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The instability of water-mud interface in viscous two-layer flow
with large viscosity contrast
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Abstract The temporal instability of parallel viscous two-phase mixing layers is
extended to current-fluid mud by considering a composite error function velocity
profile. The influence of viscosity ratio, Reynolds number, and Froude number
on the instability of the system are discussed and a new phenomenon never dis-
cussed is investigated based on our numerical results. It is shown that viscosity
can enlarge the unstable wave number range, cause new instability modes, and
certainly reduce the growth rate of Kelvin–Helmholtz (K–H) instability.
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Two-layer flow of water and fluid mud with clear interface pervades coastal areas. Fluid mud
can be characterized as a fluid with complex behavior. It can be found in estuaries with high
suspended-sediment concentrations, or on muddy coasts. Behaviors of fluid mud, its deposition
and especially its resuspension, are of significant importance for waterway construction.

Fluid mud typically exhibits bulk densities between 1.05–1.20 kg/m3. It can be considered as
Newtonian fluid at a sufficient low density. Fluid mud is often associated with a sharp vertical
density gradient. Clear interface waves can be formed under low speed current forcing. The
interface waves break up if the current is strong enough, and the fluid mud is brought into the
water column. This mechanism is similar to that of classical Kelvin–Helmholtz (K–H) instability,
except for the viscosity being considered here.

The classical K–H instability is associated with the steady, parallel, two-dimensional, in-
viscid, uniform, stratified shear layer. It appears at interface of different layers when the velocity
difference is high enough, the density difference is small enough, or the wave is short enough.1

The K–H instability proved to be a generic instability of shear flows at large Reynolds num-
ber. The interest of most researches has been focused on the growth rate, rather than the critical
Reynolds number, because the flow becomes unstable at a relatively low Reynolds number.

It is natural to enquire how viscous effects, inevitably present in real fluids, modify the results
obtained from an in-viscid analysis. It is well known that viscosity has two opposite effects on the
hydrodynamics stability:2 the expected stabilizing dissipative effect and a destabilizing effect. In
comparison with in-viscid theory, viscous stability theory for two-phase flow introduces additional
different mechanisms for instability, such as “interfacial mode”3,4 at small Reynolds numbers and

a)Corresponding author. Email: Zhoujf@imech.ac.cn.



062007-2 J. B. Liu, J. F. Zhou Theor. Appl. Mech. Lett. 4, 062007 (2014)

“shear mode”5,6 at sufficiently large Reynolds numbers. For fluids with large viscosity contrast,
the viscosity should be included in instability analysis.

There is a large amount of literature7–11 on the stability of parallel viscous two-phase fluid
flow. The formulation of the two-layer flow stability problem involves more than six dimension-
less parameters. For this complexity, studies in this field usually restrict to a small parameter
region. It is generally very hard to apply these results directly to current-fluid mud.

This work has been motivated by the need to calculate the transient growth rate of instability
of fluid mud under current forcing. Linear spectra is calculated numerically and the effects of
Reynolds number, Froude number, viscosity ratio, and density ratio are investigated. We will
restrict ourselves to the study of parallel two-layer flow at large Reynolds numbers.

According to the generalized Squire theorem,12 it is sufficient to solve the stability problem
in two dimensions. The flow configuration is shown schematically in Fig. 1. The coordinates x
and y are along and perpendicular to the undisturbed interface, respectively, with the origin of y
located at the interface.
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Fig. 1. Basic velocity profiles in the current and fluid mud.

The base flow for the viscous two-layer flow is composed of error-function profiles in each
layer. The argument of the error function is scaled with its thickness in each phase. The base
flow with time-dependent boundary layer thicknesses is exact solution of the first Stokes problem,
and it serves well as the base flow for the viscous problem as U1(y) = U∗

1 erf(y/δ1) (y < 0),
U2(y) =U∗

2 erf(y/δ2) (y > 0), where erf(y) = (2/
√
π)

∫ y
0 exp(−ξ 2)dξ and U∗

j ( j = 1,2) represent
the asymptotic velocities. The first Stokes solution is time-dependent, its boundary layer thickness
being given by δ j = 3.6

√ν jt,13 where ν j = µ j/ρ j, and µ j,ρ j denote viscosities, densities. We
introduce the density ratio r = ρ1/ρ2 and viscosity ratio m = µ1/µ2. Continuity of tangential
stress on the interface requires µ2∂U2/∂y = µ1∂U1/∂y at y = 0. Assuming that the base flow
evolves from an initial K–H state, stress continuity implies U∗

2 /U∗
1 =

√
mr. We carry out an

analysis of this profile in the laminar mixing layer at a particular snapshot, considering that the
instability will develop faster than the boundary layers.

