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Abstract: Mechanical load and postmenopausal hypoestrogen are risk factors for pelvic 

organ prolapse (POP). In this study, we applied a 0.1-Hz uniaxial cyclic mechanical 

stretching (CS) with 10% elongation and 10−8 M 17-β-estradiol to vaginal fibroblasts 

isolated from postmenopausal women with or without POP to investigate the effects of CS 

and estrogen on cell morphology and cytoskeletons of normal and POP fibroblasts. Under 

static culture condition, POP fibroblasts exhibited lower cell circularity and higher relative 

fluorescence intensities (RFIs) of F-actin, α-tubulin and vimentin. When cultured with CS, 

all fibroblasts grew perpendicular to the force and exhibited a decreased cell projection area, 

cell circularity and increased cell length/width ratio; normal fibroblasts exhibited increased 

RFIs of all three types of cytoskeleton, and POP fibroblasts exhibited a decreased RFI of 

F-actin and no significant differences of α-tubulin and vimentin. After being cultured with 

17-β-estradiol and CS, normal fibroblasts no longer exhibited significant changes in the cell 

projection area and the RFIs of F-actin and α-tubulin; POP fibroblasts exhibited no significant 

changes in cell circularity, length/width ratio and F-actin even with the increased RFIs of 
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α-tubulin and vimentin. These findings suggest that POP fibroblasts have greater sensitivity to 

and lower tolerance for mechanical stretching, and estrogen can improve the prognosis. 
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1. Introduction 

Pelvic organ prolapse (POP) is a common disorder predominately diagnosed in postmenopausal 

women [1], with more than 40% of women aged 50–79 years exhibiting a certain degree of POP [2]  

and approximately 30% of surgical treatment cases requiring reoperation [3], adversely affecting the 

sufferer’s quality of life. Although many factors, such as vaginal labor, postmenopausal hypo-estrogenic 

state, advancing age, chronic obstructive lung diseases, long-term constipation, heavy lifting, and 

genetic predisposition, have been identified as risk factors for POP [4–6], the exact etiology and 

pathogenesis underlying POP remain poorly understood. The female pelvic floor is a special structure 

that maintains pelvic organs within the body while allowing the passages of the urinary tract, genital 

tract and rectal hiatus; at the same time, the female pelvic floor is subjected to a constantly changing 

mechanical load from intra-abdominal pressure and gravity due to woman’s upright activities. The 

superimposition of these two effects forms the physiological basis of POP. Anatomically, the vagina and 

its supportive connective tissue provide one of the primary support mechanisms for maintaining the 

positions of pelvic organs adjacent to the vagina [7]. The connective tissue is a passive viscoelastic 

“material” that is capable of transferring forces, which allows the tissue to relax and achieve a lower 

level of resting tension [8,9]. When an external tensile load is applied to the tissue, the fibroblasts  

can sense the mechanical properties of their environment and actively respond to mechanical stimuli 

through cytoskeletal remodeling [10,11]; the cytoskeletons not only serve in the maintenance of cellular 

structure and shape but also can transmit mechanical signals and participate in many cellular functions, 

including proliferation, apoptosis, and migration [12,13]. We speculate that the healthy and POP 

fibroblasts in the vaginal wall and pelvic floor connective tissues will present different behaviors when 

cyclic mechanical stretching (CS) acts on them. Accompanied by the changes in fibroblast morphology, 

cytoskeletal structure and cellular function, the tissues would constantly remodel and elongate, and 

eventually result in the occurrence and development of POP. Current information about the effects  

of mechanical stretching on the cell morphology and cytoskeletons of vaginal fibroblasts and the 

relationship between these changes and POP is limited. We hypothesized that the stretching forces cause 

different behaviors in the healthy and POP fibroblasts, as does the postmenopausal decrease in estrogen 

level. Mechanical loading on fibroblasts in vitro is often introduced using a substrate stretching method 

to mimic the environment in vivo, and uniaxial stretching studies have provided much information about 

the effects of mechanical loads on fibroblasts cultured on a two-dimensional substrate; furthermore, 

