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Abstract

A FEM analysis for studying mixed-mode fracture problem of chopped strand mat
glass fibre reinforced polyester laminate is presented. The analysis is formulated on the
basis of 8-node quadrilateral isoparametric element. The collapsed triangular quarter-point
singular elements were used for calculating stress intensity factors Kr and K.

The crack propagation process was computed by implementing constraint
release technique. Three different approaches to the solution of stress intensity
Jactors Ki and Ky were compared. The effect of constraint condition imposed
upon the displacement of the three collapsed nodes of the crack tip elements on the
K and Ku results was evaluated. The mixed-mode critical stress intensity factors
Kic and Kiuc were estimated for CSM-G RP through the consideration of K; and
Ku calculated and the measured Sailure load and critical crack length in the
experiment.

I. Introduction

Many finite element approaches to crack problems (fracture problems) have been developed""
® The collapsed triangular quarter-point element degenerated from quadrilateral isoparametric
element has now been accepted as one of the best elements of calculating fracture toughness and
proved to be able to produce more satisfactory results™ ¥

A numer of ways to estimate the stress intensity factors from finite element displacement near a
crack tip were proposed by different investigatorsm ). The constraint condition imposed on the
three nodes on the collapsed side of the singular element renders a large effect on the strain
singularity. Reference [6] has demonstrated that the triangular quarter-point elements could have
either 1/5/ r singularityor 1/r  singularity, that depends on if the three collapsed nodes are
constrained to have the same displacement or not. The proof of the different singularity was also
given in Reference [7].

While a large number of papers of investigating crack problem in isotropic (metallic) materials
have been published, there are not many on the finite element analysis of the crack problem in fibre
composites. Sih® has studied fracture mechanics of composite materials and pointed out that in
some circumstances the well-established fracture mechanics for metal materials can be applied to
investigation of composite material problem. Wang etc. published a paper [9] on mixed-mode crack
problem of rectilinear anisotropic solids; as an example, he dealt with the problem of the
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crack emanating from a circular hole in E-glass/epoxy panel.

In the present paper, a FEM analysis for studying the interlaminar shear fracture behaviour of
chopped strand mat reinforced polyester laminate is presented. The deformation of the double-
grooved (lap-shear) specimen and stress distributions along the shear surface are calculated using 2
dimensional 8-node quadrilateral elements. The crack initiation point and initial crack propagation
direction are predicted.

The micro-cracked (damage) zone is calculated by using iteration method. Three failure criteria
are empioyed in the calculations and the results obtained are compared. In this paper, crack-
extension process 1s studied, in which the constraint release technique is utilized. The mixed-mode
stress intensity factors X; and K from finite element displacement field in the near crack zone are
computed.

The effect of the constraint condition imposed upon the three collapsed nodes of the singular
elements on the values of K; and Ki is evaluated. The critical stress intensity factors Kic and Kyc are
estimated by using K; and K calculated and the critical crack length and failure load measured in
the experiment.

II. Finite Element Formulation

1. 2-D quadratic isoparametric element

In the present paper two dimensional 8-node isoparametric (Serendipity) quadrilateral element
are used. In the isoparametric element, the same shape function is used in both the coordinate
representation of x and y, and the displacement representation.
a) The coordinate representations can be given as:

X-:ZN‘(E-U)X‘! y=2N‘(£;n)Yi (z.laﬁb)

fwl il

and the displacement represcntations can be expressed as:

U=“s;‘lN,(£,q)U., V=:sle‘(5,n)V, (2.2a,b)

The shape function is: |
N, =L+ A+ Gtn—1),  i=1,3,5,7 (2.38)
N, =-;-(1—£’)(1+n.,), i=2,6 (2.3b)
No=(1-m)(1+&),  i=4.8 (2.3¢)
where: Eo=E&, no=mm (2.4a,b)

and & and 7 equal +1 or -1 correspondingly.
b) Strain-displacement relationship is given as:

