, respectively. A line-
arly multilayered model was proposed by Wang and his colleagues
to analyze contact problems of graded materials [15,16]. In order
to find difference between an infinite graded model and a finite
one, contact properties of FGM with a finite size were studied by
the present authors [17–19].

All the above belong to Hertz contact mechanics without consid-
ering the interface adhesion. Several typical models should be men-
tioned for graded materials while the interface adhesion is included.
A plane strain adhesive contact model of a rigid cylinder on an elas-
tically graded substrate was studied by Giannakopoulos and Pallot
[20]. Further discussion on the plane strain adhesive model was
given by Chen et al. [21]. As for a rigid sphere in adhesive contact
with a graded half-space, a very simple closed-form analytical solu-
tion was achieved by Chen et al. [22], which could be well reduced
to the classical Johnson–Kendall–Roberts (JKR) solution as well as
that for Gibson soil materials. Considering a similar JKR-Derja-
guin–Muller–Toporov (DMT) transition, axis-symmetrically adhe-
sive contact models for graded half-spaces were further analyzed by
Guo et al. [23] and Jin et al. [24,25].

Both the above Hertz contact models and the adhesive ones are
related to graded materials with gradient varying in depth, i.e.,
perpendicular to the contact surface. How is it about graded mate-
rials with gradient varying in other directions? Fortunately, a few
studies were found, in which the gradient variation of graded
materials is horizontal, i.e., parallel to the contact surface [26,27],
which is still a special one in contrast to cases with gradient vary-
ing in an arbitrary direction. Such cases cannot be avoided in real
applications, for example, nonuniform foundation settlement,
asymmetric indentation, even for teeth in the process of chewing.

In the present paper, a more generalized Hertz contact model is
established for graded materials with gradient variation in an arbi-
trary direction, which can be well degraded into the existing spe-
cial cases, i.e., those of a homogeneous half-plane and a laterally
graded one. In the present model, interfacial friction between the
cylindrical punch and the graded half-plane and the moment in
order to keep the punch vertically to the contact interface are con-
sidered besides the normal loading. Fourier integral transform
method is adopted to obtain the normal traction and the in-plane
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surface stress, which can be used to access the surface abrasion
resistance. Effects of different parameters and different varying
trends of the shear modulus gradient on distributions of the normal
traction and the in-plane stress are investigated and discussed. The
results in the present paper should be useful in the analysis of real
applications and for the design of novel graded materials.

2 Contact Model and Theoretical Analysis

Hertz sliding contact between a rigid cylindrical punch of
radius R and a graded half-plane with gradient varying in an arbi-
trary direction is studied in the present paper. A plane contact
model is established as shown in Fig. 1, in which the contact
width is from x ¼ �a to x ¼ b at the surface x ¼ 0, asymmetric
with respect to the line x ¼ 0. Coulomb friction is adopted at the
contact interface. The shear modulus l of the graded half-plane is
assumed to vary exponentially in an arbitrary direction denoted by
h, an angle deviating from the direction of depth, with an assump-
tion of Poisson’s ratio � remaining constant. Then, in the ðx0; y0Þ
coordinate system, we have

l y0ð Þ ¼ l0edy0 (1)

In the ðx; yÞ coordinate system, it is written as

l x; yð Þ ¼ l0ebxþcy (2)

where

b ¼ �d sin h ¼ � d tan hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h
p (3)

c ¼ d cos h ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 h
p (4)

The subscript “0” denotes the surface layer, and l0 and d are two
material constants. For the special case of a homogeneous half-
plane, we have d ¼ 0, i.e., b ¼ 0 and c ¼ 0.

Hooke’s law is still valid for the elastically graded half-plane,
i.e.,

rxx ¼
l

j� 1
1þ jð Þ @u

@x
þ 3� jð Þ @v

@y

� �
(5a)

ryy ¼
l

j� 1
1þ jð Þ @v

@y
þ 3� jð Þ @u

@x

� �
(5b)

rxy ¼ l
@u

@y
þ @v

@x

� �
(5c)

where rij (i or j ¼ x or y) denotes stress components. u x; yð Þ and
v x; yð Þ are displacement components in x and y directions.
j ¼ 3� 4� for a plane strain model and j ¼ 3� �ð Þ= 1þ �ð Þ for
a plane stress one.

