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ABSTRACT : This paper presents an exact asymptotic analysis on the interfacial crack between two dissimi-
lar elastic-plastic materials. These two materials have identical hardening exponent (r1=n2) but different hard-
ening coefficient ( ¢ |# a2). Two groups of the nearcrack-tip fields have been obtained, which not only satisfy
the continuity of both tractions (ag . 7,5 ) and displacements {#,, uy) on the imterface, but also meet the
traction free conditions on the crack faces. The first group of fields have the mode mixity M’ quite close to
M?P=1(MODE 1) within the whole range 0< a1 /22<o0 . As for the second group of fields, which is only
obtained within the nasrow range 0.9<a1 /a2 <1, it is found that the mode mixity changes sharply with the
ratio value o) /a2.
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I. INTRODUCTION

In recent years, the interface crack mechanics received much attentions, largely due to the
common existance of interfacial fracture in lots of advanced materials such as polycrystalline
intermetallic alloys, composites, and structural ceramics. The early research work on this field
can be found in Williams!", England!?, Erdogan!”, Rice and Sih!¥ and so on. They have
been clarified and extended by Hutchinson et al.!l, Rice'® and Shih and Asaro!” recently . In
order to overcome the oscillation of singular stress and the interpenetration of crack faces ex-
isting in the classical solutions, some modified models of interface crack (such as Comninou ¥,
Achenbach et al.'¥, Atkinson''?, Delale and Erdogan''"') have been further developed. As for
the interface cracks of the elastic-plastic materials , a significant progress was made by Shih and
Asaro!”''J in 1988 . Through the detail full-field computational investigations by the finite ele-
ment method . they found that the near tip fields of crack on bimaterial interfaces have the
nearly separable form solutions of the HRR type in an annular region within the plastic zone.
The other associated analyses include those of Zywicz and Parks!'"), Guo and Keer™, Gao
and Lou'"! and Drugan''¥.

Wang!'? presented an exact asymptotic analysis for a crack
lying on the interface of an elastic-plastic material and linear elas
tic material. A separable singular stress field of the HRR type
has been found in the plastic angular zone around crack tip.

In this paper. an interfacial crack between two dissimilar
power law hardening materials is analysed . Here, the hardening
exponents are identical but the hardening coefficients are different
for both materials. Two groups of asymptotic fields of the HRR
type are obtained, which meet the continuity of both the trac-
tions (oy, 7,5) and the displacements (u,, u, ) on the interface
abead the crack tip. The crack faces open freely. Qur results Fig.] An interfacial crack
also indicate that, in one group of solutions the mode mixity only deviates a little from M?=1,
i.e. MODE I dominates , no matter what value the ratio o /&, takes. But in another group of
solutions , which has been obtained within the region of 0.9<a, /%,<1 , the mode mixity
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changes rapidly just as the ratio value a, /o, decreases from o, /x,=1.

I1. BASIC EQUATIONS
Fig .1 shows an interfacial crack between material 1 and material 2. Under the uniaxial
tension , both materials obey the Ramberg-Osgood formula :

IR + o o (2‘1)
& 0o 0o
where o, and ¢, are the yield stress and yield strain respectively . Between them there is a rela-
tion: gy=0,/E. o is the hardening coefficient and » is the hardening exponent. E is the
Young’s Modulus .

From Eq.(2.1) and the plasticity deformation theory, we can get the general constitutive re-
lation as

Eij z S,-+ akké,-j-f-?a % - (22)
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where S;; is the deviatoric stress component and ¢, is the effective stress. v is the Poisson’s
ratio .

Throughout this paper, italic letters i, j, k are used for subscript indices running over val-
ue 1, 2, 3, and greek letters f, y, p are used for subscript indices running over 1, 2.

Here , we assume that both materials have the same hardening exponent (i.e. n,=n,) but
the different hardening coefficient (i.e. o;# o,). For the sake of simplicity, we further assume
that two materials have the same yield stress, elastic modulus and Poisson's' ratio, i.e.
Oa=0n> E=E,, vi=v,. Afterwards, we will simply designate them as oo, £, v and n.