The thicknesses of calculation domain in the y direction are d1,d2 respectively, therefore we
have two additional dimensionless parameters n1 = d1/δ1,n2 = d2/δ1.

The stability of parallel two-phase flow is investigated by disturbing the base flow infinitesi-
mally. We assume that the flow is incompressible, and introduce the stream functions to represent
the disturbance velocities (u j,v j) in the fluids, so that (u j,v j) = (∂Ψj/∂y,−∂Ψj/∂x). We assume
Ψj(x,y, t) = ψ j(y)eik(x−ct), where i is the imaginary unit, k is a real wave number and c is the
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complex wave velocity. The real part of c determines the phase velocities, and the imaginary part
ci gives the growth rates ωi = cik.

Substitution of the stream functions into the linearized Navier–Stokes equations results in the
well-known Orr–Sommerfeld equations in dimensionless form, in which the length is scaled by
the boundary thickness of fluid mud δ1, the velocity by the characteristic velocity U0 (here U0 is
defined as U0 =U∗

1 ), and the pressure by ρ1U2
0 . We have ψ1

′′′′−2k2ψ1
′′+k4ψ1+ ikRe[U1(k2ψ1−

ψ1
′′)+U1

′′] = ickRe(k2ψ1 −ψ1
′′), for the fluid mud −n1 < y < 0, and ψ2

′′′′− 2k2ψ2
′′+ k4ψ2 +

ikRe{(m/r)[U2(k2ψ2 −ψ2
′′)+U2

′′]}= ickRe[(m/r)(k2ψ2 −ψ2
′′)] for the water 0 < y < n2.

Primes indicate differentiation with respect to y. The mud flow Reynolds number is defined
as Re = ρ1U0δ1/µ1. Hence, the current Reynolds number is Re2 = ρ2U∗

2 δ2/µ2 = mRe.
The continuity14 of the velocity components and the stress components at the interface y =

0 give four conditions as ψ1 = ψ2, ψ ′
1 +U ′

1ψ1/(c −U) = ψ ′
2 +U ′

2ψ2/(c −U), ψ1
′′ + k2ψ1 +

U1
′′ψ1/(c−U) = [ψ2

′′+k2ψ2+U2
′′ψ2/(c−U)]/m, (ψ1

′′′−3k2ψ ′
1)+ ikRe[(c−U)ψ ′

1+U ′
1ψ1] =

(ψ2
′′′−3k2ψ ′

2)/m+ ikRe[(c−U)ψ ′
2+U ′

2ψ2]/r+ ikRe(Fr−1+k2S−1)(ψ ′
1−ψ ′

2)/(U
′
2−U ′

1) where
S = δ1ρ1U2

0 /T is the Weber number, T is the interfacial tension and Fr = (ρ1U2
0 )/[g(ρ1 −ρ2)δ1]

is dimensionless buoyancy, or Froude number.
The boundary conditions at the lower wall are no-penetration and no-slip, which read ψ1 =

ψ ′
1 = 0 at y = −n1 and the disturbances can be ignored far from the interface, which leads to

ψ2 = ψ ′
2 = 0 for y → ∞.

The calculations show that the thicknesses of fluid mud layer and depth of water layer have
little influence on the stability with n1,n2 > 8. For n1,n2 6 3, the growth rate of long wave mode
resulting from viscosity mismatch is sensitive to the change of n1,n2.

The stability problem described by the governing differential equations together with the con-
ditions at the boundaries and the interface represents a generalized eigenvalue problem, in which
the wave velocity c is the eigenvalue. A Chebyshev collocation algorithm14 is used to evaluate
the eigenvalue problem.

Our code was validated by comparing our result with that of Betchov and Szewczyk,15 as
shown in Fig. 2 with excellent agreement. We choose ρ2 = 1000 kg/m3, µ2 = 0.97 mPa·s,
and adopt the following parameter value ranges: r ∈ [1,1.2], m ∈ [62.5,16000], Re ∈ [1,100],
Fr−1 ∈ [60,160], spanning a broad range of current-fluid mud combinations. If the density and
viscosity of fluid mud are specified as ρ1 = 1200 kg/m3, µ1 = 1 Pa·s, the above Re and Fr corre-
spond to U∗

2 =0.5–4.5 m/s, δ1=0.01–0.50 m. Surface tension usually shows a stabilizing effect.4,9

But to study the least stable cases, the surface tension is not included in the following calculation
for simplicity.