Substituting Eqs. (5a)–(5c) into equilibrium equations yields

jþ 1ð Þ @
2u

@x2
þ j� 1ð Þ @

2u

@y2
þ 2

@2v

@x@y
þ b jþ 1ð Þ @u

@x

þ c j� 1ð Þ @u

@y
þ c j� 1ð Þ @v

@x
þ b 3� jð Þ @v

@y
¼ 0 (6a)

j� 1ð Þ @
2v

@x2
þ jþ 1ð Þ @

2v

@y2
þ 2

@2u

@x@y
þ c 3� jð Þ @u

@x

þ b j� 1ð Þ @u

@y
þ b j� 1ð Þ @v

@x
þ c jþ 1ð Þ @v

@y
¼ 0 (6b)

The general solution of Eqs. (6a) and (6b) can be obtained with
Fourier integral transformation technique

u x; yð Þ ¼ 1

2p

ðþ1
�1

X4

j¼1

mjBj að Þenjy�iaxda (7a)

v x; yð Þ ¼ 1

2p

ðþ1
�1

X4

j¼1

Bj að Þenjy�iaxda (7b)

where nj að Þ and mj að Þ (j ¼ 1; :::; 4) are given in Appendix A,
Bj að Þ (j ¼ 1; :::; 4) are unknown parameters to be determined by
boundary conditions.

3 Boundary Conditions

The vertical displacement is known in advance within the con-
tact area, which can be found from the profile function of cylindri-
cal punches

v x; 0ð Þ ¼ h� c� xð Þ2

2R
; �a � x � b (8)

where h is a vertical translation of the rigid cylindrical punch, and
c denotes the centerline position of the punch, as shown in Fig. 1.

Fig. 1 The Hertzian contact model of a rigid cylindrical punch
sliding on a graded half-plane with an arbitrarily gradient orien-
tation. (a) External loads induce an asymmetric contact width
with respect to the coordinate system; (b) shifting the normal
load to the centerliner of contact punch x ¼ c induces a varia-
tion of the moment needed by the rigid punch for stable sliding.
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The tangential and normal tractions beneath the punch abide by
the Coulomb friction law

rxy x; 0ð Þ ¼ lfryy x; 0ð Þ; �a � x � b (9)

The resultant force P and moment applied to the punch as shown
in Fig. 1(a) will be

ðb

�a

ryy x; 0ð Þdx ¼ �P; �a � x � b (10)

ðb

�a

ryy x; 0ð Þxdx ¼ �M; �a � x � b (11a)

Moving the loading to the centerline of the punch yields an effec-
tive moment

ðb

�a

ryy x; 0ð Þ x� cð Þdx ¼ �M0; �a � x � b (11b)

where we have M0 ¼ M � Pc, as shown in Fig. 1(b).
Although there will be translation or rotation in general circum-

stances, considering the case that the punch moves parallel to the
y-axis without rotation is still of great significance to explain
many physical phenomena [28].

Outside the contact region, we have

ryy x; 0ð Þ ¼ rxy x; 0ð Þ ¼ 0; x < �a; x > b (12)

and the normal and tangential displacements should vanish for
y! þ1

u x;þ1ð Þ ¼ v x;þ1ð Þ ¼ 0 (13)

4 Solution of the Surface Contact Tractions

Similar to Chen and Chen [29], Fourier transform method
yields the derivative of displacement fields u x; yð Þ and v x; yð Þ.

@u x; 0ð Þ
@x

¼ j� 1

4

ryy x; 0ð Þ
l

� jþ 1

4p

ðb

�a

1

r � x

rxy r; 0ð Þ
l

dr

þ 1

p

ðb

�a

K11 x; rð Þ rxy r; 0ð Þ
l

þ K12 x; rð Þ ryy r; 0ð Þ
l

� �
dr (14)

@v x; 0ð Þ
@x

¼ �j� 1

4

rxy x; 0ð Þ
l

� jþ 1

4p

ðb

�a

1

r � x

ryy r; 0ð Þ
l

dr

þ 1

p

ðb

�a

K21 x; rð Þrxy r; 0ð Þ
l

þ K22 x; rð Þ ryy r; 0ð Þ
l

� �
dr (15)

where the kenerls Kij x; rð Þ are bounded functions given in
Appendix B.