10% mechanical stretching of fibroblasts is well within the physiologically relevant levels of force 

normally experienced by tendon fibroblasts in vivo [13], and a 0.1-Hz stretching frequency seems likely 

to mimic the change of intra-abdominal pressure while a woman holds her breath to exert pressure under 

conditions of labor, constipation, or heavy lifting. Therefore, we applied a 0.1-Hz uniaxial CS force  

with 10% elongation and administered 10−8 M 17-β-estradiol (E2) to vaginal fibroblasts derived from 
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postmenopausal women with or without POP. In addition, we selected a 12-h stretching duration every 

day to mimic a woman’s daily activities in the stretching experiment. This approach was designed  

to investigate the changes in the cell morphology and the relative fluorescence intensities (RFIs) of  

the cytoskeletal proteins F-actin, α-tubulin and vimentin using confocal laser scanning microscopy  

to determine the effects of mechanical stretching on POP fibroblasts and to evaluate the efficacy of 

estrogen therapy (ET). 

2. Results 

2.1. Cell Culture and Identification 

The isolated fibroblasts from the vaginal wall connective tissues exhibited stellate, bipolar, and 

spindle-shaped characteristics under an inverted microscope (Figure 1a–d); no differences were 

observed between the POP and control groups. The streptavidin-peroxidase (SP) immunohistochemical 

staining of isolated cells from the two groups revealed strong cytoplasmic expression of vimentin, with 

an index of staining (IS) value of vimentin being 12 (+++); the IS value of cytokeratin was 0 (−); the IS 

value of α-smooth muscle actin was 0 to 1 (−); and the IS value of the negative control was 0 (−). These 

outcomes confirmed the origin of the connective tissue fibroblasts (Figure 1e–h). 

 

Figure 1. Morphological characteristics and immunocytochemical identification of vaginal 

fibroblasts (images acquired with an inverted microscope). Primary cultured pelvic organ 

prolapse (POP) fibroblasts (passage 0) after 72 h (a) and 7 days (b); POP fibroblasts at 

passages 4 (c) and 5 (d). Streptavidin-peroxidase (SP) immunohistochemical staining of POP 

fibroblasts (passage 4): The characteristic staining of vimentin (e), cytokeratin (f), α-smooth 

muscle actin (g), and negative control (h). Bar = 100 μm. 

2.2. Effects of Cyclic Mechanical Stretching and 17-β-Estradiol (E2) on Vaginal Fibroblast Proliferation 

After the vaginal fibroblasts were seeded at a density of 2 × 104/cm2 and exposed to the experimental 

conditions for 72-h periods, the viable cells in each group were collected and counted. There was a total 

of 6 groups, including the control group (C) and the pelvic organ prolapse group (P) without CS and E2 
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[(C-E2-CS) and (P-E2-CS)], groups C and P without E2 but with CS [(C-E2+CS) and (P-E2+CS)], groups 

C and P with E2 but without CS [(C+E2-CS) and (P+E2-CS)], and groups C and P with CS and E2 

[(C+E2+CS) and (P+E2+CS)]. No significant difference was observed between (P-E2-CS) and 

(C-E2-CS) ((2.69 ± 0.29) × 105 vs. (2.07 ± 0.29) × 105, p = 0.16). Stretching did not produce  

a significant effect on the cell proliferation of normal or POP fibroblasts; no significant difference was 

observed between (C-E2+CS) and (C-E2-CS) ((2.24 ± 0.33) × 105 vs. (2.07 ± 0.29) × 105, p = 0.70) or 

between (P-E2+CS) and (P-E2-CS) ((2.25 ± 0.31) × 105 vs. (2.69 ± 0.29) × 105, p = 0.32). The 

administration of E2 in the presence of stretching resulted in similar findings; there was no significant 

difference between (C+E2+CS) and (C+E2-CS) ((1.94 ± 0.25) × 105 vs. (2.28 ± 0.36) × 105, p = 0.48) or 

between (P+E2+CS) and (P+E2-CS) ((2.43 ± 0.37) × 105 vs. (2.29 ± 0.32) × 105, p = 0.75). 