. .
{e} = { ey }=[B]{6}' (2.5)
Vzy



FEM Analysis on Mixed-Mode Fracture of CSM-GRP 743

where {d}° expresses the node displacement vector of an element, that is:
{0} =[ty,vy,ty,0y, ", tly, v 1T (2.6)

and [B] is strain matrix and given as:

[%1\% ](e\ o 1
[Bao=| o (2] (2.7)
Gl &

¢) Stress-strain relationship is as follows:

Oz
{o} ={ Ty }:fD]{s} (2.8)
Try
Where [D] is the constitutive matrix and is given as:
1 Ey vfn 0
D} =r—— En, 0 (2.9)
[ ] l—vlzvz‘ [ Sym 2 Gl2
for orthotropic materia model.
d) The element nodal force vector is given as:
{FIO={F}O L {F} +{F} (2.10)

where {F'} ;' is concentrated force vector.
{F¥ ) is gravitational force vector and can be derived from:

(Fye =L [N {whd (2.11)

and {F} { is distributed force vector, and can be derived from:

(Fyo = L[N:]’{q}ds (2.12)

e} The eclement stiffness matrix can be derived from the virtual work principle. From the virtual
work expression the following equation can be obtained:

{Fre=[K]{op* (2.13)
where [ K 7**’ 1s element stiffness matrix,
1t
ckye={ [ (BYTDIBI (dsdn (2.14)
where |J| is Jacobian determinant,
ax a3y
13 o
1= (2.15)

dx dy
an dn
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2. The formulation of special element

Inexpressions (2.1) and (2.2) if the midside node is just located at the middle of the sides, within
the element coordinate, r (in polar coordinate system) does not havea/rterm, this element does not
have 1/+/7r singularity. But, if the midside node is placed at the location decided according to the
following formula:

- T\ 2

.y = (u/r,-;-»s/r,) (2.16)
the element will have 1/./r singularity, and it can
be proved that: A B |C

— _ __~ T oraek
fo NN 2 (2.17) e

Ny =Ary | N1 —a1y : I
where r;, r; and r; are distances of the three nodes on
crack surface from the crack tip (See Fig. 1). When r; =0, Fig. 1 Special elements

r:=rs/4. the quarter point element was obtained.
III. Determination Of Stress Intensity Factors

1. Isotropic material model

The classical linear elastic fracture mechanics has the following formulas which express the
relationship between the displacement field in the vicinity of the crack tip and the stress intensity
factors K; and Kun.

K 3
U, =2 () 1@ =24 (£ 1u®) (3.1a)
v, =81 )fu() S (- )f.,w) (3.1b)
where:
F1a(0)=(2x—1)cos - —cos -5 (3.20)
f.,(0)=(2h'—1)sin—g—-—3sin 3 (3.2b)

f1:(8) = sin -—30——(1+2K)sm (3.2¢) Forrrra—— 5

crack
9 30 : o
' Fra(0)=(2¢+ 1)cos _2__ SCOST (3.2d) Flrg. 2 Polar coordinate in formulas (3.1) and (3.2)
G is shear modulus, G=FE /2(1+v),

3—v
1y for plane stress problems

3—4v for plane strain problems
and w = {

The polar coordinate system is shown in Fig.2.
%. Anisotropic material model
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/ 1 - R
U,=K, ftr Re [#1—#2 (1102 N cosB+ p,sinh —papy ~/ cos+ p,sinl) )]

+ K, —zLRe [ _{ (P2n/ cosB+ pysind — p1a/ cosd + pysind )] (3.3a)
k(2 HBy—Hy

“or 1 S —
Ug= K,‘/ - Re [“1_#‘ (8192 n/ cosf+ 11,5100 — 1491 A/ "cosO+ uy5iad )]

