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a  b  s  t  r  a  c  t

Continuum-based  discrete  element  method  (CDEM)  is  an  explicit  numerical  method  used  for  simulation
of progressive  failure  of  geological  body.  To improve  the  efficiency  of  contact  detection  and  simplify
the calculation  steps  for contact  forces,  semi-spring  and  semi-edge  are  introduced  in calculation.  Semi-
spring is derived  from  block  vertex,  and  formed  by indenting  the  block  vertex  into  each  face  (24 semi-
springs for  a hexahedral  element).  The  formation  process  of  semi-edge  is the same  as that  of  semi-spring
(24 semi-edges  for a hexahedral  element).  Based  on  the  semi-springs  and  semi-edges,  a  new  type  of
combined contact  model  is  presented.  According  to this  model,  six  contact  types  could  be reduced  to
two, i.e.  the  semi-spring  target  face contact  and  semi-edge  target  edge  contact.  By  the  combined  model,
the contact  force  could  be  calculated  directly  (the  information  of  contact  type  is  not  necessary),  and  the
failure judgment  could  be executed  in  a  straightforward  way  (each  semi-spring  and  semi-edge  own  their
characteristic areas).  The  algorithm  has  been  successfully  programmed  in C++  program.  Some  simple
numerical cases  are  presented  to  show  the validity  and  accuracy  of this  model.  Finally,  the failure  mode,
sliding distance  and  critical  friction  angle  of Jiweishan  landslide  are  studied  with  the  combined  model.

© 2013  Institute  of  Rock  and  Soil  Mechanics,  Chinese  Academy  of  Sciences.  Production  and  hosting by
Elsevier B.V.  All  rights  reserved.

1. Introduction

Continuum-based discrete element method (CDEM) (Li et al.,
2004,  2007; Wang et al., 2005) is an explicit approach to simulate
the  progressive failure of geological mass, which is the combina-
tion  of finite element method (FEM) and discrete element method
(DEM).  Due to its small deformation assumption, false contact and
block embedding will take place when large translation and rota-
tion of blocks occur. To solve the above-mentioned problem, a
semi-spring and semi-edge combined contact model is introduced.

Three-dimensional (3D) block contact detection method is the
key  topic in 3D block DEM. The direct method, common plane
method,  penetration edge approach and incision body scheme
are  the 4 typical ways to detect the contact relationship between
blocks.
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There are about 6 contact types between blocks, i.e. vertex to
vertex,  vertex to edge, vertex to face, edge to edge, edge to face and
face to face. Direct method judges the contact type by the geometry
information. This method is easy to realize in programming with
a  high accuracy of judgment, but it is time-consuming for search-
ing.  However, some improvement in direct method has been done
to reduce the cost of time. Beyabanaki et al. (2008) presented a
point-face contact algorithm used in 3D discontinuous deforma-
tion  analysis (DDA). According to the relationship between point
and  face, the contact type and contact normal vector could be eas-
ily obtained. Wu  et al. (2005) and Wu  (2008) presented a new
edge-to-edge contact calculating algorithm for 3D DDA, in which
the  edge-to-edge contacts are simply transformed to be vertex-
to-face  ones. Keneti et al. (2008) introduced a new algorithm for
detection  of all contact patterns between any two convex blocks. In
Keneti’s method, according to the “main plane” and the number of
gathered points in another approaching plane, different algorithms
for  searching real contact points and the type in global coordinate
system  are applied.

Common  plane method (Cundall, 1988) is based on the knowl-
edge  that two contact blocks will be completely separated by a
plane. By translating and rotating the plane, the vertex number of
each block contacting with common plane is obtained, by which
the  contact type could be determined (Cundall, 1988; Hart et al.,
1988; Jing and Stephansson, 2007). Compared to direct method,
the  search efficiency of common plane method has been signifi-
cantly  improved, and it has been the main contact search method



C. Feng et al. / Journal of Rock Mechanics and Geotechnical Engineering 6 (2014) 26–35 27

Fig. 1. Four steps to calculate the contact force.

in 3DEC (Itasca, 1987). In 3D DDA, this method is also well used (Liu
et  al., 2004; Yeung et al., 2007). However, it is difficult to get the real
common plane (CP) for the two polyhedral blocks, and the existing
methods  for CP identification always need a great amount of calcu-
lation and terminate on a saddle-point sometimes. To improve the
searching efficiency, Nezami et al. (2004) proposed a fast common
plane  (FCP) method, and the algorithm can be up to 40 times faster
than  available search methods for finding the CP.

