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Abstract A new theory is developed here for evaluating soli-
tary waves on water, with results of high accuracy uniformly
valid for waves of all heights, from the highest wave with
a corner crest of 120 down to very low ones of dimin-
ishing height. Solutions are sought for the Euler model by
employing a unitied expansion of the logarithmic hodograph
in terms of a set of intrinsic component functions analyti-
cally determined to represent all the intrinsic properties of
the wave entity from the wave crest to its outskirts. The un-
known coefficients in the expansion are determined by min-
imization of the mean-square error of the solution, with the
minimization optimized so as to take as few terms as needed
to attain results as high in accuracy as attainable. In this re-
gard, Stokes's formula, Fpum = tan jor. relating the wave
speed (the Froude number F') and the logarithmic decrement
jof its wave field in the outskirt. is generalized to establish
a new criterion requiring (for minimizing solution error) the
functional expansion to contain a finite power series in M
terms of Stokes’s basic term (singular in w). such that 2M u
is just somewhat beyond unity, i.e. 2M . >~ 1. This fun-
damental criterion is fully validated by solutions for waves
Dedicated to Zhemin Zheng for celebration ot his Eightieth Anniversary
It gives us a great pleasure to dedicate this study to Prot. Zhemin
Zheng and join our distinguished colleagues and friends for the jubilunt
celebration of his Eightieth Anniversary. Warmest tribute is due from
us, as from many others unlimited by borders and boundaries, for
his contributions of great significance 1o science, engineering science
and engineermg. his tremendous influence as a source of tnspiration
and unerring guide o countless workers in the field, his admirable
leadership in fostering the Institute of Mechanies of world renown, as
well as tor his untiring endeavor in promoting international interaction
and cooperation between academies of various nalions.
T.Y. Wu (.+)
California Institute of Technology, Pasadena, CA 91125, U.S A,
Fellow, Institute of Mechanics. Chinese Academy of Sciences.
Beijing 100080. China
E-mail: tywu@its.caltech.edu

J. Kao
Warner Brothers. Glendale, CA 91203, U.S.A.

J.E. Zhang
The university of Hong Kong. Pokfulam Road. Hong Kong SAR. China

of various amplitude-to-water depth ratio o« = «/h, espe-
cially about & >~ 0.01, at which M = 10 by the criterion.
In this pursuit, the class of dwarf solitary waves, detined for
waves with o < 0.01, 1s discovered as a group of problems
more challenging than even the highest wave. For the highest
wave, a new solution is determined here to give the maximum
height «j,,, = 0.8331990, and speed Fj,,, = 1.290890, accu-
rate to the last significant figure, which seems to be a new
record.

Keywords Solitary waves on water - Unified intrinsic
functional expansion theory - Exact solutions - High-accu-
racy computation of waves of arbitrary height - Mass and
cuergy transfer

1 Introduction

Theory of solitary waves on water has a long colorful his-
tory. It has been enriched by contributions of great signifi-
cance from pioneering masters and their followers. Strong
interests, however, have been largely devoted to the highest
and almost highest waves for their full resolution. leaving
the very low waves virtually unattended. The fully extended
scope of our recent studies is aimed at exposition of the real
richness of this wave phenomenon.

In its founding era, Sir George G. Stokes made two con-
tributions of basic importance to its theoretical foundation. In
one of them, the behavior of solitary waves attenuating with
distance in their outskirts was explored. on linear theory, by
Stokes [1] to attain a formula relating the wave speed and
the logarithmic flow decrement (see Eq. 2). a relation which
Stokes claimed exact. The other contribution of Stokes's (1880)
examines the crest of the maximum wave, concluding that if
a wave should peak to a ridge, it must be a corner of 120 .
These milestone marks have left a fundamental impact on
subsequent advances in the field.

Serious attempts to calculate steep solitary waves have
been developed along a few different approaches. all involving
lengthy techniques. One approach adopts various series expan-
sions in powers of a small parameter, usually the wave height



or a certain alternative, for a perturbation scheme that dates
back to the pioneering works of [2—4], which, as being the
leading order in the expansion, hold only for waves of small
amplitude. Higher orders of approximation have been devel-
oped numerically to ninth order by [ 5] and further extended to
fourteenth order by [6], and more recently developed in exact
form to the fifteenth order by | 7]. The extreme waves. includ-
ing the highest and almost-highest. are difficult to reach by
such methods of perturbation expansion due to the singular
behavior arising with increasingly large curvature at the crest
in the limiting stretch.

In another approach, the method of computation employs
certain derived integral equation for computing the wave pro-
file and 1ts speed (for a review, see [8—11]). Various integral
equations have been derived and applied by [12-16] and oth-
ers. A proof of the existence of solitary waves is given by | 1 7]
based on their integral equation for sufficiently small wave
heights. Here again, difficulties are invariably encountered
when the wave approaches its maximum limit.

In still another approach, some boundary-integral for-
mula involving Green’s function is adopted for representing
analytical functions (such as Cauchy’s integral theorem) for
computation of wave form and its speed, such as those devel-
oped by [7. 18, 19] for steep solitary waves very close to the
maximum with very high accuracy. These methods, however,
have not been shown applicable to very low waves, such as
the earthquake-produced tsunamis progressing in the open
ocean, which is of great importance to coastal hazard and
safeguard.

In particular, the highest solitary wave has been singled
out for investigation by various authors as a special inter-
est by itself. To this topic, contributions have been made by
[20-22] (for a review, see [9]). Further advances have been
niade by more recent contributions. including [7], [ 10], [23].
|24] and others. Accurate solutions are of value to studies
on their stability characteristics, which are in turn related to
the issue of breaking of shoaling waves and studies on the
distinct types of wave breaking.

The class of the almost-highest solitary waves, perhaps
the most perplexing of all the waves for its rich content, is
difficult to be determined very accurately. Here, it has been
discovered by [25] that many integral properties of a solitary
wave, including its speed, mass, momentuin, and energy, sep-
arately attain a maximum, each at a wave height slightly short
of the limiting value. The more recent contributions to the-
ory for the almost-highest waves by [7,10.18.19,26,27] have
shed more light on the topic. Nevertheless, further simplifi-
cations of still lengthy techniques would be of great value to
be pursued for further advances.

This study attempts to introduce an entirely new theory
by a unitied scheme of analysis and computation for evalu-
ation of solitary waves, and to yield results uniformly valid
with high accuracy for waves of all heights. all modeled as
an irrotational flow of incompressible and inviscid fluid. It is
pursued along a new approach. distinct from the others men-
tioned above, under the guideline to take as few unknown
variables as needed to achieve resulting accuracy as high as
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attainable in practice. To reach this goal, the primary first step
is to carry out a clear expository analysis of the intrinsic wave
properties underlying the phenomenon in question to deter-
mine the base functions called the intrinsic component (1C)-
modes, as explained in §3 under the premise of formulation
in §2. These mode functions in various flow domains are then
unified and used to constitute an expansion of the complex
velocity, or its logarithmic hodograph, with unknown coefti-
cients, called the unified intrinsic functional (UIF)-expan-
sion to represent the solution sought as delineated in §4. The
unknown coefticients are solved by minimizing a functional,
which is just the mean-square crror of the solution satistying
all the basic equations involved, with an interactive optimi-
zation by two numerical methods to be presented in §4. The
two methods complement each other very well in application
Jointly to produce results of high accuracy to three classes of
solitary waves — the extreme. medium and low waves. Results
of relevant integral quantities are presented in §5 to update
the records. Some reflections and outlooks are expounded in
§6 on the present study for further development.