The surface traction inside the contact area can be rewritten as

ryy x; 0ð Þ ¼ �p xð Þ; � a � x � b (16)

rxy x; 0ð Þ ¼ �lfp xð Þ; � a � x � b (17)

where p xð Þ denotes the normal surface traction in the contact
region.

Substituting Eqs. (16) and (17) into Eq. (15) leads to

j� 1

4

lfp xð Þ
l
þ 1þ j

4p

ðb

�a

1

r � x

p rð Þ
l

dr

� 1

p

ðb

�a

Q1 x; rð Þ p rð Þ
l

dr ¼ @v x; 0ð Þ
@x

(18)

where Q1 x; rð Þ ¼ lfK21 x; rð Þ þ K22 x; rð Þ.
Introducing nondimensional quantities

x ¼ aþ b

2
sþ b� a

2
; r ¼ aþ b

2
tþ b� a

2
;

� a � x; rð Þ � b; � 1 � s; tð Þ � 1 (19a)

P1 xð Þ ¼ p xð Þ
exp bxð Þ ¼ �

ryy x; 0ð Þ
exp bxð Þ ¼

~P1 sð Þ (19b)

Equations (18) and (10) can be rewritten as

j� 1

1þ j
lf

�P1 sð Þ þ 1

p

ð1

�1

�P1 tð Þ
t� s

dt� 2 aþ bð Þ
p jþ 1ð Þ

ð1

�1

Q1 s; tð Þ �P1 tð Þdt

¼ 4

1þ jð ÞR f sð Þ (20)

ð1

�1

�P1 tð Þexp b � aþ b

2
tþ b� a

2

� �� �
dt ¼ g (21)

where �P1 xð Þ ¼ ~P1 sð Þ=l0, f sð Þ ¼ c� aþ b=2s� b� a=2, and
g ¼ 2P= aþ bð Þl0.

One can see that the Cauchy-type singular kernel exists in the
integral equation. Then, the solution to Eqs. (20) and (21) can be
given in terms of Jacobi Polynomials

�P1 sð Þ ¼ w sð Þ
X1
j¼0

AjP
b1 ;b2ð Þ

j sð Þ; jsj � 1 (22)

in which w sð Þ ¼ 1� sð Þb1 1þ sð Þb2 and parameters Aj are

unknown. P
b1;b2ð Þ

j �ð Þ are Jacobi Polynomials corresponding to the

weight function w sð Þ. The superscripts b1 and b2 are determined
from the physics of the contact problem

b1 ¼
1

p
arccot �lf

j� 1

jþ 1

� �
; b2 ¼

1

p
arccot lf

j� 1

jþ 1

� �
(23)

where it is easily found that b1 and b2 depend only on the friction
coefficient and Poisson’s ratio.

Fig. 2 Distribution of the normal traction ryy x ; 0ð Þ= P= a þ bð Þð Þ
in the contact model of a homogeneous half-plane with lf ¼ 0,
where FEM results achieved by Dag et al. are given for
comparison
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Considering the following property of Jacobi Polynomials:

lf

j� 1

1þ j
w sð ÞP b1;b2ð Þ

j sð Þ þ 1

p

ð1

�1

1

s� t
w tð ÞP b1 ;b2ð Þ

j tð Þdt

¼ � 2

sin pb1ð ÞP
�b1;�b2ð Þ

jþ1 sð Þ; jsj � 1 (24)

and substituting Eq. (22) into Eqs. (20) and (21) yields

X1
j¼0

�2

sin pb1ð ÞP
�b1 ;�b2ð Þ

jþ1 sð Þ þ Q�j sð Þ
� �

Aj ¼
4

1þ jð ÞR f sð Þ (25)

ð1

�1

X1
j¼0

w tð ÞP �b1 ;�b2ð Þ
j tð Þ exp

b
2

aþ bð Þtþ b� að Þ½ �
� �

Ajdt ¼ g

(26)

where

Q�j sð Þ ¼ 2 aþ bð Þ
p jþ 1ð Þ

ð1

�1

Q1 s; tð Þw tð ÞP b1;b2ð Þ
j tð Þdt (27)