For the plane strain, the stress-strain relation can be written in a brief form :

_ _(+v) r A
6y~ —F 98, 0 %0t Phy 2.3)

where ¢,,=0,%04> Pg,~0p,~ —;— 0,,04,> and
3 g, \! 1 2 ale,/ay)""!
A=Sa| — I=-+vv+ ———v) (2.4)
2 a( % ) (2 alo, /5)" ' +1
If the stress function ¢ is introduced, stress components can be written as
L (0o 1 0% R, o (1 99
= — —_ = — = — — —_— — .
Toor (ar ro o> T ar? tre or \ r o0 2.5)
The relation between strain components and displacements are
du, 1 Oug u 1 ({1 ou, Oug Uy
= —— = — 7 = — | — + -/ - —
&% T rm T T a\v @ T e s 2.6)
Let e=Kr**2¢(0) 2.7)
where 5s<0.
Substituting Eq. (2.7) into (2.5), we obtain
05},=Krsa~ﬁy (2-8)
where _ _ B B
o, =9 "+Q2+s)p 0o=02+s)(1+s)p T,9=—(1+s5)gp ' (2.9)

It is noted that ()'=d()/df.
In an asymptotic analysis for near-crack-tip field , the elastic strains and the second term
are much small in comparison with the last term in Eq.(2.3), and therefore, can be neglected.
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In this sense, we have

£ﬂ7=a,K"r”£~/37(9)

where /=1 for 0<0<n and /=2 for —n<0<K0

and

where

- -~ 3wy~ = -~ 3 gy ~
) 8r=—30=70'e l(ar—aﬂ) 8r0=_2— e lrrﬂ
"=(K/6,)"¢,-
The effective stress is
g.=Kr'g,(0)
B 3 - . _ 172
oﬁ[T (a,—ag)2+rfg:l
The strain compatibility equation is
1 & 1 & 1 0 2 &
- v - Y - Y .2 =
F e T T T T T BT Gap oo )70

By using Eqs .(2.10), (2.11) and (2.9), the above equation can be represented as

[;922 ‘”S("S+2)][52“((5 "—s(s+2)p) 1 +4(U+nsN g’ ' (U+s5)p 1 '=0

The traction free conditions on the crack faces require

09l g=42=Tralp=£=0

which lead to

pm)=¢ (M)=¢(-n)=¢ (-n)=0

149,

(2.10)

2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

The displacements pear the crack tip can be obtained by the integration of Eq.(2.6).
Ignoring the rigid displacenients , we get

uﬂ=a1K"r1+’”§ﬁ(9)

where /=1 for 0<0<n and /=2 for —n<0<0., and

or

u,=¢,/(1+ ns) ug=(2¢,5—u,)/ns

On the interface , the continuity of tractions g4. 7, and displacements require

[og]l=[7,d =0 }
0

=0
[u,]=[ugl=0
F-a=0 =0
0g ~ g Tr6™ Tr } 0=0
ut—u; =0 ug —ug =0

Eq.(2.21) can be further represented as

R=¢(0)—¢ (0)=0

Ry=0'"(0)-¢ ~(0)=0

Ry=0,e] (0)-me; (0)=0

Ri=0,[2(1 +n5)850)=3 T (0)] —a, [2(1+ns)e;,(0)~F, ~ (0)] =0

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

Egs. (2.15), (2.17) and (2.22) comprise the governing equations for the asymptotic
fields .
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II. SOLUTION OF GOVERNING EQUATIONS
Homogeneous ordinary differential Eq.(2.15), together with homogeneous boundary
conditions (2.17) and continuity conditions (2.22), define a nonlinear boundary value problem .
Equivalently, it can be viewed as a nonlinear eigenvalue problem where the exponent of r in the
solution for stresses is the eigenvalue. In order to solve this problem, let us assume that

Fi(@)=¢(®) F,0)=¢'06) G
Fy0)=9"10)  F,(0)=¢ ")
Thus, Eq.(2.15) can be transformed into a set of one-order ordinary differential equations

as follows .
F (8)=F,(0)

F,(0)=F,(0)
Fi(0)=F,(6)
F,(0)=RF (F,, F,, F,, F,)

(3.2)

RF =Q/D,
- 3=y - o .
D1=—i [a;’ l+—4 o, 3(0,—60)2]

Q=2(HS+1)E;9+HS(HS+2)E,— % [(.Oz_—_l%(?__i)_ &:—5(( ;5 )')?