2 The problem and formulation

The problem is to compute a solitary wave of arbitrary height
. progressing in permanent form at a constant speed ¢ on a
layer of water of constant depth /i initially at rest, and to yield
results with a uniform high accuracy over all wave heights. To
this problem, Stokes [ 1] was the first to explore the behav-
1or of a solitary wave attenuating in its outskirts at a rate
which Stokes assumes to be exponential. Adopting the Euler
equations for irrotational flow of incompressible and invis-
cid fluid, a model regarded by Stokes as ideal for evaluating
such solitary waves, the wave profile 7(x, t) and the veloc-
ity potential, ¢ (x, v, 1), which satisties the Laplace equation,
o, +¢,, = 0, will thus assume the functional form in v, v,
and time 1 as

) =ae M

plx v.ry=he 'V T cosh(y+h)
(—h <y <lx, 1) (h

as [x] — oc in the flow region bounded below by the hori-
zontal bottom at v = —/ (at which ¢, = d¢/dy = 0) and
above by the water surface elevated to v = 5(x. t) from the
rest level at v = 0. The linearized boundary conditions on
continuity and surface pressure (= ) read

n=e.. G +en=0 (yv=0).

both of which are satistied by (1), for arbitrary constant « (or
by, provided

Fz/m = tan{;¢m) ([;:(/\,;71. = kh), (2)

where F iy the Froude number and o is the index of the
wave decay rate. And as a stroke of genius, Stokes claimed
this relation exact. signifying that relation (2) holds unitormly
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valid for fully nonlinear and fully dispersive solitary waves
of all heights. However, no further qualifications are found
being brought forth by Stokes concerning this relation.

To proceed tor the general consideration, we adopt the
wave frame of reference moving with the wave speed ¢ ot a
feft-going solitary wave in which the wave appears stationary
in the physical (v, v)-plane with a free stream of velocity ¢
incoming in the v-direction, with the wave bounded above
by its free surface at v = 7(x) and below by the horizontal

chaanel floor at v = —/. In terms of the complex variables
for this irrotational plane flow,
c=x+iy, f=¢+iv., w=dffd:=u—iv,

w=T1416 = log(c/u),
&

T = log(c/q¢), (3)

¢ =+ o)t

arctan(v/u),

the complex coordinate 7, complex potential f, complex
velocity w and the logarithmic hodograph « are analytic
tunctions of one another. And the pressure p is given by
the Bernoulli equation,

a9 ) l ] 2
(" +v7)+ = ply,y) +gv= -, (4
P 2

19| —

p being the constant fluid density, g the gravity acceleration.
With the length scaled by /t and velocity by ¢, we have
the dimensionless variables:

o=/ h, f = f/ch,
po=rplpc. g, =q/c.

o =a/h,
(5)
w, = w/c,

and have the * omitted hencetorth for brevity. The flow do-
main occupies an infinite strip in the f-plane: —1 < ¥ < 0,
—o0 < ¢ < 0, bounded between the free surface at v = 0
and the channel floorat ¢y = —1.Taking f as the independent
variable, the problem becomes to find the analytic function
w = w(f),or w= w(f), under the boundary conditions:

2
g+ an =1 (on ¥ = 0), (F=c¢/ygh), (6)
=0 (on ¥y = —landon ¢ = 0), (7)
T+ — 0 as ¢ — £, (8)

where (6) is given by (4) under condition that p = const. =
on Y = 0, and F is the Froude number characterizing the
flow. Condition (7) for ¢ = O indicates the fore-and-aft wave
symmetry. Finally, the physical plane is given by quadrature,

1
2 = 1y = [ e ar
e /‘u'(f){j / o

from which we deduce in particular for ¥ = 0 on the free
surface,

g
X))+ ing) =fu + / M de. (9)

JU

with v (¢ = 0) = 0. and « = 5 (¢p = 0). the wave height.
Equivalent to condition (6). its gradient along the free surface

3
(using Jz =explithds. d¢/ds =g = exp(—1). dn/ds =
sinf) gives
v ® ing 0) 10
—y = — sin Yy =0).
E)(JS‘I 2 (on Y (10)

Thus, solutions can be attained in terms of the conjugate func-
tions T(¢) and #(¢) of w = 1T + i = w(f) directly under
conditions (7). (8) and (10). as a one-parameter family in F.
Instead of F. an alternative is what we call the proportional
amplitude parameter,
B=1—qg (=2a/F") (0 < B <. (11)
which follows from applying (6) to a round wave crest, at
which n = @ and w = ¢, say. giving ¢ + 2a/F- = 1, or
(11). 1t covers the range from § = 0 for the vanishing wave
(¢ = 0)to B = 1 for the highest wave (with ¢, = 0), and has
the merit that (S} is monotonic over (0 < 8 < 1) but o (F)
is multi-valued, as will be seen below. '

3 Analysis and the intrinsic wave properties

To construct exact solutions for solitary waves ot arbitrary
height, it is essential to find precisely the asymptotic repre-
sentation of the flow tield in the outskirt, especially for very
low waves because of their exceedingly vast outstretch with
diminishing rates of decay. And it is equally important to
determine precisely the asymptotic behavior of the highest
wave about its crest. To proceed. we map the flow domain
conformally onto the unit circle [¢] < | in the parametric
¢-plane by

!

.f':—i—{»—log( (12)
b4

in which the log function and /¢ are uniquely defined with
a branch cut along the positive real ¢-axis, so that the wave

surface is mapped onto 7] = | (0 < arg¢ < 2m), the
wave crest onto £ = — 1, and the channel floor at ¥ = —1

mapped onto the upper and lower side of the branch cut along
0 < ¢ < I, reaching the physical infinities (marked by / and
J in Fig. 1) at ¢ = 1 £i0. On the wave surface,

=07, f = =logcou(q),

> (13)
w="T(0)+i0(c)

0O <o < 2m).

The corresponding boundary conditions (7). (8) and (10)
become

' The parameter A is related to some similar ones used inthe literature
designated (in the present notatiom as oy = 1 —y, /g, 0 =1 — quf‘
and a few others involving the velocity ¢, at the crest. velocity ¢, at
the trough, wave velocity ¢ and linear wave velocity ¢. In comparison.

= | — (4, /¢,". and B in addition has the simple relation 8 = 2a/ F-°
by Bernoulli's law.
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Fig. 1 The conformal maps of the flow domain

Bl 3 ) .
G(n)Ez'rl:’c'“”sin(z)i +smfd =00< o< 2m)., (14
2 do
=0 (Creal, =1 <¢ < 1), (15)
w=1+i0 =0 (as ¢ — |). (16)

This system now affords the solution parametrically in terms
ot the conjugate tunctions (') and #(c). Finally, the wave
protile is given parametrically by (9), x = x (o), v = n(a),
where

; : U TP !
o)y +inlo) =ia + — et ——do
T /), sin(o/2)

(0 <o <m).

