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On the cutoff law of laser induced high harmonic spectra
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The currently well accepted cutoff law for laser induced high harmonic spectra predicts the cutoff
energy as a linear combination of two interaction energies, the ponderomotive energy Up and the
atomic biding energy Ip, with coefficients 3.17 and 1.32, respectively. Even though, this law has been
there for twenty years or so, the background information for these two constants, such as how they
relate to fundamental physics and mathematics constants, is still unknown. This simple fact, keeps
this cutoff law remaining as an empirical one. Based on the cutoff property of Bessel functions and
the Einstein photoelectric law in the multiphoton case, we show these two coefficients are algebraic
constants, 9 − 4

√
2 ≈ 3.34 and 2

√
2 − 1 ≈ 1.83, respectively. A recent spectra calculation and an

experimental measurement support the new cutoff law.
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1 Introduction

High harmonic generation (HHG) is one of the most im-
portant phenomena in strong laser physics. Holding great
promises on new types of stimulated emission of short
wavelengths, it has attracted many experimental and
theoretical attentions. Spectra of high harmonics show
common features such as plateau and cutoff frequency.
To describe the width of the plateau of harmonic energy
spectra and the frequency or the energy of the high-
est valuable harmonic, a cutoff law qc�ω = 3Up + Ip,
as an empirical one, was initially suggested by Krause
et al. [1], where ω is the incident laser frequency, qc

the cutoff order of high harmonics, Up the ponderomo-
tive energy, and Ip the ionization potential energy. Since
then, many discussions have been devoted to the cutoff
law. A commonly accepted version of the cutoff law is
qc�ω = 3.17Up+Ip [2], which was derived as a three-step
process: a semiclassical ionization, a classical trajectory
motion, and an electron recombination process. There
are also some improved versions of the cutoff law, such

as qc�ω = 3.17Up + 1.32Ip [3].
Even though this law is well accepted, it still remains

as an empirical law from the point of physics. The rea-
son is as follows. In this law, there are two distinct phys-
ical constants, 3.17 and 1.32, as the coefficients of the
ponderomotive energy Up and the atomic binding en-
ergy Ip, respectively. The background information about
these two physical constants is unclear. As long as these
two constants remain unclear, the empirical nature of the
cutoff law also remains. When these two constants were
given, some questions naturally arose. Such as, Q.1. Are
they fundamental physics constants independent from
other fundamental physics constants? A.1. No, they
cannot. Because HHG is of the electric-magnetic inter-
action, the relevant fundamental physics constants can
only be few, such as the Planck constant �, the Bohr
radius a0, the fine structure constant α, the speed of
light c, the rest mass of electron me, and the electron
charge e. These fundamental ones rule out the possibil-
ity for other physics constants to be independent. For
example, the electron classical radius r0 = a0α

2 is not
an independent one. Q.2. If the two coefficients are not
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fundamental physics constants, how do they relate to the
fundamental physics constants, or do not relate at all?
Q.3. Are they mathematical constants? The makers of
the original cutoff law did not provide the answers to
these questions. If these questions cannot be theoreti-
cally answered, the physical mechanism underneath the
HHG phenomena still needs to be discovered.

Recent developments in laser techniques allowed ex-
perimentalists to observe ultrahigh harmonics up to or-
ders greater than 5 000 [4]. The currently accepted cutoff
law and its improved version do not quite predict the har-
monics of orders as that high. Pursuing better interpre-
tation to the experimental result, also trying to answer
above basic addressed physics questions, we intend to re-
derive the cutoff law from fundamental theories with less
assumptions.

In the nonperturbative quantum electrodynamics
(NPQED) theory [5], the electron transition amplitudes
due to photon fields are expressed as Bessel functions
with the index denoting the photon number emitted
during the transition. In our previous work, the tran-
sition rate formulas for above-threshold ionization [5, 6],
Kapitza–Dirac effect [7, 8], Freeman resonance [9, 10],
and HHG [11–13], are all expressed in terms of Bessel
functions and wave functions of initial atomic bound
state. If a physical effect is not specially related to the
wave function of the atomic bound state, it must be en-
tirely determined by the property of Bessel functions.
We showed that the photoelectron angular distributions
(PADs) were so [14–16].