Penetration edge approach (Cheng et al., 2006) is based on the
theory  that if two blocks contact with each other, there will be a
nonempty set between them. This approach establishes the map-
ping from the property of penetration edge (edge type, number
of  original vertex) to the contact type. This approach judges the
contact  type according to local topological feature, the substance
of  which is to enlarge the region of each block and obtain the
nonempty  set.

Incision  body scheme (Wang et al., 2006) combines the penetra-
tion  edge approach and common plane method together. By cutting
blocks by 3 typical planes, 16 mapping relationships are obtained.

The  final destination of contact detection is to calculate the
contact  force. For this purpose, 4 steps should be taken, if any
above-mentioned method is adopted (shown in Fig. 1, where V–V
means  the vertex–vertex contact, V–E presents the vertex–edge
contact E–E demotes the edge–edge contact): (1) contact state
judgment  (if has contact or not); (2) contact type determination; (3)
contact area calculation; and (4) normal and tangent contact force
solving. Each step costs lots of calculating time, so it is important to
find an efficient contact model and simplify the computation steps.

2.  Profile of CDEM and modification of rotation

CDEM is an explicit time history-analysis FEM and DEM
approach on finite difference principles, and forward-difference
approximation is adopted to calculate the progressive process
through  a time marching scheme. During calculation, the dynamic
relaxation  method is used to achieve convergence in a reason-
able  period of time with small time steps, and the convergence
is  reached when the unbalance ratio is small enough (<1 × 10−5).
Fig.  2 shows the main process to solve a classic geological problem.

CDEM  contains two  kinds of elements, blocks and contacts (Ma
et  al., 2011) (Fig. 3). A discrete block consists of one or more FEM
elements,  all of which share the same nodes and faces. A contact
contains  several normal and tangent springs, and each spring owns
two  nodes which belong to two different blocks. Inside a block, the
FEM is used, while for contact, the DEM is adopted.

Total content method based on original coordinate is used to
calculate  the deformation force (in finite element) and contact force
(in contact element) in traditional CDEM (see Fig. 2). The method
to  calculate deformation force can be written as

{F}e = [K]e{u}e (1)

Fig. 2. The process to solve a geological problem.

where {F}e is the node force vector of element, [K]e is the stiff-
ness  matrix of element, and {u}e represents the node displacement
vector  of element.

With  large rotation, the distortion of element will happen. To
solve  the problem, incremental method should be adopted and
strain  matrix [B] should be used to calculate deformation force
instead  of stiffness matrix [K]. Besides, strain matrix [B] should be
renewed at each time step.

Block 3

Block 1

Block 2

Block 1------5 FEM elements

Block 2------1 FEM element

Block 3------5 FEM elements

Block 3

Block 1 Block 2

Contact 1 Contact 2

C
ontact 3

Contact 1------4 normal and 4 tangent springs

Contact 2------4 normal and 4 tangent springs

Contact 3------4 normal and 4 tangent springs

Fig. 3. Blocks and interfaces for 8 nodes hexahedron.
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(a) t = 0.1 s.              (b) t = 1.0 s.              (c) t = 1.8 s.     (d)  t = 2.4 s.        (e) t = 2.9  s.              (f)  t = 4.7 s. 

Fig. 4. Block rotation at given time based on incremental method.

The main steps to calculate node force by strain matrix with
incremental method are written as

{�ε}i = [B]i{�u}e

{��}i = [D]{�ε}i
{�n}i = {�o}i + {��}i

{Fn}e =
N∑
i=1

[B]i
T{�n}iwiJi

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where [B]i, {�ε}i, {��}i, wi, Ji are the strain matrix, incremental
strain, incremental stress, integral coefficient, and Jacobi determi-
nant  in Gaussian point i, respectively; {�n}i and {�o}i represent
the new stress and old stress in Gaussian point i, respectively; [D],
{�u}e, {Fn}e are the elastic matrix, incremental displacement vec-
tor  and new node force vector of element, respectively; N is the
total  number of Gaussian point.

To test the rotation precision of the new method, the numerical
case  about a cube rotating around a fixed point under gravity has
been done. The model’s size is 10 m × 10 m,  with the bottom left
corner  fixed. The rotation of the cube in typical time is shown in
Fig.  4, and the comparison with the theoretical solution is shown in
Fig. 5. Figs. 4 and 5 show that the numerical result and the analytical
solution  are almost the same, suggesting that it is a good choice to
solve rotation problem with the above-mentioned method.

