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Abstract
The basic concepts, normal forms and universal unfoldings of Z ,-equivariant
singularity are investigated in the present paper. As an example, the normal forms and
universal unfoldings of Zs-singularity are formulated. As a matter of fact, the theory
provides a useful tool to study the subharmonic resonance bifurcation of the periodic

parameter-excited system.
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I. Introduction

Parameter-excited systems are important in vibration engineering. The governing equation
(e.g. Mathieu equation) is a periodic non-autonomous system. To investigate their
subharmonic resonant bifurcation the Liapunov-Schmidt reduction with time symmetry is
necessarily used to obtain the Za-equivariant algebraic bifurcation equations, which is
Zq-equivalent to the governing equations. In order to study the Z,-equivariable bifurcation
problem, the Z,-equivariant singularity must be formulated.

Although the singularity theory was used to investigate the local bifurcation problems a
few years ago, the symmetric singularity theory still under developing has just been made use
of quite recently. The study of symmetric singularity was initially carried out by Sattinger(?.
The general results have been given by Golubitsky!!), who studied in detail the singularity
theory under the action of contact Lie groups 0O(2), SO(2), Z,®Z, andD,. Buzano
and co-workers(3] foymulated the normal forms and universal unfoldings of singularity under
the action of the dihedral group D, while studying the buckling behavior of a thin rod. The
present paper purports to deal with Z,-equivariant theory. Followed by a brief introduction,
the Z,-equivariant mapping over complex field is formulated in the second section. The ba/sic
concepts and methods of the Z,-equivariant singularity are discussed in the next section, and
as an example we illustrate how normal forms and universal unfoldings are derived by using
Zs-singularity. Finally, some useful conclusions are drawn.
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II. Z.-Equivariant Mapping

Let Z,,={exp[: izr,:—”], k=0, 1, 2, -, n-—-l} be the cyclic group of order n. Jt

acts on the complex field C in a standard way:
; An =zeXx [___Zn ]
eXp [ ! T] F=20XP|

where z€C_ g(z, A)is a smooth mapping from CXR to C such that (1) g is Zs-equivariant
about the variable z. (2) {0, 0) is the singular point of g . The goal of this section is to present
the general expression of Z,-equivariant mappings. The bifurcation parameter A is
temporarily omitted since A is irrelevant to equivariance.

Theorem 2.1 The set of the complex Z4-invariant polynomialseg(Z.) ={f (#,v,w), f
is the complex polynomial about 4, v, w} is a ring over complex field C, which is generated
by

u=2z, v=2"+32", w=i(z"—2")

Proof According to Poenagu!’, we may assume f is a polynomial mapping. Writing
f(z, 2) =73 a.pz°z# |, thus the invariance yields

arg
f(exp[i

3 ap2°2* [exp[i%—(a—ﬁ)—]—l ]=o

arp

27
n

]z,exp[ -—ii—”-]z )=f(z, Z),

that is

Hence 4,50 unless a—f= tkn . Then

f(Z, 2) = 20,71.;,.,’(22) pzlm_‘_ Zaa,tu-ku(zz)a(z).' =0

kB ark

Noting the identities

(v—iw)

1
Zku = gzn) k’ 2" =7

we obtain the fre€ generators u, vand w of f over C.

The result found in [1] is now provided in the following:

Lemma 2.1 Let compact Lie group T act on C in the standard way. If N;, Na,,.., Ny
are the generators of the complex T-invariant polynomial ring over C, Re (M;)..., Re (N§) and
Im (N)), ..., Im (V,) are the generators over real field R.

According to Lemma 2.1 we can immediately obtain the following result:

Corollary 2.1 The set of real-valued Z,-invariant polynomials over complex field
ea={ f (4, v, w); f is a polynomial with the real coefficient about u, v, w } is a ring
over R, which can be generated by u, v and w.

Now we give the general form of Z,-equivariant mapping;

Lemma 2.2 The setE (Z,) of the Z,-equivariant mapping is a module generated by z
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and z""'over the ring ec(Z,) , that is, there exist p and ¢ in eg(Z,) such that for all
g belonging to F (Z,)

g(z, 2)=p(s, vy w)z+q(u,v,w)z""!