(17
The Bernoulli equation (6) on the wave surtace now becomes
Bla)=¢ "' — 1 4 25(0)/F? =0

(no)by (17), 0 <o < ). (18)

3.1 Asympitotic free-stream flow field

Near ¢ = | (the physical infinities), the boundary conditions
(1H)-(16)yon v = (o) + iH(o) assuming different forms
across the point ¢ = | imply that w(¢) has a branch-point
singularity at ¢ = 1. Hence we assume for w an asymptotic
expansion as

w(l)=1+ iy = Z;’)[’:l (l,,,{(l o {.)/2}3111/1

(as ¢ — 1), (19)

where u and g, 's are real, as yet undetermined, so that# = 0
for ¢ real and w(1) = 0 to have (15)-(16) satisfied first. That
the higher-order terms in (19) assume the successive powers
of the leading term is because of the need to balance out the
powers and products of T and # contained in (14). On the free
surface, by (13), we have

M
THa)+i0(5) = Zu,,, exp(—i[mpuim — o)]isin

=1

0O <o .

g )zm/l
ol

Substituting the above (o) and #(a) in (14) and expanding
(1) for 0 < & « 1. we find that (14) 1s satisfied to leading
order. for arhitrary ;. provided that y¢ satisties (2). Thus.
the leading term in the series of (19} 1s Stokes’s term, which
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has a branch singularity in 7¢. while g is the principal-branch
root of (2) for assigned F (> 1, 0 < y; < 1/2) and, as is

 well accepted, is the only root of (2) that is needed for the
solution sought. Finally, to determine M for the length of the
inite serics in (19), we argue that these M singular terms in
(19) must be required to match optimally smoothly with the
remaining part of o that is analytic and regular in the vicinity
of £ = 1, so we propose the following relation,

2Mpe = 1, (with 2M 1« somewhat greater than unity),

(20)

as an ideal criterion tor determining M = M (;1). The gen-
eral validity of criterion (20) for waves of various heights will
be attested later with examples. With this validity so estab-
lished. the set of (2) and (19)—(20) then provides an optimum
asymptotic representation of the singular behavior of w(¢)
in the wave outskirts. Empirically, the set of Egs. (2) plus
(19)—(20) 1s therefore established as a4 major generalization
of Stokes’s original relation (2) to hold in general for solitary
waves ot all heights.

To have a first assessment of the relationship between
F (;1) and wave height o, we may use Boussinesg-Rayleigh's
first-order relation, F = /| + «, so that o = tan(um)/
~ I, from which g 1s found to decrease monotonically from
w o= 0371 (at « = 1) down to zero as « — 0O (F —
1y, as shown in Fig. 2. Thus, criterion (20) gives the value
Moy = 2.5.10,30, and 90 ate = 1,107, 1072, 107",
and 10 %, respectively (see Fig. 2). Such minute solitary
waves ds @ < 1077 may seem unreal. but it is generally
known that earthyuake-generated tsunami waves progress-
ing in the open Pacific Ocean (of mean depth i = 4 km)
with a height commonly estimated to be merely ¢ >~ 1 mor
less, would give o = a/h =~ O(1077).

In concluding on this point, we note that while Stokes’s
relation (2) has invariably been always observed in the lit-
erature. it has been employed either as a single factor (i.e.
M = 1), or in an infinite series of its powers (i.e. M = o0,
e.g. [22]), neither bearing the simplicity to avoid lengthy cal-
culations.

04— -
M=90 o

035

M /250

0.3

025

015

01

005

0

107 10

Fig. 2 Variations of o) and M («) tor solitary waves of all heights (o)



Solitary waves ol arbitrary height

4

3.2 Asymptotic flow field near the crest of the highest wave

‘The highest wave with a corner crest of 277 /3 radian (= 120 )
vertex angle may be regarded as the asymptotic limit of the
almost-highest waves to serve for a standard reterence. The
free stream comes in with a particular Froude number, F,,
say, with the free surface rising to reach a stagnation point
at the corner vertex, and falling oft symmetrically to down-
streany infinity. The dimensionless wave height, by (11) with
g, = 0, 1s stmply
apy =dipg/h = F,,Z\,/'_’. 21)
which, as yet undetermined, 1s the highest of all solitary
waves. However, it is well known that Fj,,, is not the maxi-
mum Froude number of the fastest solitary wave on water.
Concerning the crest geometry of the highest solitary
wave, Stokes [ 1] made another major contribution by show-
ing, again with an argument in great simplicity, that if a wave
should peak to a ridge, it must be a corner of 120 . In addi-
tion, Stokes | 1] has provided an exact solution for the infinite
wedge flow under gravity as
f=¢+iy = Q2/3F)" )"
(w =df/dz = (1/F)e'™ 2%, (22)

so that ¥ = O and |w]> = |z|/F” (Bernoulli’s equation for
pressure p = 0) on both argz = —n/6 and = —57/6,
making the two wedge taces free under gravity (acting in the
(—y)-direction). As the wedge faces are stationary, this is not
atraveling gravity wave. The task that remains is to seek how
this exact solution can be adapted (e.g. with or without addi-
tional singularities) to describe the leveling off of the wedge
faces to tit the highest solitary wave profile.

Reflecting on this 1ssue, we may recall that no inquiries
ever appeared in the literature to explore if the primary singu-
larity at the wedge crest should require a secondary singular-
ity to complement the solution structure until Grant [28] did
find it to be of a branch type. With this finding, w(£) assumes
near its corner crest the asymptotic expansion as

N

1 l+( l+( ROAE
(U(C):*§|0g< ) )+Z(/1<T) +“)1’(()

n=1

(¢ + 1] < 1. (23)

Here the first term is Stokes’s wedge flow solution (22). now
adopted to lead the asymptotic expansion about the wave
crest (as ¢ — —1). The added series represents the comple-
mentary branch-point singularity at the crest (suggested by
Grant [28]) to make the free surface level oft from the straight
wedge surface and eventually flatten out horizontally with the
vand ¢, s real. yet undetermined, so that (<) 1s real for ¢
real to have (15) satisfied. In addition, ), (¢ ) represents the
part which is analytic and regular about ¢ = —1. The log and
branch functions in (23) are uniquely defined with a branch
cutfrom¢ = —1 to —oc.

On the free surface. L = expio), U < o < 7,(23) gives
wlo) = T(0) + ifl(o), where
1

a
w(o) = —=log(cos =) —i-0

3 2 6

N
a 5.
+ Z ¢, explinre)cos 5 )"+ w, (o).
n=1 -
Using the expansion of this w(a) about { = —1 (or for
0 <d=m—0 « 1), wefind that (14) is satistied up to the
first term of the series in (23), for arbitrary ¢, provided that

NETTES 2v) = tan(vw) , 24
| T R
w({=—-1)= 3 log(?F,m). (25)

Condition (24} is a transcendental equation with multiple
roots, of which the principal root, v = 0.40134, is the only
one that 1s needed for much the same reason as for u of (2).
And likewise, the higher terms in (23) assume the consecutive
powers of the first to N terms, with the number N determined
by an optimization scheme to be described later so as to help
render the solution accuracy optimum. though we could also
use the empirical relation 2N v >~ | as a guideline (like (20)
for y1). Condition (25) can be either applied as a constraint
on the solution, or reserved for a consistency check on the
accuracy of the solution attained.

4 The unified intrinsic functional expansion (UIFE)
theory

The foregoing results on the intrinsic behavior of sohtary
waves in the outskirt and near the highest wave crest will now
be incorporated to constitute a unified intrinsic functional
expansion (UIFE) theory for solitary waves of all heights. It
is based on two principles:

(1) This new theory requires first to establish a unified
intrinsic functional (UIF)-expansion for w({) in terms of a
set of intrinsic component (IC)-functions (by unifying the
above results for the various flow regions) to represent pre-
cisely all the intrinsic properties of the wave entity.