Fig. 3 Distribution of the normal traction ryy x ; 0ð Þ= P= a þ bð Þð Þ
in the contact model of a laterally graded half-plane with
d a þ bð Þ ¼ 1:0 and lf ¼ 0, where FEM results achieved by Dag
et al. are given for comparison

Fig. 4 Distribution of the normal traction ryy x ;0ð Þ= P= a þ bð Þð Þ and in-plane stress rxx x ; 0ð Þ= P= a þ bð Þð Þ in the con-
tact model of a graded half-plane with a gradient variation angle h ¼ 0:3p and different surface friction coefficient
lf. (a) and (b) For d a þ bð Þ ¼ 1:0; (c) and (d) for d a þ bð Þ ¼ �1:0.

041008-4 / Vol. 82, APRIL 2015 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 07/20/2015 Terms of Use: http://asme.org/terms



Taking into consideration the following orthogonality property of
Jacobi Polynomials:

ð1

�1

w tð ÞP b1;b2ð Þ
j tð ÞP b1;b2ð Þ

k tð Þdt ¼ h b1 ;b2ð Þ
j djk; j; k ¼ 0; 1; 2; :::

(28)

where

h b1;b2ð Þ
j ¼

ð1

�1

w tð Þdt¼ 2b1þb2þ1C b1þ 1ð ÞC b2þ 1ð Þ
C b1þ b2 þ 2ð Þ ; j¼ 0;

2b1þb2þ1C jþ b1 þ 1ð ÞC jþ b2þ 1ð Þ
2jþ b1þ b2 þ 1ð Þj !C jþ b1 þ b2þ 1ð Þ ; j� 1

8>>>><
>>>>:

djk is the Kronecker delta function, truncating series in Eq. (22) at
j ¼ N � 1 and selecting collocation points sm m ¼ 1; 2; :::;Nð Þ as
roots of the following Jacobi Polynomials:

P
�b1;�b2ð Þ

N smð Þ ¼ 0 (29)

Equation (25) can be rewritten as

�
2h �b1;�b2ð Þ

j

sin pb1ð Þ Aj�1 þ
XN�1

k¼0

djkAk ¼ fj (30)

where

fj ¼
4

1þ jð ÞR

ð1

�1

P
�b1;�b2ð Þ

j sð Þ c� aþ b

2
s� b� a

2

� �

1� sð Þ�b1 1þ sð Þ�b2 ds

(31a)

djk ¼
ð1

�1

Q�j sð ÞP �b1 ;�b2ð Þ
k sð Þ 1� sð Þ�b1 1þ sð Þ�b2 ds (31b)

It is readily found that Eqs. (26) and (30) consist of N þ 1 linear
algebraic equations for N þ 1 unknown constants Aj j ¼ 0;ð
1; :::;N � 1Þ and c (or P). Based on the solution of Eqs. (26) and
(30), p xð Þ in Eq. (19b) can be approximately given as

p xð Þ ¼ l0 exp bxð Þ 1� 2x� b� að Þ
aþ b

� �b1

� 1þ 2x� b� að Þ
aþ b

� �b2XN�1

j¼0

AjP
b1;b2ð Þ

j

2x� b� að Þ
aþ b

� �

(32)

Then, the in-plane stress rxx x; 0ð Þ near the surface can be obtained
from Eq. (5a) and Eqs. (14) and (15) as

rxx x; 0ð Þ ¼ �p xð Þ þ 2lf

p

ðb

�a

1

r � x
p rð Þdr

� 8

p jþ 1ð Þ

ðb

�a

Q2 x; rð Þp rð Þdr (33)

where Q2 x; rð Þ ¼ K11 x; rð Þ þ lfK12 x; rð Þ.
Furthermore, the moment can then be achieved easily from

Eq. (11a) or (11b).

5 Results and Discussion

In all calculations of the present paper, we take � ¼ 0:3 due to
a negligible effect of Poisson’s ratio on the contact behavior
[2,6,7]. The normal traction and the in-plane contact stress in the

contact region as well as the moment needed to keep punch
moving vertically are focused on.