In this paper, without using the whole NPQED the-
ory and any HHG rate calculation, we provide a self-
contained theoretical proof of the cutoff frequency of
high harmonic spectra. In this proof, we only use the
cutoff property of Bessel functions and the Einstein pho-
toelectric law in the multiphoton case. Since the Einstein
photoelectric law is the energy conservation law and we
have exact photo-number counting in the derivations,
the phase-matching processes caused by the energy-
momentum and photon number changes are taken care
of automatically. From a direct inspection, we find that
Bessel functions for a fixed argument do have a cutoff
order. The example in Fig. 1 is made with the argument
x = 1472.88, while the cutoff order nc ≈ x and nc < x,
as expected. A natural question arising here is: Can one
determine the cutoff order of HHG only from that of
Bessel functions and the dynamic condition specified by
the Einstein photoelectric law in the multiphoton case?
To answer this question, we have to define what is cut-
off order for Bessel functions. The cutoff order of Bessel
functions, at a fixed argument, is defined as the order af-
ter that the value of the Bessel functions is monotonically

decreasing as the order goes to the positive infinity. The
reasonability and rigorous description of the definition
are presented in Appendix 1.

Fig. 1 For a fixed argument, the value of Bessel functions Jn(x)
is a function of the index n. The argument x is set as x = 1473,
equal to the up in Ref. [4]. The vertical axis shows the absolute
value of Bessel functions. The vertical broken line denotes the po-
sition of the cutoff order

2 The dynamic condition to limit the trans-
ferred photon numbers

In the NPQED theory, HHG is derived as a two-step
process [17]. The first process is the ionization process
during which the bound atomic electron ionizes into real
Volkov states by absorbing j photons. The second pro-
cess is the recombination process during which Volkov
electrons absorb extra photons then transit back to the
original bound state with an emission of a large photon of
energy q�ω. The dynamics condition governing the first
process is

P 2

2me
= �ω(j − up − eb) (1)

which is the Einstein photoelectric law in the multipho-
ton case, where up ≡ Up/(�ω) and eb ≡ Ip/(�ω). The
Bessel functions which describe the amplitude of the
electron transition induced by absorbing j photons look
J−j(x), where

x =
√

8up(j − up − eb) (2)

as the maximized argument, is derived when the pho-
toelectron emits in the polarization direction. In Fig.
2, the entire square-root line x = ±√

8up(j − up − eb)
describes the dynamics condition specified by the Ein-
stein photoelectric law in the multiphoton case, say Eq.
(1). The line x1 intersects with the positive square-root
line at two points which are the cutoff orders of Bessel
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functions of positive and negative even indices. The line
x3 intersects with the negative square-root line at two
points which show the cutoff orders of Bessel functions
of negative odd indices, without any extra photon ab-
sorption. The lowest line x4 denotes the maximum pho-
ton absorption due to ionization and the extra photon
absorption. The line x2 denotes the relation between the
argument of the Bessel function as a function of positive
index –j + q, which gives the maximum photon number
qc converted to the harmonic photon; since the index is
positive, the argument-index relation has to satisfy the
same condition for x1 and the dynamic condition spec-
ified by the square root curve. The maximum photon
conversion number qc, i.e., the cutoff high-harmonic or-
der, is the distance between the intersects of line x4 and
line x2 with the vertical axis.

Fig. 2 Geometric method to get the cutoff order of harmonics.
The horizontal axis denotes the orders of Bessel functions. The
positive vertical axis shows the value of the argument of Bessel
functions of positive and negative even indices. The negative ver-
tical axis shows the negative value of the argument of Bessel func-
tions of negative odd indices. To illustrate the recent experimental
result, up = 1473 and eb = 77.34 are selected.

3 The cutoff order of high harmonics

The complete lengthy mathematical proof is presented
in the Appendix. The exact expression of the cutoff law
in the Up > Ip case reads

qc = 2(4up − 2
√

2u2
p − 2upeb) + up − eb. (3)

In the limit of Up � Ip, i.e., up � eb, we obtain the
following version of the cutoff law

qc = (9 − 4
√

2)up + (2
√

2 − 1)eb

≈ 3.3431457up + 1.8284271eb. (4)