(i1) The unknown coefficients in the UlF-expansion for
() are determined by minimizing the mean-square error
Ef; of G(o) of (14), or E;g of B(o) of (18), the other condi-
tions (i.e. (15)—(16)) being held as understood, where

ﬂ':/ Gz(l'((f).(‘)((f).(f)d(f (UIFE-method I); (26)

(}

;;:f B (t(o). (o). o)do  (UIFE-method 11). (27)
0

Here. UIFE-method I permits stepwise interactive execution
such that the minimization of £; 1s optimized stepwise. start-
ing with a few leading terms in the UlF-expansion. with a
new term selected in turn by its top ranking among all the
competing candidates in making a steep descent inerror Eq, .
the guideline being to find such an expansion with as few
terms as needed to achieve a resulting accuracy as high as



attainable in practice. The related UIFE-method It employs a
numernicil code developed here for computation by iteration
for convergence to achieve higher accuracies, however with
less versatility for optimization. Nevertheless, the two meth-
ods complement each other very well; they have been applied
jomtly inevaluating solitary waves of all heights. In practice,
we hine Tound that the Program called “FindMinimum® of
the software Mathematicu 5.0 15 very well suited for imple-
menting Method-1. Examples are presented below to illus-
trate their power, simplicity, and high accuracy for solitary
waves classified mnto three regimes: the extreme (comprising
thie highest and almost highest) waves, medium waves, and
low wives. :

4.1 The highest solitary wave - by UIFE-method 1

For the highest solitary wave, occuring with an undetermined
Froude number, Fj,,, say, we propose for w(¢) = 1 + i6 a
unified expansion as follows:

=, Ziw (‘=)

- lu=0
)Z/H/l
s

where a,,, s and b,,,,"s are real unknown coefticients so that
conditions (15)-(16) are first tulfilled. Here, the first term
with the /og function is adopted from Stokes’s wedge flow
solution (22) to lead the expansion for modeling the comered
wave crest, the second term is added to the first to make the
decay rate of their sum one order lower than the first term
alone us ¢ — 1 s0 as to leave the intrinsic wave properties in
the outskirt more intact with the remaining terms. The double
series in powers of 21 unifies the secondary singularity at the
crest with the outskirt feature given by the factor (1 — ¢ )"
The last series (with coefficients b, ) introduces a function
regular everywhere (save at { = 1) to admit arbitrary varia-
tions of the solution without affecting the outskirt behavior.
To this point, we note that an insightful construction of the
Ull:-expansion such as (28) 1s actually a primary step of the
optimization advocated here.

On the wave surfuce, ¢ = exp(io), we have tor w (o)
o) i) (0 <o <m),

l+(

w=-3 tlog

I-¢
+/)nm[”} (A (28)

| | o g .
Ho ) —= —- ()UL)\— sSin —)°
(o) : (cc 3 )+ ( p )
—i ?(a —sina) + w, (o 1, 1),
D
VAN
. o l
Dy o) = Z Z I"wu(',”I "(cos By )Tt Dy
o=t -

anpeT o) )_m//

(sin — (29)

e
The problem is thus to minimize E7 (a,,,,. by, of (26) with

tio ) and Ao given by (29).
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For conducting the minimization by principle (i1), we first
apply Method-I by employing the Progrum “FindMinimum’
f the software Mathematica 5.0 which 1s suitable for serv-
iwg the present purpose. In short, “FindMinimum| Ela,,, }.
{ps iy, i, 117 (0 the Mathematica notation) searches
automatically by the program for a local minimum in £ as
a function of multiple variables in «,,,, by finding the path
of steepest descent from the given point a,,,,, toward .
and returns, it successtul, a list of the form | E,.,,,.. {d,, —
a*yn . E,y being the minimum value of E found, and ux,,,,
the value of a,, tor which E,,,, is tound. However, « local
minimum found is not necessarily the overall global one.

In applying Method-1, we start with a few leading terms in
(29), and optimize the mininization of E; stepwise in calcu-
lating the unknown coefficients and the unknown parameter
jeor Fy, by (2)) inan interactive manner as described, while
plotting results in steps for monitoring the progress, the over-
all global minimum is generally obtained. This is basically
the procedure that constitutes the UIFE-Method 1.

Thus we obtain for the highest solitary wave an accurate
solution in terms of (28) with

Ep = 1120 x 1077 10 = 0.335056. ayy = 0.456569,

dry = —0.102203. uzy = —0.158703,

dyy = 0.0116986, «;) = 0.253853, «;>» = 0.13121,

diy = 0.0225912, «y = —0.0077326,

b1 =—0.329156. hj» = —0.0162222, by = 0.00144751,

by = 0.0000421358;

wpy = 0833121, Fj, = 1.29083, B =2u/F> =1

(30)

where E,,,,, is the minimum root-mean-square error E; found
with the corresponding values of ¢, and b, listed in (30),
giving for the highest solitary wave the maximum height
ay, = 0.83312, with the wave velocity at Froude number
Fi = V2, = 1.29083, accurate, implied by the £,
value, at least to four significant figures. Regarding the step-
wise descent in error distribution resulting with optimiza-
tion, the tinal result for the local error G(o) is plotted over
00 < o < 7 in Fig. 3a to exemplify that the resulting small
local error is mdegd quite uniformly distributed within the
bounds of +2 x 1077

The problem of the highest wave has also been solved
by applying Method-H, which will be presented in §4.5. It
is however of interest to cite its result for comparison here.
With employing fifteen intrinsic modes, the corresponding
result by Method-I reads:

ay,, = 08331990, Fp,,, = 1.2908904,

(31)
local error <2 x 10 7.

By comparison with (30) the Method-1 result is confirmed
for its accuracy as claimed.

Here. we note that the solution so attained is found, inter-
estingly, to consist of four intrinsic component (1C) modes
in each of the three groups, namely. in a,,o with M = 4. and
inday,. by, both with N = 4. This distribution attained with
optimization is a strong indication of the overall real intrinsic
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nature of the wave entity, which is at considerable variance
with the previous solutions in the literature on this problem.
(For instance, M is taken in almost all the relevant works as
M = 1 for one term only in «,,, or else M = oo, e.g. [22].
Likewise, N = 1 when the terms in a, are taken at all.) And
with the present distribution, it takes only twelve IC-modes
of the functional expansion to achieve an exact solution with
a high accuracy to four decimal places by Method-1, and with
fitteen IC modes to six decimal places by Method-11. (The
solution may be regarded us exact with the resulting G (o) of
{14) representing a corresponding ambient pressure, p, (o),
which is as small as, or smaller than that shown in Fig. 3a
for its surtace gradient.) Finally, we note that with g found
in (30) with M = 4, we have 2M ;1 = 2.68, which is about
twice that given by criterion (20) in this case. To this end,
the solution (28) with the coefticients given by (30) is readily
available for applications.

For comparison, we note that the following numerical val-
ues have been obtuined for the maximum height ¢, ,: 0.827
(16,20,211; in review by [9]), 0.8332 ([22,29]), 0.833200
([23], calculated with 80 terms of the solution series and
estimated by extrapolation to 0.833197), and 0.833224 ([24,
300, of which Williams’ result is probably the most accu-
rate (to five decimal places). In comparison, our result with
ay,, = 0.8331990 by Method-II is accurate to six decimal
places.

4.2 Medium solitary waves - by UIFE-method 1

The regime of medium solitary waves is defined by the range
of 1.10 < F < 1.28, corresponding crudely to wave height
mo.2 <« < 0.68 (or0.25 < a/ay,, < 0.8). Based on the
above exposition of the wave properties, we assume for w its
UIF-expansion as:

\ \ l+( "
(U(():Tﬂ—iHZZZ“lHHJ(f) +’7,,,”(”}

m=In-0

( | — C >1m/1
X .
2

with g« given by (2) for assigned F. This expression simply
follows from (28) by removing all the terms pertaining to the
singularities characterizing the highest wave corner crest, and
hence also by setting 2v = | tn (28). On the free surface, by
(13) and (29), we have

(o) +if(0) =w, (o u,v=1/2)

(w,, (o5 1, v) given in (29). (33)

This intrinsic functional expansion is found proper to rep-
resent the medium and low waves. The problem here is to
minimize £, of (26) with (o) and #(o) of (33).