From above, one can see that three parameters are related to the
heterogeneity of the graded half-space, i.e., the contact widths �a
and b, and the gradient index d. Inspired by Dag et al. [26], it is
reasonable for us to combine three separated parameters into two
nondimensional ones d aþ bð Þ and d b� að Þ. Furthermore,
d b� að Þ is fixed as zero according to Fig. 1(b) and d aþ bð Þ is
only taken as a variable for convenience.

Special Case I. If we set d ¼ 0 in our model, it will be reduced
to a special case that is a rigid punch in contact with a homogene-
ously elastic half-plane. Distribution of the corresponding nondi-
mensionally normal traction ryy= P= aþ bð Þð Þ is shown in Fig. 2,
which is bounded at both contact edges and consistent well with
existing finite element method (FEM) results [27]. Closed-form
solution for such a special case can be further found in the
Appendix.

Special Case II. If we take h ¼ p=2, our model will then be
degraded into another special case that is a rigid punch contacting
a graded half-plane with gradient variation in the horizontal direc-
tion [27]. Comparison of the result predicted by the present model
and that in Dag et al. [27] exhibits good agreement as shown in
Fig. 3.

General Cases. Distributions of the normal traction and
in-plane surface stress are shown in Figs. 4(a)–4(d) for cases with
different friction coefficients lf but with a fixed gradient variation
angle h ¼ 0:3p. Furthermore, the value of parameter d aþ bð Þ in
Figs. 4(a) and 4(b) is different from that in Figs. 4(c) and 4(d),

Fig. 5 Distribution of the interface stresses inside the contact
region in the contact model of a graded half-plane with h ¼ 0:3p,
lf ¼ 0:3, and different values of d a þ bð Þ. (a) For the normal trac-
tion ryy x ; 0ð Þ= P= a þ bð Þð Þ; (b) for the in-plane stress rxx x ;0ð Þ=
P= a þ bð Þð Þ.
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where a positive value of d aþ bð Þ denotes Young’s modulus of
the graded half-plane increasing from the surface to within in the
direction of gradient variation angle h, while a negative value of
d aþ bð Þ is a reversal. Comparing the case with a positive
d aþ bð Þ and that with a negative one, not only the normal traction
but also the in-plane stress distributes asymmetrically with respect
to the axis x ¼ 0. In cases with a positive d aþ bð Þ as shown in
Figs. 4(a) and 4(b), the normally compressive traction decreases
with an increasing friction coefficient, while the in-plane stress at
the trailing edge is a tensile one and increases with the friction
coefficient increasing. By comparison, in cases with a negative
d aþ bð Þ as shown in Figs. 4(c) and 4(d), both the normally com-
pressive traction and the in-plane tensile stress at the trailing edge
increase with an increasing friction coefficient, but the magnitude
of in-plane tensile stress is much smaller than that in cases with a
positive d aþ bð Þ. It is interesting to find that, in both cases, the
in-plane stress is compressive at the leading edge and increases
with the friction coefficient increasing as shown in Figs. 4(b) and
4(d). Generally, in a sliding contact system, cracks always
unavoidably emerge on the contact surface, which are actually
induced by the in-plane tensile stress. Therefore, it is reasonable
to infer that a small friction coefficient should be favorable to
relieve surface contact damage, consistent with the common
sense.

Distributions of the normal traction and the in-plane stress
influenced by the value of parameters d aþ bð Þ are shown in Figs.
5(a) and 5(b) with a determined friction coefficient lf ¼ 0:3 and
gradient variation angle h ¼ 0:3p, respectively. It is found that the
value of d aþ bð Þ has significant influence on the normal traction.

The skewing direction is totally opposite for cases of d aþ bð Þ
> 0 and those of d aþ bð Þ < 0 as shown in Fig. 5(a). A graded
half-space with stiffness decreasing in the gradient variation direc-
tion, i.e., d aþ bð Þ < 0, will have less possibility for crack initia-
tion as shown in Fig. 5(b), which agrees qualitatively with the
conclusion given in Refs. [8] and [13]. Interestingly, such a strat-
egy has already been adopted by many natural biomaterials, for
instance, teeth and bones.