2.3. Effects of Cyclic Mechanical Stretching and E2 on Vaginal Fibroblast Morphology 

At the end of the 72-h experimental periods, a morphological analysis of the stretching cultured 

fibroblasts revealed that their F-actin stress fibers had assumed a crescent morphology and aligned  

with the long axis of the cell bodies (Figure 2a'), and the stretching cultured fibroblasts aligned 

perpendicular to the force and exhibited a wider intercellular space (Figure 2b'–f'). Under the static 

culture condition, the stress fibers of the fibroblasts were straight and randomly oriented (Figure 2a), 

and the fibroblasts exhibited a random and tight distribution independent of the surface (Figure 2b–f). 

 

Figure 2. Effects of cyclic mechanical stretching (CS) on the orientations of cytoskeletons 

and vaginal fibroblasts. The static growth F-actin stress fibers (a) and fibroblasts (b–f); The 

stretching growth F-actin stress fibers (a') and fibroblasts (b'–f'). Bar = 100 μm. 

Through an analysis of single-cell images photographed by confocal laser scanning microscopy using 

Image J software, we observed that the cell circularity was significantly lower in (P-E2-CS) compared 

with (C-E2-CS) (0.278 ± 0.009 vs. 0.314 ± 0.011, p < 0.01); there was no significant difference in the cell 

projection area (μm2) or the cell length/width ratio between the two groups (4579 ± 183 vs. 4481 ± 234,  

p = 0.69; 5.51 ± 0.25 vs. 5.54 ± 0.22, p = 0.93). Following the application of stretching, both the normal 

and POP fibroblasts became smaller, irregular, and longer. Our data indicated that the cell projection 
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area (μm2) was significantly lower in (C-E2+CS) compared with (C-E2-CS) (3232 ± 139 vs. 4481 ± 234,  

p < 0.01) as well as in (P-E2+CS) compared with (P-E2-CS) (3520 ± 181 vs. 4579 ± 183, p < 0.01) 

(Figure 3a). Furthermore, the cell circularity was significantly lower in (C-E2+CS) compared with 

(C-E2-CS) (0.246 ± 0.009 vs. 0.314 ± 0.011, p < 0.01) as well as in (P-E2+CS) compared with (P-E2-CS) 

(0.207 ± 0.009 vs. 0.278 ± 0.009, p < 0.01) (Figure 3b). With respect to the cell length/width ratio, there 

was a significant increase in (C-E2+CS) compared with (C-E2-CS) (6.52 ± 0.32 vs. 5.54 ± 0.22, p < 0.01) 

as well as in (P-E2+CS) compared with (P-E2-CS) (6.79 ± 0.32 vs. 5.51 ± 0.25, p < 0.01) (Figure 3c). In 

cells treated with E2 in the presence of stretching, normal fibroblasts no longer exhibited a significant 

change in the cell projection area (μm2), and no significant difference was observed between (C+E2+CS) 

and (C+E2-CS) (3846 ± 117 vs. 3992 ± 164, p = 0.53); however, the cell projection area (μm2) of POP 

fibroblasts still became smaller, and a significant difference was observed between (P+E2+CS) and 

(P+E2-CS) (3772 ± 129 vs. 4657 ± 189, p < 0.01) (Figure 3a'). With respect to cell circularity, although there 

was a significant decrease in (C+E2+CS) compared with (C+E2-CS) (0.267 ± 0.008 vs. 0.341 ± 0.013,  

p < 0.01), no significant difference was observed between (P+E2+CS) and (P+E2-CS) (0.253 ± 0.007 vs. 

0.277 ± 0.010, p = 0.06) (Figure 3b'). With respect to the cell length/width ratio, there was a significant 

increase in (C+E2+CS) compared with (C+E2-CS) (6.08 ± 0.21 vs. 4.88 ± 0.23, p < 0.01), but there was no 

longer a significant difference between (P+E2+CS) and (P+E2-CS) (5.42 ± 0.17 vs. 5.97 ± 0.28, p = 0.09) 

(Figure 3c'). 