In the recent experiment [4], ultrahigh harmonics in
keV X-ray regime from mid-infrared femtosecond lasers
were observed. The orders of these harmonics are greater
than 5000. The data from this experiment can be used
to test different cutoff laws. In this experiment, one of
the gas media used was helium. The laser wavelength
was 3900nm, beam intensity was 3.3 × 1014 W/cm2,
the highest harmonics observed were of photon energy
1.6 keV = 5033�ω. With Ip = 24.587 41 eV, Up =
468.30 eV, and �ω = 0.3179 eV, we have up = 1472.88,
eb = 77.3432. With the laser photon energy 0.3179
eV, the cutoff order converted from the experimental
cutoff energy 1.6 keV is 5033. The cutoff order pre-
dicted by the 3.17 law is qc = 3.17up + eb = 4746.
The cutoff order predicted by the improved 3.17 law is
qc = 3.17up + 1.32eb = 4771. The cutoff order predicted
by this theory is qc = 3.34up + 1.83eb = 5060, which is
very closed to the photon number 5033 observed by the
experiment, also consistent with our earlier declaration
as the upper bound of the cutoff order of high harmonics.
The geometric relation between the cutoff order qc and
other parameters can be seen in Fig. 2, where both the
horizontal axis and the vertical axis are labeled according
to the experimental conditions. The exact cutoff order
can also be obtained from Fig. 2. Indeed the graphical
method provides an alternative proof to the cutoff order,
in addition to the regular mathematical proof presented
in Appendix 1.

Why the cutoff orders predicted by the expression
qc = 3.34up + 1.83eb are greater than those predicted by
the classical-field or semiclassical-field theories? The rea-
son is as follows. In the Bessel function method, the laser
photons to participate the photon-mode up-conversion
are not only those ionization photons which show up
in the Einstein’s photoelectric law, but also some non-
ionization photons. In a full quantum mechanical treat-
ment, all possible transition channels must occur if they
are not ruled out by mathematical restrictions which em-
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body all kinds of conservation laws in physics. The pro-
cess for absorbing non-ionization photons to participate
the photon-mode up-conversion may be called accom-
panying Raman effect. The absorbed laser photons to
participate the photon-mode up-conversion are from the
both, photoelectric effect and accompanying Raman ef-
fect.

4 Conclusion

The cutoff order for laser induced high harmonics can
be completely determined by the Einstein photoelectric
law in the multiphoton case and the properties of Bessel
functions of first kind. The new cutoff law

qc�ω = (9 − 4
√

2)Up + (2
√

2 − 1)Ip

extends the cutoff orders predicted by the traditional
one and offers a new reference to future experimental
measurements of cutoff orders. It also answers the ques-
tions addressed in the Introduction section. The two
coefficients in the cutoff law do not depend on any fun-
damental physics constants which are already contained
in the two interaction energies, Up and Ip. The two coef-
ficients are of algebraic constants. To the new cutoff law,
the current paper offers two different theoretical proofs,
the graphical method and the mathematical deduction
method; the calculation using the formulas derived from
the NPQED theory of HHG [17] provides a fine numer-
ical test; and the recent experimental measurement [4]
shows a good agreement with. The four independent
methods constitute a firm basis of the new cutoff law.
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Appendix 1: Mathematical proof to the cutoff
law

To study the cutoff property of Bessel functions, we start
from the following recurrence relations

Jn−1(x) − Jn+1(x) = 2J ′
n(x) (5)

Jn−1(x) − n

x
Jn(x) = J ′

n(x) (6)

n

x
Jn(x) − Jn+1(x) = J ′

n(x) (7)

With these identities, we prove the following lemmas.

Lemma 1 At and only at the extremum points xi(i =
1, 2, 3, · · ·) of the Bessel function Jn(x), where x > 0 and
n = 1, 2, 3, · · ·, Jn−1(x) and Jn+1(x) intersect.

Proof: Bessel functions have no stationary points other
than extremum points. This lemma is an obvious conse-
quence of Eq. (5). (Q.E.D.)

Note: xi (i = 1, 2, 3, · · ·) are functions of n, e.g., x1(n)
means the first extremum point of Jn(x), which is, in-
deed, a maximum.

Lemma 2 At and only at the maximum points xi(i =
1, 3, 5, · · ·) of the Bessel function Jn(x), the relation
Jn−1(x) > Jn+1(x) turns into Jn−1(x) < Jn+1(x); at
and only at the minimum points xi (i = 2, 4, 6, · · ·) of the
Bessel function Jn(x), the relation Jn−1(x) < Jn+1(x)
turns into Jn−1(x) > Jn+1(x).

Proof: At xi (i = 1, 3, 5, · · ·), the Bessel function Jn(x)
has maximum and Jn(x)′ = 0. When x < xi, since
Jn(x)′ > 0, according to Eq. (5), Jn−1(x) > Jn+1(x).
For the same reason, when x > xi, since Jn(x)′ < 0, then
Jn−1(x) < Jn+1(x). The relation Jn−1(x) > Jn+1(x)
turns into Jn−1(x) < Jn+1(x). The proof for the other
part (i = 2, 4, 6, · · ·) of the lemma is similar to this proof.
(Q.E.D.)