By applying UIFE Method-1 as delineated in the forego-
ing, numerical results are obtained for the following represen-
tative cases, starting with that for F = 1.20, about midway
in the regime.

Example I-2 — F = 1.20 (¢ = 0.295635). For this case,
the final result reads

apy = 1.33004, a~y = 0.231827, azy = —0.420372,

ayy = —0.637748, a; = —1.01148,
ap = 0.226451, a3 = —0.007756, «;y = 0.0036456,

a5 = —0.000876, aj = 0.000672,
a7 = —0.00023, ayy = 0.000112, as; = —0.466368,
—0.028524, a3, = —0.060235;

25k}

a =0457102; E,. = E,,,/|din] = 6.66 x 1077;

s (34)
B =2a/F- = 0.634864,

which, with the same notation as started for (30), gives the
wave height e = 0.457102 at Froude number F = 1.20, with
the maximum relative error E, ., and with the corresponding
vilue of 8 = 0.634864. By definition, £, is the ratio of
E,,., to the largest |a,,,| found. This local error distribution
G(o), as shown in tig. 3b, appears to conform well with that
shown in fig. 3a for the highest wave to lie within the bound
of £1.0 x 10 °.

In addition, this case ts also computed for comparison
by applying UIFE-method-II, which uses 8 (= 2a/F?) as
its parameter. With 8 given in (34), we obtain a solution by
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Method-11 for w(Z) trom which we deduce tor F and « the
following result:

F = 1.19996681,
local error < 1.58 x 1077

@ = 045706371,
(by UIFE-1).

Thus, with this mutual validation of the two methods, our
results in this case demonstrate again that when the intrinsic
component functions are well unified, and their terms well
optimized in minimizing the solution error, accurate solu-
tions are attained, accurate to the sixth decimal place in this
case with taking only fifteen IC-modes of the series.

Very similar results have been obtained for some other
medium waves in this regime, as illustrated by two more
examples given below. For brevity. their corresponding solu-
tions by method-II, with agreement very similar with the
above two cases, will be omitted.

Example [-13 - F = 1.15 (z¢ = 0.265724). For this case, we
have the following result:

Eow = 2342 x 107° ayy = 1.6532,
ary = —0.274723, a3y = —0.94692,

ayy = —0.0860717, ajy = —1.35186,
ayy = 0.194478, a3 = —0.0004484,
darp = —0.0484815, ay = 0.15268

ax = 0.0001207;
o =0.329909; E,. = E,,,/lain] = 1.4169 x 107"

B =2a/F =0.498917. (35)

Example [-4 — F = 1.10 (. = 0.225741). For this case, our
result reads:

ayy = —0.0143334, ax) = —0.581676,

axy = 0.612436. ayp = 0.193391,

asy = 0.0064854, «a;; = 0.392035.

arx = 0.0307538, a3 = 0.00314869,

axn = 0.195019. a2 = 0.0016658,

a2y = 0.0159643, u»y = 0.00001025

ay = 0.009254, i = —0.0138427, «yy = 0.0148491,
ayr = 0.0245534;

o =0.212467: E,. = E,../)azx] = 3.497 x 107"

B =2«/F" =0.351185, (36)

In Example 1-3, the fact that the solution is represented
with a small number of only ten IC-modes is actually a re-
sult from neglecting several neighboring modes whose coefti-
cients are of order 1077 or even smaller, while keeping the
significant accuracy intact. Here, it further illustrates how
effective the optimization scheme can possibly accomplish.
In general, using relatively small number of the [C-functions
is found sufficient to attain solutions of high accuracy compa-
rable with that given in example [-2. We continue to examine
this trend for even lower waves as we shall pursue next.

T.Y. Wu et ul.

4.3 Low solitary waves - by UIFE-method 1

he range of low and very low solitary waves is designated
By their height less than « = 0.2 (or «/wy,,, < 0.25). In this
ragime, the wave decay index g 1s small, decreasing mono-
tohically to zero with decreasing wave height (see Fig. 2).
From the solution structure (32) we expect, by criterion (20),
that increasingly more M terms with coetficients «,,, would
be needed (see Fig. 2) to achieve solutions of high accuracy.
It is of interest to examine the outcome from the present
optimized evaluation as illustrated by the following exam-
ples. Other than this respect, the unified intrinsic functional
structure {32) that has fittingly represented mediuni waves is
found also appropriate to continue representing low waves.

Example 1-5- F = 1.05 (i« = 0.166553). For this case,

the result reads:
Epn = 1.249 x 107°% a9 = 0.2703349,
)y = —0.270266, dzy = 0.287217,
dy = —0.184282, uy; = —0.0016486,
apn = —0.0021693, a3 = —0.00002488,
a» = —0.0665164, a» = 0.0006883, ai, = 0.0089701,

dy = 2.3644 x 107°;

a =0.102629; E,. = E,,../|ax] =435 x 107"
B =2a/F =0.186175.

Exampie 1-6 — F = 1.025 (= 0.120442).
we obtain:

Ep = 8343 x 10775 ajy = 0.642079,

daxy = —0.178635, ay, = 0.117544,

ayy = 0.0379963, usy = —0.536801,

oo = —0.0234055, a7 = —0.0069011,

dgy = 2.75 x 107°, ay = —0.492772,

a» = 0.0003776, a-; = —0.011734;

(37)

For this case.

o« = 0.0517742; E,. = E/law| = 1.30 x 107

B = 2a/F~ = 0.0985589, (38)
Example [-7 — F = 1.005 (11 = 0.054873). For this case,
we have:

dip = 0.0342629, «>, = —0.0401226,

dy = 0.0218187. ayy = —0.0033137,

dso = —0.0018522, any = 0.00046252,

a7y = 0.00032881. axy = 0.0001 16193,

ayy = —0.0002101, a10.0 = —0.000073,

arro = 0.000061, a;;, = —0.00002122;

o = 00114426 E,. = E,../|uw] =678 x 10 7;
B = 2u/F~ =0.022658.

From the above three examples of low waves of height
a = 0.1, a = 0052, « = 0.001, we see that increus-

ingly more IC-functions with a0 in G = 1, 2. ., M) are
required. as guided by the optimization process. whilst only

(39)
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Fig. 4 Wave protile n(o) as a function of ¢ for low solitary wave of
speed F = 1.005 and amplitude o« = 0.011 exhibiting steep rise of
ploynearo = 0and 2

a very few terms with «,,, in (17 > 1) are needed for attaining
solutions of high accuracy. Here, in Example I-6, coefficient
ago (of order 107°) is being retained to exemplify similar
cases of their insignificance that their omission would leave
the accuracy intact. Thus, we have M = 4, 7,and 11, respec-
uvely. giving 2Mu = 1.332, 1.605, 1.207. (all being just
above unity), an excellent uttestation to the validity of the
proposed criterion (20). In this connection, the need of tak-
ing more M terms for lower waves can be seen in Fig. 4
exhibiting the increasingly steep rise of 17(¢) in an ever nar-
rowing strip adjacent to o = 0 and 27, immediately followed
by increasingly sharper turn into an ever flatter mid stretch,
with decreasing values of y¢. In contrast, for F = 1.005, the
higher a,,,, (n > 1) 1C-modes need only one, namely aj; to
reach jointly with the a,,,’s a relative error of O(1077).

We now return to consider the regime of extreme solitary
waves, i regime of considerable complexities and richness in
new features.

4.4 Extreme solitury waves - by UIFE-method 1

Advances in theory and computation of solitary waves of
extreme amplitude have been made by recent literatures on
the subject. as briefly reviewed earlier. Generally speaking,
computations of rather large scale involving a large number
of terms in some series expansion or integral equations are
required to obtain solutions of quite high accuracy. It is ther-
fore of interest to see how these problems can be resolved
by the present new approach. We attempt to demonstrate this
trend of such endeavor first by the following case study.