¢ 5000, )G 1052 @) 6 = e e R )|

- RN ~ e ~ - -
Oe3= > (6,—04)+ ‘;‘ (0,—09g)a,~(2+s)F;)+6[ (t ro)2+TrBT ro ]
Since the eigenfunction can only be determined to within a multiplicative constant, we can

set Fy(m)=1 without loss of generality. Ultimately, the calculated stresses will be normalized so

that {g, Ja=1.
The shooting method is employed to solve the problem, and the corresponding integration
of the system (3.2) is performed by the Runge-Kutta method with automatic step-size control .

Let
F3(TE)=1 F4(TE)=?1|
Fy(-n)=mn, F4(—T'-’)='73} (3.3)
5=,
where 5, (i=1, 2, 3. 4) are unknown values, which will be determined as follows .
Using the initial conditions
F (n)=0 F,(n)=0 Fy(m)=1 Fy(n)=n, ’ (3.4)
we can integrate Eq.(3.2) for @ from n to 0. In the same way. from the initial conditions
Fi(-m)=0 F,(-n)=0 F(-n)=p F(-n)=n (3.5)

we can also integrate Eq.(3.2) for 6 from —x to 0.

After the above integration, F/ (0) and F; (0) (i=1, 2. 3, 4) can be obtained . Through
these values, Eq.(2.22) form a set of residual equations for 4 unknowns ., 1, "
and 7, .

R,(m>m> ma> a)=0 (=1, 2,3, 4) (3.6)
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For solving the system (3.6), the Newton-Raphson method is utilized here:
J (M )An = -R(1%) 3.7)

7ktl=nky ] Ant (3.8)
where 1e€(0, 1) is so chosen that the sum of squares of the residuals is reduced, i.e. the
condition

and

4 4
YRIMTH< F RIMY) (3.9)
is satisfied . The Jacobian matrix J is equal to I6R; /0] .

Our solving procedure is repeated until the condition of

4
R2(7%)<10"1

is satisfied .
The preliminary cofnputation indicated that the eigenvalue s is the same as that of the classi-
cal HRR solutions , i.e. s=— !
n+1

IV. RESULTS AND DISCUSSIONS
In order to identify the relative strength of tensile and shear stresses ahead of the crack tip,
Shih'® defined a plastic mode mixity M? by

Mr=2 tan"(ﬂ) @.1)
R 1,9(0)
where M7 ranges from —1 to 1, with M?=0 for pure Mode II and M*= +1 for pure Mode I
conditions in the nearfield .
When o, /a,=1, it becomes a crack problem of the homogeneous material. In this case,
our solutions do coincide with the two well-known solutions of the HRR field ., which corre-
spond to pure Mode I and pure Mode II crack respectively (shown as Fig.2 and Fig.3).
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Fig.2 The nearcrack-tip fields in homogeneous materials for =3 (MODE 1)
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As the ratio between o; and a, deviates from o) /a,=1, we can imagine that there are also
two solutions ; among them, one has mode mixity M? close to that of the pure MODE [ (i.e.
MP=11); the other has mode mixity M? close to that of the pure MODE 1II (i.e. M?=0).
Our results show that these two solutions certainly exist .