With the understanding of the mathematical phe-
nomenon described by Lemma 2, we can define the cutoff
order of Bessel functions for a fixed argument such that
after this order, none of Bessel functions have the first
maximum x1 � x.

Definition The cutoff order nc of the set of Bessel
functions {Jj(x)} (j = 0, 1, 2, · · · , nc, · · ·) for a fixed pos-
itive x is defined such that the first extremum (maximum)
point of Jnc(x) satisfies

x1(nc) � x, x1(nc + 1) > x (8)

In other words, we say nc = Max{n | x1(n) � x} and
nc + 1 = Min{n | x1(n) > x}.
Theorem 1 A positive number x, as a fixed argument
of Bessel functions, provides an upper bound to the cutoff
order of Bessel functions of positive indices, i.e.,

nc < x (9)

Proof: In the following we adopt the notation x1 ≡
x1(nc). We know x1 � x from the definition.

Setting x = x1 in Eq. (6) leads to x1Jnc−1(x1) =
ncJnc(x1). Since Jnc−1(x1) = Jnc+1(x1) < Jnc(x1), not-
ing the first extremum is a maximum and the values of
the three Bessel functions are all positive at x1, we have
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nc < x1 � x (10)

(Q.E.D.)

With Eqs. (2) and (9), we have the following inequal-
ity,

|jc| �
√

8up(jc − up − eb) (11)

which leads to the algebraic equation

j2
c − 8upjc + 8u2

p + 8upeb � 0 (12)

The solutions to the above equation when taking the
equal sign have two cutoff orders of the index j:

jc = 4up ± 2
√

2u2
p − 2upeb (13)

Thus we obtain:

Theorem 2 There are two cutoff orders, jc1 = 4up −
2
√

2u2
p − 2upeb and jc2 = 4up+2

√
2u2

p − 2upeb in the set
of Bessel functions of positive orders with the dynamics
condition and up � eb. The orders forming the plateau
are located between the two cutoff ones.

We also obtain:

Corollary There are two cutoff orders, −jc1 and −jc2,
in the set of Bessel functions of negative orders with the
dynamics condition and up � eb. The valuable orders
forming the plateau are those between the two cutoff ones.

The two cutoff orders of Bessel functions of positive
and negative even orders can be seen, in Fig. 2, as the
intersects of the straight line x1 with the square-root line
of positive value, while that of negative odd orders can
be seen, as the intersects of the straight line x3 with the
square-root line of negative value.

Consider Bessel functions J−j−s(x), where x is given in
Eq. (2), with j = 1, 2, 3, · · · being the number of absorbed
photons for the ionization and s = 1, 2, 3, · · · being the
number of extra photon absorbed for participating only
the photon-mode up-conversion, not the ionization.
Thus, we have the following theorem:

Theorem 3 For the set of Bessel functions of nega-
tive orders with extra photon absorption, J−j−s(x) where
the argument x subject to the dynamic condition, the
extra absorbed photon number s has an upper bound,
s � up − eb and the cutoff order is jc = 3up + eb.

Proof: Combining Theorem 1 and Eq. (2), one has an
equation for the cutoff jc:

(jc + s)2 � 8up(jc − up − eb) (14)

On the cutting edge, we obtain the equation

(jc + s)2 − 8up(jc + s) + 8u2
p + 8up(eb + s) = 0 (15)

to solve for jc + s. The condition for real solutions is

s � up − eb (16)

By selecting the equal sign sc = up−eb and putting sc

into s in Eq. (15), we obtain the formula for the cutoff
order,

jc = 3up + eb (17)

(Q.E.D.)

Theorem 4 The upper limit of the cutoff order of high
harmonic is 2(4up − 2

√
2u2

p − 2upeb) + up − eb.

Proof: Since the photoelectron and the participating
photons have to keep the energy conservation accord-
ing to Eq. (1), we have |jc| �

√
8up(jc − up − eb), and

jc1,2 (in Theorem 2) is obtained by solving this inequal-
ity with taking the equal sign. Now we consider Bessel
function J−j−s+q(x) where j is the ionization photons,
s is the maximum possible extra photon absorbed and
q denotes a harmonic order. To obtain the cutoff order
for q, we need the following equation according to the
Theorem 1,

−jc − (up − eb) + q �
√

8up(jc − up − eb) (18)

With taking jc = jc1 and replacing the right side of above
equation by jc1 we obtain the upper bound of the cutoff
order expressed by Eq. (3). (Q.E.D.)
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