Example -8 — F = 1.25 (v = 0.319173). By the
Method-1 procedure. we obtain

E,w =623 x 1077 uyy = 551911, asw = 9.83542.
ayy = —9.74828, = —4.77891.

asop = —0.16352, ay, = —4.8731. a;» = —1.10708.

ajz = 0.814336. ayy = 0.823774,

a5 = —1.08285, uy, = 1.07807, a7 = —0.843973,
diy = 0.376088. u) 10 = —0.09609.

ap 2 = 0.0434562, a1y = —0.0222988,
aj = 0.0082484. a1y = —0.00207028.

axy = — 109254, a2 = 0.218246,
a»y = 0.140565, a;; = 1.74146,
az = 0.122687, ay = —1.86417,

asy = —0.128556. ), = —0.0611095;

o =0.59797, E,. = E,.,/lax | =5.702 x 107°;

B =2a/F° =0.76540, (40)

Here, we note that for greater wave height, it takes more
dy, (here up to N = 13) terms than all the previous cases
to gain accuracy. While the error E,,, is slightly greater
than before, the relative error E,. here is nevertheless still
of 0(107°) due to the larger values reached by some coeffi-
cients. In passing, we point out that some intermediate terms
like a9, a4y, ay 3, ete. are left out by their smallness from
optimization, and the term with b, is admitted for the first
time for this sufficiently high medium waves by optimiza-
tion. These are the general trend found for Froude number
greater than F = 1.25,

Thus. for higher extreme solitary waves, solutions of com-
parable high accuracy are still feasible by applying UIFE-
Method-1. However, the trend demonstrated by the above
example indicates that more IC-modes are needed, whilst
iterative operations for optimization with thirty or more com-
ponent functions simply become lengthy and inefficient. We
therefore turn to UIFE-Method-11 which is developed for
automatic iterative computation of solutions for such cases
to achieve higher accuracies.

4.5 Accurate solutions by UIFE-Method-I1

The UIFE-Method-11 was developed earlier in this study when
this new theory was first conceived. A solution structure
closely analogous to that for Method-I was adopted to estab-
lish a numerical code along a classicul approach for compu-
tation of solutions: it however lacks such versatility as that
open to Method-I for selecting the IC-modes with stepwise
optimization by principle (ii). Otherwise, it has advantages
in other aspects, the first being its capacity of gaining higher
accuracy. Further, Method-11 complements Method-I to facil-
itate computation of almost-highest waves owing to its con-
venience gained from using B (= 1 — ¢ = 2a/F7) as a
free parameter by virtue of the fact that «(8) is monotonic
over 0 < B < | whereas «(F) is multivalued for extreme
waves. Thus, from the Bernoulli equation (5), (1 — ¢°) =
2n(0)/F = Bnto)/nim). which we rewrite, for conve-
nience of computation by Method-11, in the form

no)

)—1=0, (4D

1
GZ((T) = — (1 — ﬂ
q- nim)
where 77(a) is given by (17) and 5(r) = «, the wave height.
The formulation is thus complete with (15)—(16) as the two
kinematic conditions in addition.
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These UIF-expansions for w™'(¢) are closely analogous to
that for w(¢) in (28) and (32); their expressions on the wave
surface are very similar, and hence are omitted here.

The problem, by principle (ii). is then to minimize the
meun-square-error functional

Ez(u,,,,,. £ = / Gg(q((r), na). o dyy,, Bdao.
4]

(O<p <, (45)

with ¢ and G- given by (41)-(42), y by (17), and # given,
whereas for the highest wave, 8 = 1. we minimize E- given
by

E:(Uumlu Fi) = / Gg(q(UL NG ), O dyuk ﬂ = l)do
§]

+iH, (46)

in which ¢(a) of G is given by (43) and (41) (with 8 = 1),
and A is a Lagrangian multiplier.

To obtain solutions with high accuracy, we solve the min-
imization problem with a sufficiently large number of IC-
modes «,,,’s and b,,,"s along the following scheme. First,
for all waves save the highest, 0 < f < 1. starting with
a given B also determines the velocity ¢, at the crest (see
(12)) plus the ratio o/ F-. so that one of the mode coefhi-
cient and one parameter can be eliminated. After this we
count all the unknowns including the remaining coefticients

of a,, (in =12 ..., M:n=0.1,..., N so that we can
make a complete list of unknowns which we call the vector
o= (v, X, 7). of dimension L. In this vector space,

the minimum of £ must satisfy

JES
=0

AY

TY Wu et al.

Table 1 Variations of « () and /7'(8) — by UIFE- Method-11

B o F E... VdB/Miloh
0.300000  0.111033 1.053723 2020« 10°

0.3Q0000 0176148 10836061 1o 107

0.35y018 021228420 1.09978834 1.2x 10 °

0458885 0.2960185 11358535 dx 10

0498917  (.3298574 11499108

0.584250 040743022 118097922 I8x 10

0.634846 0.4570637 1.1999668

0.753499  0.58369035  1.24470064 3.0x 109

(17818 0.61558 1.2549

0.840000  0.68193652  1.27422855 Tx 107

(.853316  0.69698819  1.27812334 d9x 10 ¥

0.878825  (.7253045 1.2847658 [.8x 10 ° 1.28472
0.900000  0.7479485 1.2892276 27x 10 °

0.910000  0.75824470  1.29091908 245x 10 °

0.940277  0.7872063 1.2939914 65%x 10 ° 1.29395
(1L.948000  0.7939264 1.2941987 38x 10"

0.949000  0.7947741 1.294206978  2.1x 10 *

0.950000  0.7956161 1294210710 3.15x 10 ©

0.950300  0.7958677 1.294210973  1.84x 10}

0.950500  0.7960352 1.294210928  2.01x 10 %

0950700 0.79620238  1.294210706  2.18x 10 %

0951000 0.7964528 1204210043 252 109

0951600  0.79695221  1.294207527 3.13x 10 *

0.952000  0.7972840 1.29420496 3582x 10 °

0.955000  0.7997435 1.2941621 22x 10 °

0.967600  0.80953812  1.29355745 1.0x 10 7

0.970108  0.8113862 [.2933581 [LIx 10" 1.29332
0.985600  0.822279] 1.2917375 84x 10 °

0.988000  .82395 1.29147 Ix 103 1.29]44
0990000  0.82535649  1[.291273345  6.17x 10 7

0.996400  0.83016026  [.290859899  [.15x 10 "

0997500 0.83106436  1.290850281  4.22x 10 7/

0998400  0.83182712  1.290860312  7.64x 10 7

0999100  0.83243774  1.290881565  6.1% 10 °

1.000000  (.83319905 1.290890430 2. 107 1.29091

We solve this set of L nonlinear equations in {v,} by apply-
ing Newton’s method, for which we operate with the matrix
equation

A, Ax, =b, (i=12....L),

where A,, = (3°E?/9x,0x,)y. b; = (JE>/dx,). the sub-
index 0 denoting the values evaluated at x, , in the iteration
variables x, = v, + Ax; used at each preceding step for
repeated corrections of Ax, untl the residues become small
enough to tall within an error bound.

For the highest wave, 8 = 1, we apply Method-II to (46)
instead, with the undetermined multiplier as 2 new unknown
but otherwise tfollowing the same procedure. In practice for
all cases, the imitial estimates can assume an early stage solu-
tion of Method-I. or a solution by some lower-order theory
with a relatively small number of L unknowns and let L be
increased with the iteration process to reduce the local and
global errors. In this manner, computations have been car-
ried out to produce exact solutions for a set of values of 8,
especially concentrated about the highest and fastest solitary
waves. The tinal results on the speed-amplitude relations are
given jointly with those by Method-I in Table 1.