 

Figure 3. Effects of CS and 17-β-estradiol (E2) on the vaginal fibroblast projection area, 

circularity and length/width ratio (a–c, a'–c'). Data are represented as the mean ± SE from 

triplicate trials. 

2.4. Effects of Cyclic Mechanical Stretching and E2 on Vaginal Fibroblast Cytoskeletons 

The expression of the cytoskeletal protein F-actin, α-tubulin, and vimentin was semiquantified using 

RFI. Compared with (C-E2-CS), the RFI of F-actin in (P-E2-CS) was significantly elevated (48.3 ± 2.2 

vs. 22.8 ± 1.7, p < 0.01), which was similar to the differences in α-tubulin and vimentin between the  

two groups (24.3 ± 1.4 vs. 16.9 ± 1.1, p < 0.01; 19.9 ± 0.9 vs. 9.9 ± 0.6, p < 0.01). Following the 
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application of stretching, normal fibroblasts exhibited significant increases in the expressions of all 

three cytoskeletons; in addition to the data demonstrate a significant difference in the RFI of F-actin 

between (C-E2+CS) and (C-E2-CS) (28.2 ± 1.5 vs. 22.8 ± 1.68, p < 0.05), significant differences in 

α-tubulin and vimentin between these two groups (22.0 ± 1.0 vs. 16.9 ± 1.1, p = 0.01; 16.9 ± 0.7 vs.  

9.9 ± 0.6, p < 0.01) were also observed (Figure 4a'–e', a–e, k–m). However, the POP fibroblasts 

subjected to stretching forces exhibited a significant decrease in the expression of F-actin; the data 

revealed a significant difference in the RFI of F-actin between (P-E2+CS) and (P-E2-CS) (35.8 ± 2.3 vs. 

48.3 ± 2.2, p < 0.01), and no significant differences were observed in the RFIs of α-tubulin and vimentin 

between these two groups (25.2 ± 2.1 vs. 24.3 ± 1.4, p = 0.64; 22.4 ± 1.0 vs. 19.9 ± 0.9, p = 0.06)  

(Figure 4f'– j', f–j, k–m). 

 

Figure 4. Effects of CS on the cytoskeletons of vaginal fibroblasts. The comparisons in 

relative fluorescence intensities (RFIs) of the cytoskeletal proteins between the static-cultured 

fibroblasts and the CS-cultured fibroblasts (k–m). Images of the cytoskeletons (a'–e' and 

a–e, f'–j' and f–j). Bar = 50 μm. The RFIs of F-actin (k), α-tubulin (l), and vimentin (m) 

were measured and are represented as the mean ± SE from triplicate trials. 

When cultured in the presence of E2, the expressions of F-actin and α-tubulin in normal fibroblasts 

no longer exhibited significant changes in response to stretching, with the data exhibiting no significant 

differences in the RFIs between (C+E2+CS) and (C+E2-CS) (22.5 ± 1.2 vs. 20.9 ± 2.0, p = 0.52;  

13.2 ± 0.8 vs. 10.3 ± 0.6, p = 0.11), although the RFI of vimentin in (C+E2+CS) remained significantly 

increased relative to (C+E2-CS) (16.8 ± 0.8 vs. 13.5 ± 1.1, p < 0.01) (Figure 5a'–e' and a–e, k–m). The 

application of E2 to POP fibroblasts abrogated the significant decrease in the expression of F-actin 

induced by CS; the data indicated a non-significant difference between (P+E2+CS) and (P+E2-CS)  
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(41.5 ± 1.2 vs. 44.5 ± 2.6, p = 0.20). Both α-tubulin and vimentin exhibited significantly higher 

expressions in POP fibroblasts in the presence of E2 and CS; the RFIs differed significantly between  

(P+E2+CS) and (P+E2-CS) (33.2 ± 1.2 vs. 22.0 ± 1.6, p < 0.01; 23.4 ± 0.9 vs. 17.9 ± 0.8, p < 0.01)  

(Figure 5f'–j', f–j, k–m). 