Fig. 5. Comparison between numerical and analytical results.

3. Main idea about the combined contact model

The vertex or edge in traditional contact model presents the
vertex  of the block (8 vertexes for a cube) or the edge of block (12
edges  for a cube), which is shared by some faces, without charac-
teristic  area. For calculating contact forces by traditional methods,
four  steps should be taken (shown in Fig. 1). If the vertex or edge is
one part of the contact pairs, it is difficult to calculate the contact
area  because vertex or edge has no characteristic area in traditional
method.  If the contact type is face to face, the overlapping area
should  be calculated.

The  main idea of semi-spring and semi-edge combined contact
model  is getting the contact force directly, without calculating the
contact type and contact area. For this purpose, some skills should
be  adopted. For finding the target face or target edge easily, the
vertexes  and edges of the element should indent to each face, as
shown in Fig. 6. After that, the semi-springs and semi-edges are
created  subsequently. For a cube case, there are 24 semi-springs
and  24 semi-edges. The indentation distance is expressed as

d = ˛L (3)

where d is the indentation distance; L represents the distance
between face center and block vertex; and  ̨ is the indentation
coefficient, which would be 0.1%–1% (1% is adopted in this paper).
To  find the correct contact, the indentation distance d should be
larger than the searching tolerance.

Because the semi-spring and semi-edge are on the face of each
element,  so they own  their characteristic areas as

ASS = Aface

Nv
(4)

ASE = ASS-i + ASS-j (5)

where ASS, ASE are the area of semi-spring and semi-edge, respec-
tively;  Aface presents the area of mother face which semi-spring
and semi-edge are derived from; Nv means the vertex number in
mother face; and ASS-i, ASS-j mean the semi-spring areas. Since the
semi-edge  consists of two semi-springs, the area of semi-edge is
the sum of the area of two  corresponding semi-springs.

By this combined method, 6 contact types would be reduced to
2  types, which are semi-spring and target face contact, semi-edge

Fig. 6. Semi-springs and semi-edges in a cubic block.
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Fig. 7. Semi-spring and semi-edge contact model.

and target edge contact, as shown in Fig. 7. During contact search-
ing,  the main loops are semi-spring and semi-edge, so it does not
need to determine the contact type and calculate the contact area.
Due to the small indentation when creating the semi-spring and
semi-edge,  once the block vertex or block edge approaches the
target  face or target edge, the semi-spring and target face contact
or  semi-edge and target edge contact will be created immediately.
“Semi”  here means that the indented springs and edges could not
form the complete contacts, only if they find the other part (target
face  or target block edge).

Fig.  8 shows the necessity of indentation. Without indentation,
since  the block vertexes of elements A–D are in the same posi-
tion,  there are lots of target faces for one semi-spring, but only one
of them is real. For semi-edge, the same problem will happen. By
indentation, the target face or target edge will be unique.

4.  Contact state judgment

There  are two main linked lists in the program, semi-spring
linked list and semi-edge linked list. For searching contacts, the
loops  of these linked lists are executed respectively, and the details
of each loop are shown in Fig. 9.

4.1. Search method

To  search the target face or target edge efficiently, static cell
method  is adopted. For traditional cell approach, the main loop
should  be cells, so it is very expensive for large simulations where
the  spatial distribution of objects is sparse and irregular (large num-
ber of empty cells). In the combined contact model, the main loop
is  semi-spring and semi-edge linked lists, thus looping the cells
without  block can be avoided.

To  improve the search efficiency, another skill called poten-
tial  objects array is adopted. The array is set in each semi-spring
(semi-edge could also obtain the potential objects according to

Fig. 8. Necessity of indentation.

Calculate the interpolation 
coefficient and contact force

Loop semi-spring linked list

Find target face 

If target face exists 

Form semi-spring contact

First loop

Loop semi-edge linked list

If two semi-springs derived from semi-edge  
don’t contact the same face at same time 

Form semi-edge contact

Find target edge 

If target edge exists 

Calculate the interpolation 
coefficient and contact force

Second loop

Fig. 9. Two linked lists in the combined contact model.

semi-springs) with fixed length (8 potential objects). In each time
step,  the semi-spring and semi-edge seek the target face and target
edge  from the potential objects array, and the array will be renewed
in  some steps (for example, 100–1000 steps). The search method
is  shown in Fig. 10.