Proof Let g(z, Z) =) a.pz°2® . The equivariance leads to the equation:
arp

2x
E amf S e —_f—-1 —~1 =0
a’ﬁaaﬂz 2 (exp[’ n (a ﬂ ) ] ) '
Hence aup 0., unless ¢— f—1=0 (module n). Thus

g(Z, Z) ={Zaﬂ+l+ln (ZZ)ﬂ(Z”)l }Z
£

+{Eaan+1n+1 (zz)*(z")} }zﬂ_l

Noting the coefficient polynomials of z and 2z"~! , denoted by p and ¢, are Z,-invariant, p
and g belong to e¢(Z,) . the result is true.

Lemma 2.2 shows E (Z,) ={p(8, v, w)z2+q (s, v, w)2Z"™', p,q€ec(Zy)}. Although
it is impossible to reduce generators of E (Z,) the form of gcan be simplified.

Theorem 2.2 [E(Zs)={ p(u, v) z+q(s, v)Z"', p, g€e (Z,)} in which
e(Z,) ={f(u, v)g f is a polynomial with the complex coefficients about #, v} is a closed
subring of eg(Z,) .

In order to prove the theorem, we show at first the following result.

Lemma 2.3 The mapping wrz and ‘wzrt are Z a-equivariant. Thus there exist
Z,-invariant polynomials f(4, v)€e(Z,), i=1,2, 3, 4, such that

w'z=f (s, 0)z+f,(u, v)Z*"!
Wzt =f(uy v)2+ [ (v, v)Z"7!

where r is the nonnegative integral number.
Proof When r=0, the result is readily verified.

Whenr =1, wz=(iv)z— (2iu)z""

wz" ' = (2iu* ") 2 — (iv)z" !,

The result for any integral number r is readily verified in the mathematical induction.

We easily obtain Theorem 2.2 from Lemmas 2.2 and 2.3. And now, several important
-statements used in the following sections are presented.

Corollary 2.2 Let

p(a,v) =p(s,0)+ip, (4, v)
q(n,0) =q,(8,0)+iqg,(4,v)
where p,, p,, g\, ¢, are the Z,-invariant polynomials with real coefficients. Then
g(z, B)=[p(s.0)z4+q (8, v)Z" ') +i[ p.(4yv) 2+, (8, 0) 2" '],
Corollary 2.3 When (0, 0) is the singular point of g
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(1) n=1, g0, 0)=0, (dg),n=0.
(2) n=2, p(O, 0) =Q(0’ 0) =0,
(3) n=3, p(0, 0)=0,
We denote the set of the polynomial germs by U, ,, if the germs vanish at (0, 0), and the
set of the general polynomial germs by e,,,.

III. Z.-Equivalent, Restricted Tangent Spaces and Tangent Spaces

We discuss the basic concepts and methods of Z,-singularity theory in this section.
Definition 3.1 Let gand & in E (Z,) be 7,-equivariant bifurcation problems. Then g
and h are Z,-equivalent if there exists an invertible change of coordinates (2, A) to (Z(z, 4},
A (A)) and matrix-valued germ S (z,4) such that
g(z, Ay=S(z, Wh(Z(z, A, 1(N)

where Z(0,0) =0, 1(0)=0, A’(0)>0 and for r€Z,

(a) Z(rz, A)=rZ(z, A)

(b) S(rz,A)r=rS(z,) } (3.1a,b,c)
(c) detS(0,0)x0, det(dZ) sy, >0

Lemma 3.1 The submodule of the smooth germs satisfying (3.1b) is generated by the
germs:
Sw=w, Sw=zw, Sw=z"w, Sw=2"w,
Proof Let the linear mapping
S(z,)w=a; (1) 2/ 2*w+ 3 6,-2' "D

where a;. (4), Bsi(A) are the complex number. The condition (3.1b) leads to
Sy (A exp [(j—k)—%”—i]zfz“w