 

Figure 5. Effects of CS and E2 on vaginal fibroblast cytoskeletons. The comparisons in RFIs 

of the cytoskeletal proteins between the fibroblasts cultured in static conditions with E2 and 

cultured in the presence of CS concomitant E2 (k–m). Images of the cytoskeletons (a'–e' 
and a–e, f'–j' and f–j). Bar = 50 μm. The RFIs of F-actin (k), α-tubulin (l), and vimentin (m) 

were measured and are represented as the mean ± SE from triplicate trials. 

3. Discussion 

In this study, our data revealed that the vaginal fibroblasts grew perpendicular to the orientation of 

the stretching force under conditions of CS and their F-actin stress fibers aligned to the cells’ long axis. 

These results are consistent with previous studies [11,14]. It has been established that the mechanical 

stretching load applied to connective tissues can induce conformational changes in the extracellular 

matrix (ECM), activate integrins, achieve mechanical signal transduction from the ECM to the 

cytoskeleton and then the nucleus, and eventually cause gene transcription, protein translation and 

modulation of the tissue behavior [12,13,15]. The ability of fibroblasts to acquire stress fibers and 

differentiate into myofibroblasts to drive tissue repair by secreting collagen and reorganizing the ECM 

was confirmed during wound healing [16]. 

As viscoplastic materials [17,18], the vaginal connective tissue should have viscoplastic properties 

with mechanical loading and unloading curves showing stress relaxation, creep and hysteresis; the 

mechanical stretching of connective tissues should be accompanied by the remodeling of cellular 
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morphology. Our data indicate that the stretching cultured fibroblasts became smaller, irregular, and 

longer. These changes, together with the non-significant change in cell proliferation, resulted in wider 

intercellular spaces. When this series of fibroblast remodeling in one direction and the accompanied 

changes in cell functions appearing in the vaginal and other pelvic floor connective tissues continues for 

a long time, the tissues may constantly grow in an elongated way and eventually present laxity, and then 

POP may occur. Compared with fibroblasts growing in a random and tight distribution under static 

culture conditions, the stretched growing connective tissues may exhibit relatively lower strength.  

Our study also investigated the effects of CS on the semiquantitative expressions of the three main  

types of cytoskeletal proteins, including F-actin microfilaments, α-tubulin microtubules and vimentin 

intermediate filaments, in the cultured vaginal connective tissue fibroblasts. Nearly all cells contain an 

interconnected cytoskeletal system within their viscous cytosol; the tensional forces are borne by the 

microfilaments and intermediate filaments and balanced by the internal microtubule struts and external 

ECM adhesions [19]. In addition to playing a role in mechanical signal transduction, microfilaments are 

responsible for the cell shape, microtubules are responsible for intracellular transport and the formation 

of mitotic spindles, and intermediate filaments are mainly associated with supporting and anchoring  

the position of the nucleus and organelles in the cytosol [20]. Our results found that static-cultured  

POP fibroblasts exhibited significantly higher expression of F-actin, α-tubulin, or vimentin, which 

suggested that POP fibroblasts possess higher mechanosensitivity and revealed active responses from 

cytoskeletons to the tension existing on the culture substrate. When a frequency of 0.1 Hz and an 

elongation of 10% uniaxial CS was applied in our study, normal fibroblasts exhibited higher expressions 

of the three cytoskeletal components, whereas POP fibroblasts exhibited a significant decrease in the 

expression of F-actin and non-significant changes in the expression of α-tubulin and vimentin. These 

findings may suggest that POP fibroblasts have a lower tolerance for stretching forces, as their 

mechanical stretching properties have already reached their limits due to the long-term and excessive 

stretching load caused by pregnancy, delivery, and intra-abdominal pressure. Under this condition, 

overloading stretching force will destroy the cytoskeletal system and affect the shape and metabolic 

function of POP fibroblasts. Ewies et al. [21] have identified many morphological abnormalities of  

the cytoskeleton and cell shape during overloading stretching. In this study, full-thickness vaginal wall 

samples were procured from the anterior wall near the vaginal apex to shield from the confounding 

secondary effects of prolapse [22] and to represent the supportive connective tissues of the pelvic floor 

which provide part of the anatomic support for the cervix and the upper vagina [7]. 