12r 1 _
+ Ky p= Re [l‘l“l‘z (920 cosO+ pysind —a1a/ cosf+ u,sind )] (3.3b)

where 4; and #; are the two different roots of the following equation, and they always occur in
conjugate pairs, as {1, 41 and 4, A
aypt —2016u° + (201, + Ggg ) 4* — 20,14 0;, =0 (3.4)

pi and g are defined as:
a
P(=an#?+an—0w[h. qQi=0,Ui+ __;z‘z_ — 02 (3.5a, b)

In equation (3.4) and formulas (3.5a) and (3.5b), a; are compliance coefficients.
&= Y050, (3.6)

3. Determinates of Kjand K { from the near crack displacement field

Formulas (3.1) and (3.3) express the relationship between displacements [/, and U,
and K; and K». Using the displacement distribution on the two crack surfaces (§ = + ) to obtain
K; and Kj; 1s the simplest way and gives more accurate results.

For isotropic material:

Kl(n)=\/_§:? - ZGZ:E'I")'”) (=x) (3.7a)
K,(—n):J‘i”—- 2G"(7{<_:°i;”) (=—x) . (3.7b)
K, = K,(n‘)+2K|_(—n:) (3.70)
K'(”)=‘/?f-" ZGgfflo)-”) (V=x) (3.8a)
K.(-::):fz”—‘. ZGU('K(:_Oi)‘”) (6= —u) (3.8b)
Ky =L@+ Ky (=) (3.8¢)

2

For orthotropic material, there are Jormulas similar to (3.7) and (3.8). The only change is factor
( # + 1), which should be calculated from formulas (3.3) through (3.6), and be different for K; and
K.

It can be seen that K; and Ki obtained from formulas (3.7) through (3.8) depend on the value of
ro. To obtain Kr and K at the crack tip, the following three approaches have been used in different
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papers:
(a) Let r, be equal to 1 —2 per cent of the crack length, or ro.=2a/9 ,m‘The values of K; and
K obtained from formulas (3.7) through (3.8) are good estimation of true Ky and K.

(b) Calculate K; and Ky from the following formulas"': I~
2G 27 [ AU, s~Uslc
(3.9a, T crack
Ko o 2GN2m (U s=Usle ) [ "%—1
1= k1 N L J L

where Ugls, Usle, Usls ,and U,|, are circumferential Fig.3 A quarter-point element
and radial displacements at points B and C respectively. (See Fig.3)

(c) Extrapolation method

It has been shown in [4] that the K and Ky results obtained from formulas of (3.1 a)through
(3.2d)vary linearly with r. Select a series of 7., calculate (K), and (Ku). then use a straight line
extrapolate to obtain K; and K at r=0.
4. Singularity of the collapsed triangular quarter-point elements

The collapsed triangular quarter-point elements could have 1/./, or 1/r  singularity
in the strain field near crack tip. depending on whether the three collapsed nodes having the same
coordinates of crack tip are constrained to have same displacements or not. If the following
constraint conditions are imposed on them,

Ui=U;=U,, Vi=V;=V, (3.10a,b)

where i, j, k are node numbers of the collapsed nodes, the strain field obtained in this element will
have 1/a/r singularity. This element applies to calculation of linear elastic stress intensity
factors, because siress field also has 1/./ r singularity. But, if the three nodes can be displaced
independently, the strain field calculated will be of  1/r  singularity. In this case, the stress field
is constant in the vicinity of crack tip, this element applies to perfectly plastic crack problems.

IV. Analysis of Interlaminar Shear Fracture of Chopped Strand Mat Glassfibre
Reinforced Plastic (CSM-GRP)

The interlaminar shear fracture behaviour has been studied both experimentally and
analytically, the main results will be presented in another paper. The specimen tested is shown in
Fig.4, it is a plare strain problem.