4.2.  Geometry algorithms in semi-spring contact

There are two cases that the target face would be found: (a) the
distance  between semi-spring and target face is smaller than the
searching tolerance, and the projective point of semi-spring locates
on  the target face or along the edge of target face; (b) semi-spring
locates inside of the block (Fig. 11).

In case (a), the distance between semi-spring and face should
be  calculated first:

d = |�n ·  ( �Ps − �C)|  (6)

where �n is  the unit outward normal vector, �Ps is the coordinate of
semi-spring  and �C  means the coordinate of face center.

In  case (a), if the distance is smaller than the searching tolerance
(0.01%–0.1% of the characteristic length), the relationship between
semi-spring  and target face should be checked. The following

Fig. 10. Static cells and potential objects array.
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Fig. 11. Two cases that target face would be found.

equation is used to check if the semi-spring locates inside the face
(including along the edge of face) or not:

Jijk = ( �Vsi × �Vsj) · ( �Vsj × �Vsk) (7)

where i, j, k are the three vertices of the face, with clockwise
direction; the subscript “s” represents the semi-spring, and �Vsi is
the  relative position vector pointing from s to i. If the semi-spring
locates  on the face, it should be satisfied for any composition of
vertices i, j, k, i.e.

Jijk = 1 (8)

To avoid embedding, case (b) should be considered. If the semi-
spring  locates inside a block, the face nearest to the semi-spring
should be found, and it is considered as the target face. The method
to  determine whether the semi-spring has embedded or not is

JCi = �Vsi · �n (9)

where �Vsi is the relative location vector pointing from semi-spring
s  to center of face i. If the semi-spring locates inside the block, then
JCi > 0 should be satisfied for any face of the block.

4.3.  Geometry algorithms in semi-edge contact

To search the target edge, the target face where the target edge
is  located should be found first. The loop of potential objects array
should  be taken, and for each object, the most probable face would
be  found first by

RF = min( �nm · �np) (10)

where RF means the right face (most probable face), �nm is the unit
outward  normal vector of mother face in which the semi-edge is
located, �np represents the unit outward normal vector of potential
face  located on the potential block.

After finding the most probable face in each block, each edge of
the right face should be judged by

Pif =
∣∣∣ �Vmm · �Vtt

∣∣∣ (11)

where �Vmm means the unit direction vector of semi-edge, and �Vtt

means the unit direction vector of target edge.
Eq. (11) is used to judge whether the two edges (semi-edge and

target  edge) are parallel or not. The following equation is used to
get the distance between these two edges:

dis =
∣∣∣( �Vmm × �Vtt) · �Vmt

∣∣∣ (12)

where �Vmt means the relative position vector from a point on semi-
edge  to a point on the target edge.

If Pif < 1 (not parallel) and dis < tolerance, the intersection of these
two  edges should be judged. The coordinates of the semi-edge

Fig. 12. Contact types that semi-spring could solve.

and target edge should be projected to the plane with the nor-
mal  vector �Vmm × �Vtt. On the projection plane, intersection point
could  be obtained easily. If the intersection point locates inside
two  edges at the same time, semi-edge and target edge contact
will  be established, and interpolation coefficients will be calculated
immediately.

4.4.  Contact types the model could solve

The semi-spring and semi-edge combined contact model could
solve  all the contact types, as shown in Figs. 12 and 13, although it
does not need to check the contact type.

In Fig. 12, for vertex to vertex contact type, since each vertex
belongs  to three faces, the semi-springs in blocks A and B could
find  their target faces respectively from the three potential faces
in  opposite part. For vertex to edge contact type, due to the edge
in  block B located in two  faces, the semi-springs in block A could
find  the target face from the two potential faces. For vertex to face
contact  type and face to face (face vertex in face) contact type, the
semi-springs in block A could find the target face in block B easily
according  to the formulas in Section 4.2.

In Fig. 13, for edge to edge contact type, the semi-edge in block A
could find the target edge in block B, and simultaneously, the semi-
edge  in block B could find the target edge in block A. For edge to face
contact type, as the face in block B contains four edges, the semi-
edges  in block A could find the target edge from the four potential
edges.  For face to face (without face vertex in face) contact type,
each  face consists of four edges, thus the semi-edges in blocks A
and B could find their target edges respectively from these potential
edges  in opposite side.