Here E,,,,, stands for the maximum local error m G- of
(41, and VdB/Miloh reters to comparisons with [24].
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4.6 Graphical presentation ot numerical solutions
for solitary waves

The principal issues of significance in representing solitary
waves are thought to cover three categories, (i) wave speed,
(i) geometric configuration of wave profile, and (ii1) their
integral properties, all as functions of wave height or an
equivalent parameter, here alternatively taken in §. These
characteristics have been derived from the exact solutions
given in numerics jointly by our Method-I and Method-I1
and are given below.

First. the data on wave speed are compiled in Fig. 5 as
a function of wave height over the entire range 0 < @ =
a/h < oy, = 0.8332, in which the plotted dots denote the
data relating amplitude and speed. and the full curve pro-
vides the values of F(a) given by a spline fit to the solution
data. The range of the extreme waves (0.68 < o < 0.8832)
is magnified for exhibition in Fig. 6 with an eighth-degree
polynomial curve fit to data. A still higher magnification of
the neighborhood of the maximum wave speed is shown in
Fig. 7 with a second-degree polynomial curve tit. From this
fit, we find that the fastest wave has the maximum speed of

Fig. 5 Variation of wave speed F(«) as a function of wave height «
over the entire range (0 < o < oy, = 0.8332), shown with a spline fit
to the solution data

1.295 [

Fig. 6 Variation of wave speed F o). magmtied for extreme solitary
waves over the range (0.68 < o < 0.8332). shown with a 8th-degree
polynomial curve fit to data

1 9421
1 29421
I}
9
1.29421
1 2942
0.73945 0.795 0.7955 0 796 0.73965 0.797 0.7975

Fig. 7 Telescopic view of wave speed F(«) near the maximum F' =
F, = 1294211 of the fastest solitary wave of height o, =
0.7959034, shown with a second-degree curve fit

Fi., = 1.294211 and its height at o;,, = 0.7959034, with
accuracy up to O(107°) or higher.

Beyond the fustest wave, the amplitude-speed curve is
found to reach a second extremum. which is a local mini-
mum as exhibited with magnification in Fig. 8, from which we
find the local minimum speed by a third-degree polynomial
fitas F,;,, = 1.29085 for u wave of height «,,,,, = 0.83106.
The curve tinally proceeds with a very small positive slope in
reaching the maximum height. Existence of the second extre-
mum (a local minimum) has been tound by [19] tor speed
and for some other integral properties.

Turning to the issue on wave profile, we ftirst present in
Fig. 9 four profiles for waves otheighta = «,,, (0.8331990),
0.822279. 0.811386, and  0.796952  (with speed
Fi,(1.290890), 1.291738, 1.293358. 1.294208, respec-
tively). The distant view of the four profile images super-
imposed here gives an overall impression that they are nearly
coincident save for a small neighborhood of the wave crest.
A telescopic close-up view of the wave crests given in an in-
set of Fig. 9 however distinguishes between the four crests,
revealing that the slightly lower waves intersect the highest

.

L2916

-

L2914

1.2912

Fig. 8 Variation of wave speed F (o) near its local minimum at F,,,,, =
1.29085 for a wave of height ,,,,, = 0.83106. shown with a 3rd-degree
polynomial curve fit to data
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Fig. 9 Distant and close-up views of four wave profiles given by
UIFE-Method-I and -II for exireme solitary waves of height w =
ay (0.8331990), 0.822279, 0811386, and 0.796952. with corre-
sponding speed Fj,., (1.290890), 1.291738, 1.293358, 1.294208. Note
that the last three waves ure successively lower in height but all increas-
ingly faster than the highest wave, the last being almost exactly the
tastest one (o y,, = 0.7959034, F,,, = 1.294211)

to become somewhat broader beyond the cross-over, with the
point of intersection moving closer to the corner of the high-
est wave as the wave increases both in height and curvature
at the crest. This also implies that the approaching process
to the corner crest is one strongly singular. We further point
out that the three waves with a round crest are successively
lower in height but all increasingly faster in speed than the
highest wave, the last being almost exactly the fastest one.

Figure 10 shows tive protiles for waves of height o« =
ay,. 0.758245, 0.583690, 0.407430, 0.212284, with the
corresponding speed F = Fj,,, 1.29092, 1.24470. 1.18098,
1.09979, respectively. For waves of decreasing height, they
become broader and slightly greater in local surface eleva-
tion beyond crossing over the higher waves, noticeably with
such gains appearing increasingly more expansive tor low,
and very low waves.

Fig. 10 Wave profiles evaluated by UIFE-Method-I and -I1 tor five
solitary waves of height o = a;, = 0.8331990 (the highest).
0.758245, 0.583690. 0.407430. 0.212284. corresponding with speed
F o= Fy,, = 12908904, 1.29092. 1.24470. 1.18098. 1.09979,
respectively. Note that the second wave is lower in height but faster in
speed than the highest wave:and it is already [ower than the fastest wave
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5 Integral properties of solitary waves

The integral properties of solitary waves, including the
exyess mass, total momentum, kinetic and potential energy,
and the net circulation, have been studied by |6,15.19,25]
and'others for their importance to wave dynamics. notably to
wave breaking in shallow water. In this respect, the existing
exact relations between these integral properties initiated by
[31,32] and extended by [25] and others have played their
useful roles in providing results with high accuracy. There
it has been found that speed F, the mass, momentum, and
energies all separately attain not only a maximum for waves
at a height less than the maximum amplitude ({6]), but also
a second extremum (local minimum) for waves at a height
even closer to the maximum amplitude ([19]). On the other
hand, these properties are not known to have been studied tor
solitary waves ot low and very low heights. We now take up
this entire issue for study.

The excess mass, M, kinetic and potential energy, F; and

E . and net circulation. I", are defined by

A

F? "
M :/l} dx, E = —7// u-udvdy,
- !
E, :/'Lu-,
2

whereuw = (1 — l.v) = Vqs (with velocity potential qg =
¢ —x) is the flow velocity vector in the absolute frame of ref-
erence, and all the longitudinal integrals in x are over (—>¢ <
x < oo)except for I which assumes the sense of wave pro-
gression so that I' 1s always positive definite. Here, M is
scaled by ph-, E, and E; by pgh’ = ph:qz). cy = Jeh,
and I' by /1¢qy. The excess mass M can be evaluated either by
integrating n(x) over x or by

Iy / / / dx dsl
= 1 N = n— —
J Tds dpt?

= FJ/ (¢ T —eTycosh delo),

0

F:F/ﬁ-da:. 47

(48)

where the last step is by using (1¥), rendering the integral
ready for quadrature in o.

The momentum (or impulse), /. scaled by /i7¢. is
defined as the volume integral of the perturbation velocity,
i = d¢/dx = u — |, throughout the flow field; it is related
to excess mass M by Starr’s exact relution

"
1 =F // (tydvdy = FM.
. |

We remark that / assumes the sense ot the wave, hence 15
positive detinite.