It is likely that the stretching conditions, together with the postmenopausal hypo-estrogenic state, 

eventually affect the mechanical properties of the pelvic supportive connective tissues and result in POP. 

Clinically, the long-term and excessive increase of intra-abdominal pressure can be directly transmitted 

to the vaginal wall to increase the mechanical load and cause tissue stretching; the overdistension of the 

vagina associated with vaginal delivery and atrophic changes associated with aging and menopause were 

considered to result in a decrease in vaginal tissue resilience and POP [23–27]. Estrogen therapy (ET) has 

long been used to improve the symptoms of POP; however, the precise effect of estrogen on the pelvic 

floor structure and its role in the prevention and treatment of POP remain controversial. Liu et al. [28] 

deemed that ET was an ineffective POP treatment, and Ewies et al. [21] reported that the use of  

E2 increased fibroblast proliferation. The existence of estrogen receptors in the pelvic tissues of 

postmenopausal women [29,30], have led us to believe the effects of ET. Our data indicated that CS and 
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E2 did not produce significant effect on the proliferation of POP or normal fibroblasts, but affected the 

cytoskeletons and cell morphology. We found that when E2 concomitant CS was applied in this study, 

normal fibroblasts no longer exhibited significant changes in the cell projection area and the expressions 

of F-actin and α-tubulin, and POP fibroblasts no longer exhibited significant changes in the cell 

circularity, length/width ratio and the expression of F-actin, but exhibited significant increases in the 

expression of α-tubulin and vimentin. Here, E2 inhibited the over-expressions of F-actin and α-tubulin in 

healthy fibroblasts and the decreased expression of F-actin and α-tubulin in POP fibroblasts induced by 

a mechanical stretching load to restrain cell deformation; the action of E2 maintaining the high 

expression of vimentin is important for supporting and anchoring the position of the nucleus and 

organelles in the cytosol. These results suggest that estrogen’s regulation of the effect of mechanical 

stretching on pelvic floor fibroblasts is likely to be dual directional. ET is beneficial for maintaining the 

integrity and functions of fibroblasts and the connective tissues during mechanical stretching to prevent 

and improve the prognosis of POP. 

4. Experimental Section 

4.1. Patient Selection and Tissue Collection 

This study was approved by the medical ethics committee of Beijing Chaoyang Hospital, Capital 

Medical University on 23 January 2013 (The project identification code: 2013-1-23). We recruited  

a total of ten participants: Five women (aged 53–69 years) with advanced POP (stage III–IV by POP 

quantification) [31] were included in the POP group, and five women (aged 52–67 years) without  

POP were included as controls. All participants provided verbal and written informed consent. Women 

with a history of endometriosis, gynecologic malignancies, pelvic inflammatory conditions, connective 

tissue disorders, or emphysema were excluded. After informed consent was obtained, a 1-cm2 area of 

full-thickness vaginal wall was procured from the anterior wall near the vaginal apex during pelvic floor 

construction surgery for advanced POP. Full-thickness vaginal wall samples of the same size were  

also obtained from the same anatomic position in control women during their benign gynecological 

hysterectomy for fibroids, dysfunctional bleeding, or ovarian cysts. 