5.  Contact force calculation

Penalty  function will be used to calculate the contact force. Once
the  semi-spring and semi-edge contact is established, the normal

Fig. 13. Contact types that semi-edge could solve.
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Fig. 14. Real contact area during initial failure.

and tangent numerical springs will be created. According to incre-
mental  method, the elastic force of the contact can be calculated by

Fn(t + �t) = Fn(t) − Kn�dn

Fs(t + �t) = Fs(t) − Ks�ds

}
(13)

where Fn and Fs are the normal and tangent contact forces,
respectively; Kn and Ks are the normal and tangent stiffnesses,
respectively; �dn and �ds are the relative normal and tangent
incremental displacements of spring, respectively. Once contact
force  is calculated, it should be added to the global node force array.

To simulate the progressive failure process of geological body,
failure  model should be adopted, thus the maximum tensile crite-
rion  and Mohr–Coulomb criterion are used:

(1) If − Fn≥TA
then Fn = Fs = 0,

next step c = 0, T = 0

(2)  If Fs ≥ Fn tan ϕ + cA

then Fs = Fn tan ϕ + cA,

next step c = 0, T = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

where T means the tensile strength, c is the cohesion, ϕ means the
friction angle and A is the characteristic area gotten by Eqs. (4) and
(5).

When Eq. (14) is used to judge the initial failure of material,
attention should be paid to the characteristic area. If the grid is
continuous,  the point on the face is not only semi-spring, but also
interpolation point (Fig. 14). There are two parallel springs at the
same place, which means the contact force between two  blocks is
undertaken by 8 springs. Thus for each spring, the real spring force
would  be half, and the real characteristic area for each semi-spring
and  semi-edge should be half too.

Fig. 16. Failure angle test model.

6. Precision test

6.1.  Failure criteria test

To  test the accuracy of the maximum tensile criterion and
Mohr–Coulomb criterion, four types of numerical cases are
designed  (Fig. 15), and the accuracy of tensile failure, shear failure
and  toppling failure could be verified. Results (Table 1) show that
the numerical and theoretical critical failure values are almost the
same, suggesting that the main idea of semi-spring and semi-edge
combined  contact model is reasonable and correct.

6.2. Semi-spring contact model test

To prove the accuracy of semi-spring contact model, the
failure  angle test of granite blocks is executed. The experiment
has  been conducted by Li et al. (2005, 2007) and the model
is  shown in Fig. 16. The model consists of 74 granite blocks,
with  the size 10 cm × 10 cm × 20 cm,  10 cm × 10 cm × 10 cm,
and 5 cm × 5 cm × 5 cm,  respectively. The cohesion and tensile
strengths of interface between blocks are 0, and the friction angle
is  26◦. During the experiment, uplift the platform gradually until
the  model failure, and then record the failure angle �. Numerical
result  of failure angle is 21◦, which is consistent with the experi-
mental  result (19.5◦–21.8◦). The failure process of granite blocks is
shown in Fig. 17, which also agrees with the experimental result.
Besides,  when the granite blocks topple, face–face (with face
vertex  in face), face–vertex, vertex–vertex and vertex–edge will
happen.  This numerical test also confirms that the semi-spring
contact model could detect the four types of traditional contact
(mentioned in Fig. 12) well.

(c) Friction angle checking. (b) Cohesion checking. (a) Tensile checking. (d) Toppling angle checking. 

Fig. 15. Numerical cases for verification of the failure criteria.
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Table  1
Statistics of numerical cases.

Case type Load type Testing type Fixed parameters Parameter need to
be  changed

Theoretical value
when  failure occurs

Numerical value
when  failure occurs

Tensile checking Uniform vertical
tensile  stress Pt

Critical tensile
stress  Pt

T = 10 kPa,
c  = 30 kPa, ϕ = 26◦

Tensile stress Pt Pt = 10 kPa Pt = 10.001 kPa

Cohesion checking Uniform horizontal
shear  stress Ps

Critical shear stress
Ps

c = 30 kPa,
T  = 30 kPa, ϕ = 26◦

Shear stress Ps Ps = 30 kPa Ps = 29.6 kPa

Friction angle
checking

Gravity G Critical friction
angle  of interface ϕ

c  = 0, T = 0 Friction angle of
interface  ϕ

ϕ = 45◦ ϕ = 44.999◦

Toppling angle
checking

Gravity G Critical toppling
angle  �

ϕ = 26◦ , c = 0, T = 0 Slope angle � � = 14.036◦ � = 14.01◦

Fig. 17. Failure process of granite blocks.

Fig. 18. Movement of block under gravity.