The K–H instability results from the destabilizing effect of shear, which overcomes the stabi-
lizing effect of stratification.1 Its growth rate increases with wave numbers but is limited because
of viscosity. There is a critical wave number k at which the growth rate is maximized. Figure 3
shows growth rates as a function of the wave number for different Fr. We see two peaks in growth
rate curve over different intervals of the wave number k. The one at small k is clearly caused by
the K–H mechanism. The other is caused by viscosity contrast, because the growth rate of short-
wave disturbance will decay to zero due to viscosity for flow with equal viscosity between the
interface, and its growth rate decreases with Fr. It can be seen in Fig. 3 that the unstable wave
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number range gets larger and larger as Fr decreases.
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Fig. 2. Growth rate vs. wave number k for erf func-
tion velocity profile for Re=5 000, Fr−1=0, S=0,
m=1, r=1, n1=8, n2=8.
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Fig. 3. The growth rate as a function of the wave
number for different Fr. The flow parameters are
Re = 100,S = 0,m = 1000,r = 1.2,n1 = 3,n2 = 8.

Similar conclusions can be drawn for Reynolds number, which is shown in Fig. 4. The di-
mensional growth rate ω∗

i can be expressed as ω∗
i = ωiU0/δ1 = ωi2U∗

2 /δ2, where ωi2 denotes the
growth rate in dimensionless form by scaling length with δ2, velocity with U∗

2 . It shows that ωi2

relates to ωi by ωi2 = ωi/m. In Fig. 4, the growth rate ωi of K–H mode, and therefore ωi2, is
nearly independent of the Reynolds number for Reynolds numbers greater than about 10, which
suggests that the mechanism is essentially governed by inertial effects rather than viscosity. Since
we have ω∗

i = ωiU0/δ1 = ωi
√

1/(mr)U∗
2 /δ1, if m,r are given, the dimensional growth rate is pro-

portional to the velocity of free stream U∗
2 and inversely proportional to the boundary thickness of

fluid mud δ1.
In most cases, the parameters of free stream are available, while those of fluid mud are not.

In order to investigate the response of fluid mud with different viscosities to the current with the
same Reynolds number of free stream, we calculated the growth rate as a function of the wave
number for different viscosity ratio m, as shown in Fig. 5.

In Fig. 5, the maximum growth rate of K–H mode decreases with viscosity ratio m, and it is
far below that of K–H instability in-viscid limit, which has a maximum growth rate about 0.22.
If U∗

2 , and hence U∗
2 /δ2 are fixed (for Re2,ρ2,µ2 are fixed), the dimensional growth rate ω∗

i has
a fixed ratio to the dimensionless growth rate ωi2. We can infer that the viscosity has greatly
reduced the growth rate of K–H instability in current-fluid mud.

It can also be seen from Fig. 5 that there are two instability modes over different intervals
of wave number. One is the K–H mode already discussed above, the other is caused by viscosity
mismatch, denoted as Mode II in Fig. 5. If the viscosity of the fluid mud is very high, for example,
8 000 times that of water, the growth rate of Mode II dramatically exceeds that of the K–H mode
with viscosity of fluid mud 1 000 times that of water, which suggests that the growth rate does not
decrease monotonously with viscosity of fluid mud.

In summary, viscosity should be included in two-layer fluid flow with large viscosity contrast
such as fluid mud and current. Viscosity is found to enlarge the unstable wave number range, cause
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Fig. 4. The growth rate versus the wave num-
ber for different Re. The flow parameters are
Fr−1=160, S=0, m=1 000, r=1.2, n1=3, n2=8.
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Fig. 5. The growth rate of different modes as a
function of the wave number for different m. The
flow parameters are Fr−1=60, Re2=100 000, S=0,
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new instability modes, and reduce the growth rate of K–H instability. We find that a mode resulting
from viscosity difference between water and fluid mud will arise at the interface, compete with,
even overwhelm the K–H mode when the viscosity difference is large enough. The growth rate
of K–H instability, which is nearly independent of Reynolds number of free stream, is greatly
reduced by the viscosity.
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