4.2. Primary Culture of Human Vaginal Fibroblasts 

Human vaginal fibroblasts were isolated from the fresh vaginal wall samples. After excision from 

the donor, the samples were immediately placed in 4 °C sterile Dulbecco’s phosphate-buffered saline 

(DPBS, Hyclone, South Logan, UT, USA) with 1% penicillin/streptomycin (P/S, Hyclone, South 

Logan, UT, USA) and were sent to the laboratory within 2 h. The connective tissue blocks from the 

vaginal wall samples were separated and minced into 1-mm3 cubes, digested with 0.5% collagenase 

type I (Sigma-Aldrich, St. Louis, MO, USA) in Dulbecco’s modified Eagle’s medium (DMEM, Gibco, 

Grand Island, NY, USA) with gentle rotation and placed in a 5% CO2 humidified incubator at 37 °C 

overnight. The fine sand-like tissue pieces formed by collagenase digestion were suspended in DMEM 

supplemented with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA) and 1% P/S, and 

then centrifuged at 1500 rpm. The supernatant was removed, and the sediments were reconstituted with 

5 mL DMEM (supplemented with 10% FBS and 1% P/S) and transferred to a 25-cm2 polystyrene petri 
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dish (Corning Coster Co., Cambridge, MA, USA) for culture until the vaginal fibroblasts reached 90% 

confluence, at which time the fibroblasts were sub-cultured. After identifying the vaginal fibroblasts at 

their fourth passage, the cells were collected by trypsin digestion and used in the following experiments. 

4.3. Phenotype Identification of the Vaginal Fibroblasts 

The derived cells were confirmed to be of vaginal connective tissue fibroblastic origin using the SP 

immunohistochemical method. Cells were cultured in chamber slides to 50% confluence and were 

subsequently washed, fixed, and treated with 0.4% Triton X-100. Endogenous peroxidase activity was 

blocked with 3% hydrogen peroxide. The cells were incubated with specific primary antibodies, 

including mouse anti-human vimentin monoclonal antibody, mouse anti-human cytokeratin (spectrum) 

monoclonal antibody, and mouse anti-human α-smooth muscle actin monoclonal antibody (all from 

Zhongshan Goldbridge Biotechnology, Beijing, China) at 37 °C overnight; DPBS was used as negative 

control in place of the primary antibody. The sections were then incubated with the PV-6000 polymer 

detection system (Zhongshan Goldbridge Biotechnology, Beijing, China) for immunohistological 

staining, and the immunoreactivity was revealed using a 3,3'-diaminobenzidine tetrahydrochloride 

substrate kit (Zhongshan Goldbridge Biotechnology, Beijing, China) as the final chromogen. Finally, 

the sections were counterstained with Meyer’s hematoxylin. According to the suggestions of  

Xu et al. [32] and Zhang et al. [33], we used IS to assess the staining results in this study: IS = the 

percentages of positive cells × standard scores of the staining intensity. The relative populations of the 

positive cells were assessed under the same objective: Negative, 0 points; ≤10%, 1 point; 11%–50%,  

2 points; 51%–75%, 3 points; and >75%, 4 points. The standard scores of staining intensity were as 

follows: No staining, 0 points; bright yellow, 1 point; brown-yellow, 2 points; and brown, 3 points.  

IS values ≤1 were identified as (−), 2–3 as (+), 4 as (++), and ≥5 as (+++); results between + and +++ 

indicate the presence of expression. 

4.4. Loading of Cyclic Mechanical Stretch and the Administration of E2 

A 0.1-Hz uniaxial CS with 10% elongation and a 12-h stretching duration every day was performed. 

The cell stretching device was designed and manufactured to apply stress in vitro [34] in this study and 

consisted of a holder box, a motor, and an elastic membrane with a utilized area of 40 × 20 mm2  

(length × width) and a thickness of 3 mm. This cell stretching device was designed to apply 0%–30% 

strain in a uniaxial or equiaxial stretching manner to the cells seeded on the membrane and to take 

images of the live cells using an inverted microscope (Figure 6a,b), the membrane was made of 

poly-dimethylsiloxane (PDMS) gel (Sylgard 184, Dow Corning, Midland, MI, USA), and ANSYS 

software (ANSYS Inc., Pittsburgh, PA, USA) was used to simulate the stress distribution on the elastic 

membrane when strain was applied to the elastic membrane. In this study, the PDMS membranes were 