6.3. Semi-edge contact model

To check the reliability and accuracy of semi-edge contact
model, a numerical model containing three types of contact (shown
in  Fig. 18) has been set up. The model contains 4 blocks. Three blue
blocks  are fixed, and the purple block falls down under gravity.
The  movement of top block (Fig. 18) reveals that semi-edge con-
tact  model could detect edge-face, face–face (without face vertex
in  face) and edge-edge contact well. Besides, the numerical sliding
acceleration  (g = 2.927 m/s2) is almost the same as the analytical
solution (g = 2.928 m/s2), which could be calculated by

a = g sin � − g cos � tan ϕ (15)

where g is the gravity acceleration.

7. Simulation of Jiweishan landslide

7.1. Background

Jiweishan landslide (Figs. 19 and 20) is a typical bedrock land-
slide  in Wulong, Chongqing, China, which occurred on June 5,
2009,  with a total volume about 7 × 106 m3. The dimension of
the  landslide mass is about 780 m (length) × 260 m (width) × 60 m
(thickness).  According to field investigation and geological analysis,
the  principal failure mechanism is the virtual dip slipping, with the
real dip direction 345◦∠21◦ (Fig. 21). When landslide occurred, the
key body crumbled first, and then the sliding body slided along the
sliding bed; after mass center moved out of sliding bed, toppling
happened.

7.2.  Real model simulation

For  simulating the sliding process and studying the relationship
between friction angle and sliding distance, the real model based
on  the contour line is set up (Fig. 22), where groups 1–3 are bedrock,
key  body, and sliding body, respectively.

The model contains 9296 nodes and 46,584 tetrahedrons. In this
model, the interfaces between different groups ( 1 – 6 in Fig. 20)
could  break, with the cohesion of 10 kPa and tension of 10 kPa. The
interfaces between different elements could break too, with the
cohesion of 3 MPa  and tension of 1 MPa. The inner friction angle of
these two  interfaces will be changed in different numerical cases,
but  with the same critical damp ratio 10%.

Fig. 19. Photo of Jiweishan landslide.
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Fig. 20. Sketch of sliding body and key body (unit of the length: m).

Fig. 21. Sketch of virtual dip slipping.

By combined contact model mentioned above, the final failure
state  is achieved (Fig. 23). In Fig. 23, sliding faces mean interfaces
between  different groups, while other faces mean the interfaces
between  different elements in sliding mass. In Fig. 23, with the
increase  of inner friction angle, the sliding distance and fragmen-
tation  degree of landslide mass decreases gradually.

7.3. Simple model simulation

To  study the relationship between critical friction angle and dip
direction, simple model (Fig. 24) is set up. In this model, only sliding
faces could break. The cohesion and tension of sliding faces are set

to zero, and the friction of the bottom interface 1 is twice the
friction  of surrounding interface 2 .

Based on simple model, typical failure mode (Fig. 25) is obtained,
and  the relationship between real dip direction (represented by 2
components) and the critical failure friction angle is also obtained.
The  results are shown in Figs. 26–28, where DACW means dip angle

Fig. 22. Real model.

Fig. 23. Final failure states in different inner friction angles.
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Fig. 24. Simple model.

Fig. 25. Typical failure mode.

component in west, DACN means dip angle component in north,
and  CFFA presents critical failure friction angle.

In Figs. 26–28, when DACW keeps constant, the CFFA increases
linearly with the increase of DACN, with the slope 0.90. When DACN
keeps constant, CFFA decreases linearly with the increase of DACW,
with  the slope of–0.19. If the CFFA keeps constant, the relationship
between DACN and DACW will be linear approximately.

Fig. 26. Relationship between DACW and DACN associated with CFFA.

Fig. 27. Relationship between DACN and CFFA associated with DACW.

Fig. 28. Relationship between DACW and CFFA associated with DACN.

8. Conclusions

Semi-spring and semi-edge combined contact model is used
to  calculate the contact forces between FEM elements, and it is
also  suitable for arbitrary convex polyhedrons. According to above-
mentioned  model, six contact types could be reduced to two, which
are semi-spring and target face contact and semi-edge and target
edge  contact, so it will save some computing time to some extent.
Some  simple numerical cases are presented to show the validity
and  accuracy of this model.

Inner  friction angle is an important mechanical parameter for
the  slide of Jiweishan. With the change of the friction angle, stability
state,  failure mode and sliding distance also alter. Besides, there is a
good linear relationship between dip angle component (DACN and
DACW) and critical failure friction angle (CFFA).
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