For the energy. the potential energy follows at once from
another identity of Starr's,

(49)

E,=(F —1)M/3. (50)
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Table 2 Variations of o, £, F* — 1,

M. T, E, and E; as functions of

B « F F—1 M r E, Ex
0022658 0.01 1443 100500 0.0100 0.248040 0.247637 0.0008289 0.0008255
0.098559 0.051774 102500 0.0506 0.532785 0.52789% 0.0089908 0.0093314
0.186175 0.102629 105000 0.1025 0.767632 0.754351 0.0262274 0.0271228
0351185 0.212467 110000 0.2(00 (135830 1094135 0.0793080 0.0854027
0498914 0.329907 115000 0.3225 1444290 1361129 0.1552620 0.1723930
0634864 0457102 120000 0.4400 1714750 1.577508 0.2514970 0.2881170
0.763400 0.597971 1.25000 0.5625 1.944911 1745225 0.3646700 04286930
0853316 0.696988 1.27812 0.6336 2024838 1.783307 04276453 0.5143476
0.910000 0.758245 1.29092 0.6665 2032937 1.773780 04516319 0.5:489400
0.952000 0.797284 1.29420 0.6750 2005220 1743529 04511517 0.5512650
0.970108 0.811390 1.29335 0.6728 1.986686 1727307 04455311 0.5449277
0.985600 0.822278 129174 0.6686 1.972860 1.715525 0.4396728 05377085
1000000 0.833199 1.29089 0.6662 1.969170 1713828 04372420 0.5345360

For the kinetic energy £, we start from

Sk —//”(v&)31~d<—7§438"~’1~

mEe= g dydx = 811“

— % ddy = /(]Bdi}(.\') = —/ nd(x)
:/n(d.\'~d¢)

=M - FI/I (1 — e*z’)dqs(n),
0

(51)

which follows first by applying the divergence theorem, with
the outward normal derivative d¢p/dn = — 3y /ds taken coun-
terclockwise along the boundary contour, then by integration
by parts. next by making use ot (18), and finally by quadrature
ino.

For the circulation I', we have from (49),

r:Ffvgs-d:c:F/qu(.\-):Ff(dqﬁ—d.\-)

(52)

i

2F/ (1 —efcosB)dp (o),
()

which is readily integrated. Alternatively, we have McCo-
wan’s identity,

2E, = F(FM - T), (53)

which we can use to determine I' or for a check up with the
previous formula for I,

Applying these formulas to the exact solutions, we have
the results given in Table 2.

Variations of these integral properties as functions of g are
shown graphically in Fig. 1 1. exhibited with curves given by a
seventh-degree polynomual tit to data. Their general behavior
as functions of a parameter called w» (= 1 — F=¢” by defini-
tion. in the present notation) has been discussed in detail by
[12]. The behavior of these conserved integral quantities are
found very similar in terms of 8 as in w-. now with their rela-
tive errors updated by the present study, which is of O(107%)
at 8 = 1 and comparable elsewhere of g. For 8 « 1, mass
M and circulation T rise steeply from the origin, while o
and F- — 1 increase linearly with o >~ (F* — 1) = B/2.

and both E, and £, grow proportional to B-. Of these inte-
gral variables, only wave height « is a monotonic function
of B throughout 0 < 8 < [, whereas the other variables all
have one local maximum with their values, derived from the
polynomial fit, given by

(F? = 1), (0.9568) = 0.6745,
[Mr (0.8550) = 1.788.
E,,..(0.9352) = 0.4520,
E;, (0.9421) = 0.5516.

s

M, (0.8771) = 2.038,

(54)

The advantage of having these conservation properties in pre-
cise values may afford a standard reference for further studies.

For comparison, we note that the present results given in
Table 2 agree with those of Williams ([23], Table 5 giving
only for the cuse f = 1 of the highest wuve) up to four, down
to three decimal places, whereas ours have errors (see (31))
no greater than 10 ©.

6 Discussions and conclusion

Summing up this work, we have seen Stokes’s and other
pioneers’ contributions reflected, studied, and generalized to
develop a new theory for solitary waves of all heights. The
power, simplicity, and high accuracy of the new theory have
been illustrated with examples. As this theoretical approach
is new, issues of significance should merit an expository dis-
cussion on its salient and outstanding features.

First, at the foundatton of this new theory, it is essential
to find the precise intrinsic properties of the wave entity to
construct a unified intrinsic functional expansion for a com-
prehensive and optimum representation of the solution under
a specific premise (e.g. wave speed or wave height). To the
importance in first establishing a comprehensive and opti-
mum UIF-expansion we may give a counter example to the
fact that the ignorance (in an early era) to the existence of
the complementary branch-singularity in the solution for the
highest solitary wave had unwittingly kept the computational
studies (on the highest solitary wave prior to Grant. {28 ]) from
achieving accuracy higher than the actually attained. Indeed,
without admitting this complementary singularity. it would



have required some scores to hundreds of terms to reach the
present level of accuracy, if attainabie at all.

Conceptually speaking, we note that with the uanitied
intrinsic functional expansion well established, and with the
optimization carried out stepwise aptly in evaluating the exact
solution. accurate solutions attained by this method can well
return more sharply focused data on the underlying wave
properties, shed new light on the initial concept about the
wave problem (like constructing its intrinsic component (1C)-
modes), and open new ways for further studies. For instance,
in the solution (30) for the highest solitary wave, the twelve
intrinsic modes optimally selected are seen evenly distrib-
uted among three groups (pertaining separately to the outskirt
decay. to the branch singularity at the crest, and to the regular
behavior in the inner flow field). In contrast, for the low wave
of height @ = 0.011 at F = 1.005 of example 1-7, it also
takes only twelve IC-modes for the solution, with however
eleven modes in a,,0 im = 1,..., M = 11) for describ-
ing the outskirt attenuation, leaving only one mode of the
first order, a;,, admitted by optimization to yield a solution,
accurate to O(1077). These features of the solutions are so
salient and definitive that such new data on the wave behavior
should be regarded as the merits unique to this method, and
so succulent and valuable that they can be used reliably to
predict the behavior of neighboring waves by interpolation
or extrapolation. On the contrary., had some arbitrary modes
been admitted at will, it might then require taking many more

1 | l T
J 7 : !
/// - /777\\,
i // h
s I ,
- / - Bl /
/
1 /o071 //
-u/ - | T /
2/ s
/// / K -
" / Fi-1
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Fig. 11 Variations of mass M. cuculation T wave height o, F7 — 1.
kinetic energy E,. and potential energy £, as Tunctions ol the propor-
tional amplitude parameter B
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other modes (most likely in those bearing coelticients b, in
(28) or (32)) to reach compuarable accuracy. if successtul at
tll. On this note, this new theory may be said to have merits
1 simplicity in implementation, and in richness in returning
mtormation on problems solved.

' Mathematically speaking. this new method appears rather
preliminary in status, but simple and proficient in practical
application, and highly promising for future development.
Aside from the existing mathematical resources available
for finding the desired IC-modes. new studies are in need for
finding definitive ways of construction of solution and for er-
ror estimation or proof. [n this aspect, it ditfers from the other
approaches dependent on using series expansions or integral
equations involving use of scores to hundreds of grid points
tor lengthy computation and the need for considering the
convergence for their results.

Furthermore, we point out a new exposition that the class
of very low solitary waves appears to promise more contents
of richness to attract new interest and new devotion to finding
effective newer methods of solution. On this issue, it might
be natural, by intuition, to push forward a contention that tor
very, very low solitary waves, a lower-order theory, such as
the KdV model of the first order should suffice for their accu-
rate description. The total lack of a sound physical ground in
such a naive concept can be easily scen by noticing the fact
that solitary waves of infinitesimal height are also exceed-
ingly long in length. In this respect, we propose to call the
waves with height & < 107° dwarf solitary waves as a new
field, which includes the earthquake-produced tsunamis pro-
gressing in the open ocean with a height commonly estimated
to be of order o = O (107,

In conclusion, we wish to say that the new approach intro-
duced here is buta beginning for further studies on wave prob-
lems involving fully nonlinear and fully dispersive effects as
well as on similar physical phenomena. 1t is by and large held
for continuing studies and very much open for creative ideas
and academic interaction.
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