Fig.4 A lap-shear specimen

1. Precracked deformation and stress distribution in the specimen
The precrack deformation and stress distribution were computed by using finite element mesh
pattern (I), shown in Fig.5, and the results obtained are shown in Fig.6 to Fig.8. The stress values in
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Fig.5 Finite Element mesh pattern (I)

1\
Fig.6 Deformed shape of mesh pattern (I)
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Fig.7 Stress distributions (isotropic material)
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the three figures are those of average stress in elements. Fig.7 is for isotropic material model, in

which E=7.0 GPa,
GPa, E;;=5.20 GPa,

1.3;

0.8

0.4

0.0 : \______;——*-f

|
2.0l
Loy

vy =0.34, Gi2=1.43 GPa.

[‘-’J./ Oe

1.8} Transverse normal stress 0,

-

$0 60 90

»=0.34; and Fig.8 is for orthotropic material model, in which E;;=9.81
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Fig.8 Stress distributions(ofthotropic material)

2. Calculations of the microcracked (damage) zone.

The calculations for predicting the crack initiation and microcracked zone extension were
carried out by using the mesh shown in Fig.5. Within every element the strains and stresses at 25
(5 x 5) points (including 9 Gauss sampling points and 8 nodal points) can be calculated. In each load
step the maximum stress and the maximum stress point were searched. If the stress is larger than a
critical value, this point will fail, a microcrack occurs. The following criteria were employed in the

computation'”:

a. Maximum stress failure criteria
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Gllgo'uc; U,L<UJ.¢: T<r° (4.13,b,0)

b. Norris distortional energy failure criterion

_ [{oy_ 0.0, 7, )’+( v )I <1 (4.2)
¢_\/(auc) Tye0 ¢ +(0'J_c Te =

Informulas (4.1)and (4.2), C.., 0. and Te arecritical stresses, and from experimental data
available we assume:

0,,=120MPa, o,.,=9 0MPa, r.=9 5MPa (4.3)

Making use of the following procedure, the damage zone is calculated:
a) For each load increment the maximum stress (or stress factor ¢ ) point is searched.
b) Checking for failure using criteria (4.1) or (4.2).
c) If this point fails, the corresponding stiffness coefficient in constitutive matrix [D] will be set equal
to zero. For example:

if =7, ,then G,=0 , (4.4a)
if 0,20, ,then Ep=v,=0, (4.4b)
if ¢,>0,, ,then E ;=v,=0, (4.4c)
lf ¢>1 » then E11=Ezz=Gu=0 - (4.4d)

Matrix [D] at other points and other elements remains unchanged.
d) Modify the stiffness matrix and repeat the same computation procedure described .above,
damage zone obtained.

The different failure criteria predict the same crack initiation point, that is the inner corner
point of the two notck :s. Whereas the initial damage strength predicted by different criterion is
different. The results are listed in Table 1.

Table 1

Criteria Oy ROn ., IO L. T, <1

Initial Strength 20.2MPa 2.45MPa 3.64MPa 2.1MPa

From Table 1 it can be concluded that the distortional strain energy criterion, ¢<C1 , predicts
an earlier damage than other criteria. The maximum parallel stress criterion, ¢,<0,. ,
predicts a much larger strength. It is unlikely for the parallel stress <, to cause the material
failure.

The initial crack extension direction can be predicted through the searching for the next (the
second) failure point. The three criteria, ie. ¢<1, 0,<o,, and v 7, , all predict the same
initial crack extension direction, that is along the interface (shear surface). Because in this
calculation at the failure points the material is not broken (separated) completely, but it is still
continuous, we name this area damaged (or microcracked) zone. The damaged zone predicted by
the criterion T<(to. is shown in Fig.9, the numbers indicate the failure sequences. The stress
distribution along the shear surface of the specimen with the damage zone calculated by using
¢<1 criterian is illustrated in Fig.10. The stress distribution curves obtained by the other"two
criteria have the same feature. The stress values (average in the element) at the corner of the notch
diminish notably.
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Fig.10 Stress distributions along shear surface with a

3. Mixed-mode stress intensity factors
The crack propagation process and the stress intensity factors are calculated by using the finite

element mesh pattern II (See Fig.11).

damaged zone predicted by ¢<1

]

-

Fig.11 Finite element mesh pattern (II)

There are 24 special elements patched at the near crack tip area. The midside nodes of these elemerits
are located according to formula (2.16). The eight crack tip elements are collapsed triangular



FEM Analysis on Mixed-Mode Fracture of CSM-GRP 751

quarter-point singular eiements. On the crack line, all the nodes are multi-displaced nodes. We use
the constraint release technique, compute and plot the graphs showing the crack propagation
process, Fig.12 a through Fig.12e.