Figure 6 gives the effect of gradient variation angles h on the
distribution of normal traction and in-plane stress with a fixed
friction coefficient lf ¼ 0:3. Figures 6(a) and 6(b) correspond to a
graded half-plane with stiffness decreasing in the gradient varia-
tion direction, i.e., d aþ bð Þ < 0, while Figs. 6(c) and 6(d) corre-
spond to the one with stiffness increasing in the gradient variation
direction, i.e., d aþ bð Þ > 0. No solution can be found when
h ¼ 0 for a graded half-plane with stiffness decreasing in the gra-
dient variation direction, which is consistent with the finding in
Ref. [30]. With other gradient variation angles h, it is found that
the skewing of distribution of the normal traction is enhanced by
an increasing h in cases with d aþ bð Þ < 0 as shown in Fig. 6(a),
while it is reduced for d aþ bð Þ > 0 as shown in Fig. 6(c). The
gradient variation angle shows a more obvious effect on the in-
plane compressive stress near the leading edge than the in-plane
tensile stress near the trailing edge in cases with d aþ bð Þ < 0 and
the in-plane compressive stress increases with an increasing gradi-
ent variation angle as shown in Fig. 6(b), while the in-plane com-
pressive stress decreases with the gradient variation angle
increasing as shown in Fig. 6(d). An interesting phenomenon is
that the maximal tensile stress near the trailing edge does not

Fig. 6 Distribution of the normal traction ryy x ;0ð Þ= P= a þ bð Þð Þ and in-plane stress rxx x ; 0ð Þ= P= a þ bð Þð Þ in the con-
tact model of a graded half-plane with lf ¼ 0:3 and different gradient variation angles h. (a) and (b) For
d a þ bð Þ ¼ �0:5; (c) and (d) for d a þ bð Þ ¼ 0:5.
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emerge in the case of h ¼ 0:5p. As a result, a mixed-mode crack
should be induced in such a heterogeneous half-plane, which is
consistent with the finding in Ref. [31].

Figure 7 gives the moment M that is needed to ensure the cylin-
drical punch sliding vertically on the surface of the graded half-
plane for cases with h ¼ 0:3p and different friction coefficients
lf . The intercept on the vertical axis corresponds to the moment
that is needed even if the surface friction vanishes. The graded
half-plane is reduced to a homogeneous one if d aþ bð Þ ¼ 0.
Then, the moment should be zero if the surface friction coefficient
is zero. However, if d aþ bð Þ 6¼ 0 and h 6¼ 0, the heterogeneity of
the graded half-plane still induce a moment in order to keep the
cylindrical punch sliding vertically on its surface ever if the sur-
face friction vanishes. As shown in Fig. 7, d aþ bð Þ < 0 and
d aþ bð Þ > 0 induce moments of opposite directions. Monotonous
variations with positive slopes in all the cases infer that the
moment of the same direction has been induced with an increasing
friction coefficient.

Effects of gradient parameter d aþ bð Þ and the gradient varia-
tion angle h on the moment M are given in Figs. 8 and 9, respec-
tively. It is found that the direction of the moment will change if
the varying trend of stiffness of the graded half-plane from surface
to within changes. However, in both cases, the moment will
increase with an increasing gradient variation angle h no matter
whether d aþ bð Þ is larger or smaller than zero as shown in Figs. 8
and 9. It will keep a constant for the case with d aþ bð Þ ¼ 0 and a
determined friction coefficient.

6 Summary

A plane contact model of a cylindrical punch sliding on a
graded half-plane with shear modulus gradient varying exponen-
tially in an arbitrary direction is investigated in this paper. With
the Fourier integral transform method, distributions of the normal
traction and the in-plane surface stress are obtained. Considering
effects of the friction coefficient, the gradient variation angle as
well as stiffness variation trend of the graded half-plane, we find
that (i) the present model is a general one, which can be reduced
to the contact problem of a homogeneous half-plane or a laterally
graded one; (ii) surface of the graded half-plane with a relatively
small friction coefficient or a decreasing stiffness from surface to
within is helpful for preventing crack initiation during sliding con-
tact; (iii) the smaller the gradient variation angle, the smaller the
in-plane tensile stress near the trailing edge is; and (iv) proper
combination of the friction coefficient, gradient parameter, and
the gradient variation angle could reduce or avoid effectively the
additional moment for stable sliding. The result should be helpful
for the design of novel graded materials with strong surface
abrasion resistance.
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Appendix A