+ 285 (A)exp l (f—k—Z)ln”—i ]z"z"w:O

Then a;, =0 unless j=% (mod n) and f,,=0 unless j=£-+2 (mod n). It follows that
S(z, A)w can be generated by

w, 22w, z"w, Z"Vw, 3w, 2w,
Noting the identities:
zlnw=(zn+2n)z(l-l)nw_ (2’2) "z”'"”"w
Zluw=(z'lu+zln)w_zlnw
z’"”w:(z"+2")z"‘“"”w- (22)"2(1_2’"777
2(l+l)n—2w=(zln+zln)zn‘2w_ (zz)ﬂ“lz(l‘l‘n"lm
2" = (2"+2") 22w — (22) 22" '
the generators are S,;, j=!, 2, 3, 4,

Introducing the invariant coordinates

[Py, gl=p(uy, Dz4q(u, )z"",
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we express the generators as following:

Sig=g=1[p, q]

Sqg9lup+vy, —ug] 1 (3.2)
Ssg=[""‘2q’ 7] J .
Sg=[vp+u""'q,—up]

Now we formulate the 7,-equivariant restricted tangent space RT (g, Z,) . It is a
submodule generated by the S, g,+-,S.g, (dg) X,, **+ (dg) X.0overe(Z,)where S, ..., S, and
Xy, X, satisfy ‘

E(Z")=e(Zn)<Sl’ Ry St>
U(Zn) =6(Z,.)<X,, ey XD

Theorem 3.1 RT (g, Z,) is the submodule over the ring e(Z,), generated finitely by
the germs:

[p, a1, [4p+vq, —ugl,
(u*~*q, P], [vp+u"~'q, —upl,
[28pu+nvpu+ p, 2uqu+nvgy4 (n—1)q]
[0put20u" " p,+ (n—1)u""2q, vq,+2mu" g+ p]
Proof Let g(z, Z)=p(s, v)2z+q (s, v)2Z""' . The first four generators can be
obtained directly by (3.2). Noting X, =z, X,=2""* due to Theorem 2.2

(9:)2+ (g2) 2= (24pu+ p4nvpy) 2+ (2uqu+nvqo+ (n—1) ) 2!
(94)2* 14 (g2) 2* ™ = (214" pot-0 put (n— 1) 4" "29) 24 (p+0qu + 2nu" 1 q,) 277!
Rewriting the generators in the form of the invariant coordinates, the proof is completed.

Corollary 3.1 Substracting the first generator from the fifth one, we can reduce the
fifth generator to the form

[2up,+nvpy, 2uqu+nvqs+ (n—2)q],

and others are kept unchanged.
Finally we formulate the tangent space T (g, Z.) for the unfolding theorem:

T(g, Za) =RT (g, Za)+ R{(d@)Y 1y - (dg) Y my g, gi, Ags-=}

where V; satisfy E (Zp)=U.,.(Zs) @®R{Y 1, =5 Yo} . Hence Fix {Zs} =0 implies
E(Zn) =U=!L(Zn) .
Theorem 3.2 T (g, Z.)= RT (g, Z») ® e, {g9:} where ¢, is the set of the
germs about A near zero.
Corollary 8.2 Let Wbe a vector subspace such that
E(Z)=T(gy Zs)+ W
i

If g1, =*, g are the basis for W, Then g4 Y a,g, is a universal Z »-equivariable
4m1

unfolding, where «; is the unfolding parameter.
It is readily seen that the only difference between Z,- and D,-equivariable singularity is

€(Za) € E(Za) -
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IV. n=3: Z;-Equivariable Singularity Theory

Based on the theory mentioned above, now we are in a poéitiop to drive the normal form
and universal unfolding of Z,-singularity, in which n<3 corresponds to the subharmonic
bifurcation of strong resonance, n=4 to critical one and n> 5 to weak resonance. Only
Zs-singularity theory is studied in detail in the paper. Other cases please refer to [41].