Within the region of 0<a;/a,<0, we first found a group of solutions whose mode
mixity M” has little variation as the ratio value o, /a, alters, and furthermore, they are always
close to M?=*1. For example, as the ratio value a; /a, changes from 1.0 to 0.0, the mode
mixity of the near-tip field for n=3 increases from ~1.0 to —0.960556 correspondingly and only
alters a little (Fig.4, Fig.5). Alternatively, as the ratio a, /a, changes from 1.0 to 0.0, M? de
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Fig.4 Interfacial crack-tip fields for n=3
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Fig.5 Interfacial crack-tip fields for n=3
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Table 1 Table 2
a1 /a2 M? a2/l MP
0.0 —0.960556 0.0 0.960556
0.1 -0.970934 0.1 0.970934
0.2 -0.977615 0.2 0.977615
1/3 | —0.983909 1/3 0.98390%
0.5 - 0.989563 0.5 0.989563
1.0 — 1.000000 1.0 1.000000
n=13 n=3
1.00
n=3
0.99 —0.96(
S : i
0.97 —0.98+
0.9 —1.00 1
0.0 0.0 0.5 1.0
a,/a,
(a) (b)

Fig.6 The mixed mode
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Fig.7 Interfacial crack-tip fields for n=3
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0.0
n=3 Table 3
0.2 -
a1 /a2 M7
0.4~ 0.90 —0.773671
&g 06l 0.95 - 0.656555
’ 0.96 —0.607208
0.8 0.97 —0.535242
r 0.98 - 0.423697
Lo | L 0.99 — 0.246869
0.8 0.9 1.0
a, /ay 1.00 0.000000
Fig.8 The mixed mode n=3
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(a) Angular distribution of stresses
a1=0.5, a2=0.1 (MP=0.973222)
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(d) Angular distribution of displacements
@1=1.0, 2=0.1 (MP=0.962147)

Fig.9 Interfacial crack-tip fields for n=10

creases from 1.0 to 0.960556 correspondingly. The argument is the same as that of the above
case . It is noted that when o; =0, the material system responds like that of a plastic deforming
solid bonded to a rigid substrate in the asymptotic sense. The near-tip field in this case is
shown in Fig.5. Its mode mixity M’ is equal to —0.969556. The variations of M? with o)/,
can be seen clearly in Fig.6, Table 1 and Table 2.

On the other hand, we searched for another group of fields (Fig.7) which have the mode
mixity close to that of the MODE II(i.e. M?=0.0). It is interesting to find that M” changes
very sharply when «,/a, decreases slightly from o, /a,=1.0. Such sharp change of M7 with
o,/ o, occurs within a narrow range 0.9<a,/a,<1.0, as shown in Fig.8 and Table 3.

Of course, within the above narrow range two solutions exist simultaneously for a given val-
ue of a,/a,. They correspond to two different M”, respectively .

It is noted that above discussions are only associated with the near-tip fields for n=3.



Val.8, No.2 Xia et al .: Crack between Dissimilar Elastic-Plastic Materials 155,

When n is pot equal to 3, our results also indicate that the neartip fields have characteristics
similar to those for n=3.

REFERENCES
1 Williams ML . Bull Seismol Soc America, 1959, 49: 199 — 204
2  England AH. J Appl Mech . 1965, 32: 400— 402
3 Erdogan F.J. Appl Mech , 1963, 30: 232— 236
4  Rice JR and Sih GC.J Appl Mech, 1965, 32: 418 — 43
5 Hutchinson JW , Mear M and Rice JR. J Appl Mech, 1987, 54: 828 — 832
6 Rice JR. J Appl Mech, 1988. 55: 98— 103
7  Shih CF and Asaro RJ. J Appl Mech. 1988, 55: 299— 316
8  Comninou MJ. Appl Mech , 1977 , 44: 631 — 636
9 Achenbach JD, Keer LM, Khetan RP and Chen SH. J Elasticity, (1979), 9: 397 — 424
10 Atkinson C.Int J Fract , 1977 . 13: 807 — 820
11 Delale F and Erdogan F.J Appl Mech . 1988 . 55: 317— 324
12 Shih CF and Asaro RJ. J Appl Mech , 1989 , 56: 763 — 779
13 Zywicz E and Parks DM . J. Appl Mech. 1989 , 56: 577 — 584
14 Guo QX and Keer LM . ] Mech Phys Solids, 1990, 38: 843 — 857
15 Gao YL and Lou ZW . Int J Fract,1990 ,» 43: 241 — 256
16 Drugan WJ. J Appl Mech , 1991,58: 111— 119
17  Wang TC. Engng Fract Mech ., 1990 » 37: 527— 538