Coefficients in Eq. (7) are as follows:

n1 að Þ ¼ �D1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4 a2 þ iaD2ð Þ
q

2
;

n2 að Þ ¼ �D3

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3 þ 4 a2 þ iaD4ð Þ
q

2
(A1a)

n3 að Þ ¼ �D1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

1 þ 4 a2 þ iaD2ð Þ
q

2
;

n4 að Þ ¼ �D3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3 þ 4 a2 þ iaD4ð Þ
q

2
(A1b)

Fig. 7 Variations of the nondimensional moment M= P a þ bð Þ=½
2� versus the friction coefficient lf for some selected d a þ bð Þ
with m 5 0:3, d b � að Þ5 0, and h 5 0:3p

Fig. 8 The moment M= P a þ bð Þ=2½ � as a function of the param-
eter d a þ bð Þ for lf 5 0:3 and different gradient variation angles h

Fig. 9 The moment M= P a þ bð Þ=2½ � as a function of the gradi-
ent variation angle parameter h for lf 5 0:3 and different d a þ bð Þ
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D1 ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
þ c; D2 ¼ b� c

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
;

D3 ¼ c� b

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
; D4 ¼ bþ c

ffiffiffiffiffiffiffiffiffiffiffi
3� j
jþ 1

r
(A1c)

and mj að Þ for each nj að Þ (j ¼ 1; :::; 4) can be given as

mj að Þ ¼ 2ia� b 3� jð Þ½ �nj þ i j� 1ð Þac

j� 1ð Þn2
j þ j� 1ð Þcnj � jþ 1ð Þa aþ ibð Þ (A2)

Appendix B

The kenerls Kij x; rð Þ in Eqs. (14) and (15) are expressed as

K11 x; rð Þ ¼
ðþ1

0

aN11 að Þ þ jþ 1

4

� �
sin a r � xð Þ½ �da (B1a)

K12 x; rð Þ ¼ �i

ðþ1
0

aN12 að Þ � i
j� 1

4

� �
cos a r � xð Þ½ �da (B1b)

K21 x; rð Þ ¼ �i

ðþ1
0

aN21 að Þ þ i
j� 1

4

� �
cos a r � xð Þ½ �da (B1c)

K22 x; rð Þ ¼
ðþ1

0

aN22 að Þ þ jþ 1

4

� �
sin a r � xð Þ½ �da (B1d)

where Njk að Þ j; k ¼ 1; 2ð Þ are the corresponding four elements in
matrix N að Þ, i.e.,

N að Þ ¼
m1 m2

1 1

� �
	

l= m1n1 � iað Þ l= m2n2 � iað Þ
l= j� 1ð Þ �iam1 3� jð Þ þ n1 1þ jð Þ½ �f g l= j� 1ð Þ �iam2 3� jð Þ þ n2 1þ jð Þ½ �f g

� ��1

(B2)

Appendix C

As a special case, solutions of the contact problem of a rigid cylindrical punch sliding on a homogeneous half-plane are

ryy x; 0ð Þ ¼ � 4l0

jþ 1

sin pb1

R
a� xð Þb1 xþ bð Þb2 (C1)

rxx x; 0ð Þ ¼ � 4l0

jþ 1

sin pb1

R
�

a� xð Þb1 xþ bð Þb2þ lf

p
L0; � b � x � a;

lf

p
L0; x < �b; x > a

8<
: (C2)

where

L0 xð Þ ¼ p
sin pb1

�2 a� xð Þb1 �x� bð Þb2�2xþ a� bþ b1 � b2ð Þ aþ bð Þ; x < �b;

2 a� xð Þb1 xþ bð Þb2 cos pb1 � 2xþ a� bþ b1 � b2ð Þ aþ bð Þ; � b � x � a;

2 x� að Þb1 xþ bð Þb2�2xþ a� bþ b1 � b2ð Þ aþ bð Þ ; x > a

8>><
>>:

(C3)

and

a ¼ b2

b1

b (C4)
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