Let g(z, A)s CXR->C be the Zs-equivariable bifurcation problem, then g (2, 4) =

p (8, v, 4) z4+q (s, v, A) 2* ,where u=2z, v=2"+2°, p, q€e(Z,).

Lemma 4.1 If the following nondegenerate conditions hold:

q(0, 0, 0)=0, p,(0, 0, 0)=0 (4.1)

then RT(Q? Za) =P3=[Uu,vyl, eu,v’).].
Proof It is readily seen from Corollary 3.1 that

RT (g, Z)S P,
Now we only need to prove P, RT (g, Z,), using Nagayama lemma!!! only need to prove

P,CRT (g, Z))+P,-Uy,v,ys, (4.2)

The generators of RT (g, Z,)are represented as a linear combination of the generators of
Ps module U, ,,,- P. in the following table:

{u, 0] [v, 0] [4, 0] [0, 1]
[p, ¢l p.(0) 1.(0) p4(0) »(0)
[up+vq, ~uq] 0 - q(0) 0 0
(vg, P] q(0) 0 0 0
[vp+vq, —up] q(0) 0 0 0
[2up.+3vp,, 2uq.+3vq.+q] 2p.(0) 3p.(0) ] q(8)
(vp,+6up.+2uq, vq.+6u’q,+p] 29(0) 2.0 0 0

Leaving out the third and fourth rows, we obtain the submatrix of order 4, whose determinant
is not equal to zero according to (4.1). Therefore the corresponding inverse transformation can
be conducted. That is, the generators of Ps can be represented as a linear combination of the
generators of RT (g, Z,) module U,,,,,- Hence (4.2) holds.

Theorem 4.1 (Recognition problem) If the nondegenerate conditions hold, g(z, 4)
i1s Z;-equivalent to the normal form

Ni(z, A)=(atie,)lz+2%,

where &, and e, are real numbers such that &} +ei=1,
Proof Let

9i(z, A) =[Py (0) +t(pu(0)u+ pu(0)v+9(u,0,4)), q(0)+tp(s, v, 4)]

where ¢, y = P,- Uy,y,, * RT(g:, Z,)=P, holds in accordance with Lemma 4.1.
Let +=0 and ¢=1, then RT (g,, Z;) =RT (g\, Z;). Noting g,=g we have shown that
g is Z;-equivalent to g, = p, (0) Az + ¢(0) z¢ . Introducing the scalar transforma-
tion: Z(z, A)=£&z, A(A) =04, where { is a nonzero complex number and § is a positive
real number. Then

go(2, 4) =( 1:(0)0¢) Az (q(0)E ) 22
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Let
st="q(0), 0= |/G(0)7$:(0)]
that is .
g(E* =1, p,(0)0i=e,+ie,
in which

e /)

B pi(0) i (0) '
=lm {750 /L/ 700 |

therefore g (2, 4) is Z;-equivalent to the N, (2, 4),
Note ¢ and ¢, above is with reference to (4.3).
Theorem 4.2 Z;-codimension of N (2, /) is zero. Hence the universal unfolding of ¢

is N;(z, 4) in the nondegenerate conditions.
Proof It is seen from Theorem 3.2 that

oN,
T(N,, Z)=RT(N,, Z)+64{ -
=[Usyvpay Cusvyal +eile+igy, 0]

=E‘2,A (Zg)
Thus Codimz;(/V,) =0.

V. Summary

The basic concepts, recognition problems and universal unfoldings of Z,-equivariable
singularity are studied in detail in this paper. Especially the Zs-equivariable normal form and
universal unfolding are formulated under the nondegenerate conditions. Of course we can
further study the degenerate case and the bifurcation digrams in the polar coordinates or local
transfer sets in a similar way™..

We are able to study the subharmonic resonance bifurcation of the periodic
parametric-excited systems based on the above mathematical theory of the Z,-equivariable
singularity, and formulate the all possible local bifurcation diagrams in detail, which
reasonably illustrate the phenomena such as hysteresis, catastrophe and multi-equilibrium in
practical vibration engineering problems'4J,
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