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Abstract
The unsteady boundary layer over an impulsively started rotating disk is
studied, a complete solution describing the smooth transition from vortex diffusion
at ot=0 to Kdrmdn’s steady solution is obtained by series expansion and its
numerical continuation. The angle of body streamlines, together with
experimental values, are given as the function of time t as well as the moment
coefficient cy and on-coming velocity w(oo) .

Two- and Three-dimensional inviscid hydrodynamics of turbomachine has been well
developed, the studies on different effects, such as unsteadiness or viscosity, are in full swing. One of
the basic and simple probiems related to rotating bodies is the boundary layer over a steady rotating
disk (Karman!!! ®) _ Its generalization is the boundary layer on an impusively started or a periodic
perturbed rotating disk, which has both theoretical significance and practical application.

Thiriot? first studied the former problem, expanded the solution in series near =0, gave the
full first-order terms and the second-order term of circumferential velocity component g, which
were quoted in seveial books*!"). But his g, was in error, nearly one third bigger than the correct
value, because his coefficient of the term-8h,g; in the nonhomogeneous equation was wrongly
doubled. In addition, the series were valid only for <1 , hence his attempt to apply his theory
totheregion 7>>1 toexplain the experiment was evidently not reasonable. In the present paper,
g, is corrected, the full second-order approximations are obtained and taken as the initial values for
numerical continuations, the compiete solution describing the transition from the initial state to the
final steady state is obtained.,

For an impulsively started rotating disk (the ‘angular velocity «© =constant), besides’
{=2na/w/v introduced by Karman, similar variables include dimensionless time r=of |,
which represents the ratio of two characteristic lengths in z direction: NT = At ] N vie ,
where ./yt and ./3/p, represent the diffusion length and the viscous affecting distance.
Herer, 4 . zand u, v, ware radial, circumferential, axial coordinates and velocity components
respectively. ¥ -is tne kinetic viscosity coefficient. _

When W))A/v_/a)— ,or 12 1 the solution should approach the steady one, hence we
will express the solution in the following form: »
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u=orf({, ), v=0org(f,T), w=n/vo (¢, 1)
The governing equations and boundary conditions are as follows:

¥f P af af azg_h dg dg oh

Tt te =G SEhmetfe=mge p =0 (1)

=0, f=h=0v g=1
|

The momentum equation in z direction can be used to find the pressure p(let p=pvwP ).

aP _9*h . 8k _ 8k
a Lt ot ar -

When ~/vt &~/v/@w (ie. @t&1 )the processis mainly the diffusion of the vortex line
at z =0, just as in the case of an impulsively started plate, the appropriately similar variable should
be

n=z/2:/vt=0/2d/7 (3)

The first order approximation is the function of 7 only, and the effect of T will occur only in
higher order approximations. The solutions are expressed as series of t

f=7fo(77)+73f1(71) + .
g=go(n) +7*g,(n) + - } (4)
h=—al et hy(n) + ¥R () + -]

The first order approximation is found by substituting'(4) into (1) asP!

gv+2ng;=0. hy=f;
fotenfo—4fi=—4gi } (5)
9:(0)=1, go(=0)=fo(0)=Fs(c0)=ho(0)=0
So g,=1—cerf(n)=erfc(n) error function. Following!®! " we introduce the function
2 [m — 2a ._xld
e == (gt 1)}, T T
which satisfies
@i+ 209 —4ag.=0
and has the properties
Fale2)=0, @u(0)=1/(2""T"(a+1)), @e(n)=—a_3(n)
and we express the first-order approximation as
8 Sy =4 (-2
fo(m) =—o(m—2 [y (M], f2(0) -—ﬁ(l ,,)
(6)

h(m = || fu(x)dx
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The second-order approximation is in terms of nonhomogeneous linear equations

g% +2ng; —89,=8f,9,—8hyg;

fi+2nfi—12f,=4f3—8h.f s — 844,

h;=f1 (7)
.(0)=g,(c0)=f,(0)=Ff,(00)=h,(0)=0

These two-point boundary problems can be reduced to the initial value problems of the
corresponding homogeneous equations

¥i+2my, —8y,=0, x!+2nxi—12xx=0}
$.(0)=x,(0)=0, %{(0)=xi(0)=1
and the solution G,, F, of the nonhomogeneous equations (7) satisfying zero initial condition
G, (0)=F,(0)=G{(0)=F{(0)=0. Hence,
9(M=G () =G ()¢, (M) /¥(=2), fi(m)=F (n)—F (=), (n)/x,(=) (9)

Now turn to the problem of continuously smooth transition from the starting state to the
steady state. Firstly, the solution at some time 7, (0.1 in our case) can be found from the
expansion, e.g.

(8)

fle v =mofo(E/2+/7) i3Sy (E/20/7))

Using these as the initial value we can numericably integrate the parabolic eq. (1). The central
difference for s-derivative and the implicit three-point forward difference formula (which has
second-order accuracy) for 7 -derivative are adopted.

azf_ f‘+ll!+f‘—lF’_2f‘lj 2
OCZ— ATI +O(AC)

Of _ Jeess—Fiers | oragry

at =~ 2AL (10)

af _ 3fi,3—A4fi, 1.+ fi, 50 2
ar 2Ar +0(47)

heref,; standsfor f(iA{,7,+ jAr) . Thedifference equations are in a linear equation system with
three-diagonal coefficient matrix; for example

aificr, s+b:fs, s¥efis,,1=ds (11)
a;=2AT/AC2+4h4,jAf/AC, C¢=2AT/A§1—4h‘,jAT/A§ } (12
bim —4 At/AL =3, dy=—afe,s i+ firs-—2(ghs—f1.,) A )

The equation system for g is the same except that d; is replaced by e,
e=—A404,5 +0i.5,+49¢,1f4,301 (13)

These two systems of equations were solved by Thomas algorithm. Iteration is neccessary due to
nonlinearity. The first estimation for £, ,, g, ; in the coefTicients 4,. b, etc. comes from extrapolation.
and the corrections are obtained from the solution of the difference equations. The procedure is
repeated until the relative error is less than one thousandth. Initial values at r=r, and
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=1,—Ar are required, because three-point difference formulae are adopted for 3f/a3t

Af=0.05 and Ar=0,05 areused. Itis found that the unsteady solution is already within
one percent of the steady solution when 7>5 . The profiles of g({,7) and f({,7) at three
typical valuesof t areshownin Fig. 1 and Fig. 2. The variations of moment coefficients c¥ and
w(cog  with time are given in Fig. 3, in which

M= 2mu j: :% dr Cu=2M/(-;—p(o2R5)

The outward diffusion of the vortex line, the decrease of ¢,, and the increase of w(oc) are clearly
displayed. v approaches the steady value faster than « and w. The inclination angle of the body
streamlines (logarithmic spirals)

m=L S =[f/(g=1) ;e

is shown in Fig. 4, and found in fair agreement with the experiment.P 4
The values of g, and f; are given in the following Table.
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