%‘«*j _—

Fig.12a Fig.12b

Fig.12¢c Fig.12d

T
|

r/gJ
0.10.20.30.4050.60.70.80.91.0

Fig.12e Fig.13 Extrapolation method for defermining K; and Ky

The stress intensity factors K; and Kir are computed for both isotropic and orthotropic models.
Fig.13 shows the graph of determining K; and Kr from the finite element displacement through
extrapolation method. For orthotropic material model, three different approaches to the
determination of K; and K from displacement are used, the results are summarised in Table 2. The
two different cases with and without imposing the constraint condition (3.10) on the collapsed



752 Zhang Shuang-yin and C. M. Leech

three nodes of the crack tip elements are also compared in this Table. The maximum difference

between the two cases is for Kir calculated from formula (3.9), amounting to 8.2% which is not
ignorable. '

Table 2. A summary of results of K; and Ku

STRESS INTENSITY FACTORS
METHODS CONSTRAINT CONDITION —
Kif(caaa) K1/(0=a/a)
Constrained 1.782 2.371
| Use Displ. of Point r.=a/9

Free 1.779 2.481
Constrained 1.383 2.285

2 Formulas (3.9)
Free 1.386 2.488

3 Extrapolation Constrained ‘ 1.58 2.00

From the three methods of determining K;and Ky from displacement, the maximum
difference comes from formula (3.9) and the extrapolation method. The formulas (3.9) are derived
from the formulation of the special crack tip element and can produce more accurate results. There
is somewhat uncertainty in extrapolation method, the accuracy of this method being questionable.
As for the other method, using a single displacement of the point r.=a/9, to arrive at stress intensity
factors K; and Kpn, the invalidity of its results is obvious.

Finally, the critical stress intensity factors Kic and Kuc are estimated through the
consideration of failure load and critical crack length measured in experiment. The maximum
tensile stress at remote end is 20 MPa, and the critical crack length measured just before the
specimen break is approximately 6.5 — 7 mm. Then from K; and Ky calculated, the estimation of
Kic and Kic for this kind of loading situation are listed in Table 3. These results are comparable
with the results given in Ref [8].

Table 3. Critical stress intensity factors

ISOTROPIC MODEL QRTHOTROPIC MODEL
Stress Intensity Ki/(0wna) 1.27 1.383
Factors Ky/(Own/a) 2.80 2.285
Critical Stress K1, 66.4N/mm? 12.3N/mm?
Intensity T T
.4N
Factors Ky, 146.3N/mm 119.4N/mm

NBK,, Ku, calculated from (2ba,b)

V. Conclusions

1 The mixed-mode fracture problems is analysed with FEM. Two kinds of material models

~ (isotropic and homogeneous) are assumed. Both models are homogeneous and the effect of
nonhomogeneity is ignored.

2 The stress distributions along shear surface possess a large concentration at the corner of notch,
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this explains why the shear strength obtaired by lap-shear test depends on the length of shear-
surface. |
The constraint release technique is utilized for the crack extension process, it can also be used in
analsysis of dynamic cracking problems.

Three approaches to determination of K;and Ku from finite element displacement are
compared. The deviation is not negligibly small, if the division of grids is not very fine. The
constraint imposed on the three collapsed nodes renders non-ignorable influence on the
displacement very near crack tip. The best way of obtaining linear elastic stress intensity factors
is to use the displacement field obtained with the constraint conditions (3.10) and to use
formulas (3.9).
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