treated with oxygenized plasma and coated with 0.1% gelatin (Sigma-Aldrich, St. Louis, MO, USA)  

at 37 °C for 2 h before the cells were seeded. The selection of gelatin coating was to utilize its 

characteristic of denatured collagen [35] to avoid interference from the collagen coating in the 

observation of collagen molecule secreted by fibroblasts. Twenty-four hours before the application  

of the indicated conditions, the vaginal fibroblasts were seeded at a density of 2 × 104/cm2 for a 

proliferation assay and at a density of 2 × 103/cm2 for immunofluorescent microscopy. A dose of 10−8 M 
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E2 (Sigma-Aldrich Co, St. Louis, MO, USA) was administered to study the effects of estrogen 

concomitant with CS. The dose of 10−8 M E2 is within the physiological range [22,28]. 

 

Figure 6. The uniaxial CS was applied to the vaginal fibroblasts via the PDMS membrane 

fixed in-house of the cell stretching device (a); Vaginal fibroblasts sub-cultured on the 

PDMS membrane (b). Arrow indicates the stretching direction. 

4.5. Fibroblast Counting 

The effect of CS on the proliferation of vaginal fibroblasts was determined by counting the number 

of cells. After being seeded on PDMS membranes for 24 h and exposed to the experimental conditions 

for the next 72 h, the fibroblasts were washed twice with 37 °C pre-warmed DPBS, trypsinized, and 

resuspended in the culture medium. Subsequently, the resultant fibroblast suspensions were transferred 

to 1.5-mL microcentrifuge tubes, and cells were counted using the Millipore Scepter 2.0 Handheld 

Automated Cell Counter (Millipore, Billerica, MA, USA), which can automatically recognize and 

display the number of viable cells. 

4.6. Immunological Staining and Imaging with Confocal Microscopy 

The fibroblasts from each group were triple-fluorescence stained by fluorescently labeled  

conjugated antibodies as previously described [36]. After being rinsed with DPBS, fixed with 4%  

fresh paraformaldehyde and treated with 0.4% Triton X-100, the fibroblasts were incubated with 

FITC-conjugated phalloidin (Enzo Life Sciences, Farmingdale, NY, USA), Alexa Fluor 555-conjugated 

α-tubulin (Cell Signaling Technology, Danvers, MA, USA), and Alexa Fluor 647-conjugated vimentin 

rabbit monoclonal antibodies (Cell Signaling Technology , Danvers, MA, USA) at 4 °C overnight. 

Finally, the fibroblasts were incubated with Hoechst 33342 (Enzo Life Sciences, Farmingdale, NY, 

USA) and stored at 4 °C for examination by confocal laser scanning microscopy (Zeiss L710, Carl Zeiss, 

Dresden, Saxony, Germany). F-actin staining was used to identify the contours of the fibroblasts. For the 

topographical substrate from each experiment, no less than 40 cells were randomly collected and 

analyzed. The cell projection area, circularity, length/width ratio, and RFIs of F-actin, α-tubulin, and 

vimentin were measured using Image J software (National Institutes of Health, Bethesda, MA, USA). 
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4.7. Statistical Analysis 

All quantitative data are expressed as the mean ± SE. Statistical comparisons of multiple groups were 

made using one-way analysis of variance (ANOVA), and the differences between two groups were 

determined using Student’s t-test. Differences were considered statistically significant at the 0.05 level 

(p < 0.05). Each experiment was performed in triplicate, and the researcher who collected and processed 

the original data was blinded to the group allocation to avoid subjective bias in reporting and interpreting 

the data. 

5. Conclusions 

In conclusion, POP fibroblasts possess a higher sensitivity to mechanical stimuli and a lower 

tolerance for mechanical stretching. The administration of E2 can improve the mechanical properties of 

the connective tissue by suppressing the excessive and abnormal remodeling of the fibroblasts and their 

cytoskeletons. These findings provide new insights into understanding the etiology and pathogenesis of 

POP and provide positive evidence for the use of ET in POP patients. 
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