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Abstract　The short-range property of interactions between scales in incompressible turbulent flow was examined.Some formulae for
the short-range eddy stress were given.A concept of resonant-range interactions between extremely contiguous scales was introduced

and some formulae for the resonant-range eddy stress were also derived.Multi-scale equations for the incompressible turbulent flows
were proposed.
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1　Introduction

　Turbulent flow contains a wide range of time- and
space-scales. The interactions between different

scales play a key role in the evolution of turbulent

flow.In the traditional theory of turbulence , eddy-
viscosity was introduced a century ago by J.Boussi-
nesq and developed later by G.I.Taylor and L.
Prandtl , and they claimed that the interactions are

mainly between widely separated scales[ 1 ,2] .This is

so-called long-range interactions between scales.
However , it is generally believed that the dominant

interactions are between contiguous , rather than

widely separated , scales[ 1] .This may be called short-
range interactions between scales.Both the “ direct
interaction” theory[ 2] presented by R.Kraichnan and

the numerical inference acquired through the analysis

of direct numerical simulation databases for channel

turbulent flow by J.Domaradzki et al [ 3] confirmed

that the interactions are mainly between contiguous

wave numbers.The aim of this paper is to extend the

multiscale model of turbulence[ 4] and to confirm fur-
ther short-range property of interactions between

scales , which is applied to space-average analysis of

turbulence and to deduce multi-scale equations for the

incompressible turbulent flows.

2 　 Short-Range Interactions between

Scales in Turbulence

　Starting from the space-average Navier-Stokes
(NS) equations for the incompressible flows , we

prove the interactions being mainly between contigu-
ous, rather than widely separated , scales and derive

expressions of short-range turbulent(or call eddy , the
same below)stress and then introduce a concept of

resonant-range interactions between extremely con-
tiguous scales and deduce expressions of resonant-
range eddy stress.The space-average NS equations

for the incompressible flow can be written as
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where
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Re =ρU ∞L/ μ;Pr =μCp/k ;γ=Cp/Cv ;M ∞=U ∞/
a ∞;xi , the time t , the velocity ui , the pressure p ,

the temperature T and the total energy et are normal-
ized with reference to the boundary characteristic

length L , L/U∞ , U ∞ , ρU
2
∞ , T ∞ and U

2
∞ , where the

subscript ∞denotes the free stream conditions;et =

CvT +
1
2 uiui is the total energy;τij is the viscous

stress.Since the solutions ui , p and et of the NS e-
quations and the solutions Uci ,pc and ect of the space-
average NS equations are continuous and differen-
tiable , the following expressions can be deduced from

the definition(2.3)of eddy stress.
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where

(Ufc , pf , Tf , eft)=V
-1
f ∫(ui , p , T , et)dv ,

　　Vf =Δxf Δyf Δzf (2.10)

and V f <V c , Δxf <Δxc , Δyf <Δyc , Δzf <Δzc(for
short , Δxf <Δxc , the same below).Suppose that

without losing generality , the side-length of the vol-
ume elements(cuboids)Vc and V f satisfy Δxf/ Δxc=
Δy f/ Δyc=Δzf/ Δzc , then we deduce from Eq.(2.9)
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Ffi(Fci)represents the eddy stress of the whole scale

range with scales Δx <Δxf(Δx <Δxc)acting on the

scale range with scales Δx >Δxf(Δx >Δxc), and Fcfi
represents the eddy stress of the contiguous scales

ranging from Δxf to Δxc acting on the scale range with

scales Δx >Δxc.From Eqs.(2.14)and (2.15)we

know that Ffi is only Δx
2
f/Δx

2
c of Fci and that Fcfi is

(1-Δx 2f Δx
-2
c )of Fci .When Δxf /Δxc equals 2-1;

3-1 and 5-1 , Ffi/Fci equals to 0.25 , 0.11 and 0.04
respectively;Fcfi/Fci equals 0.75 , 0.89 and 0.96 ,
respectively.Therefore , one may deduce that the in-

teractions between scales Δx >Δxc and Δx <Δxc are
mainly short-range ones between scales Δx >Δxc and
the contiguous scales ranging fromΔxf toΔxc , where
Δx f should equal (0.2-0.5)Δxc.Since the space-

average velocities Uci and Ufi are continuous and dif-
ferentiable , the differential formula for the short-
range eddy stress Fcfi can be deduced from its integral

expression(2.15).
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　Through similar operations , some expressions simi-
lar to Eqs.(2.15 )and (2.16 )can be obtained.
These expressions give the integral and differential

formulae for the short-range eddy heat transfer Ecf ,
the short-range eddy pressure-power Pcf and the

short-range eddy stress-power , or say , dissipation

Πcf .They are respectively
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　Discussion The short-range interactions between
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scales imply that as to the space-average analysis of

turbulent flow , it would be best to adopt a multi-scale
model , at least a two-scale model.In addition , an in-
spiration acquired from all the differential formulae

(2.16), (2.18), (2.20)and (2.22 )of the short-
range interactions is that we should introduce a con-
cept of resonant-range interactions between scales ,
which define the interactions between scalesΔx >Δxc
and the small scales being smaller than Δxc but ex-
tremely near it.According to the definitions of the

space-average velocities we know that the Ufi tends to

Uci as the Δxf tends to Δxc , Therefore , the differen-

tial formula of the resonant-range eddy stress can be

deduced directly from the formula(2.16)of the short-
range stress.
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　Similarly , for the scale Δx f , the differential formu-

lae of the resonant-range eddy stress Fdcci , the reso-

nant-range eddy heat transfer Edff , the resonant-range

eddy pressure power P
d
ff and the resonant-range eddy

dissipation Π
d
ff are respectively
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3　Multi-scale Equations for Incompress-
ible Turbulent Flows

　Dividing beforehand the resolved scales into two or

more scale-ranges and utilizing all the integral and dif-
ferential formulae of the short-and resonant-range in-
teractions given in the above section , we can obtain

multi-scale equations of turbulence.Consider the case
of two scale-ranges , in which the resolved scale-range
(Δxf , 1)are divided into small scale-one(Δxf , Δxc)
and large scale-one (Δxc , 1).The large-scale equa-
tions governing the average motions of the large scale-
range are
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　The small-scale equations governing the fluctuation

motions of the small-scale(or , say , fine-grid)aver-
age quantities relating to the large scale(coarse-grid)
average ones are as follows:
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where(Uci , pc , Tc , ect)and (U fi , pf , Tf , eft)are
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defined in Eqs.(2.2)and (2.10).Both the integral

and differential formulae of the short-range interac-
tions Fc fi , Ecf , Pcf and Πcf can be used and are given

in the formulae(2.15)-(2.22), respectively.The
differential formulae F

d
ffi , E

d
ff , P

d
ff and Π

d
ff expressing

the resonant-range interactions are given in Eqs.
(2.24)-(2.27).In general , Δxf is consistent with

the filtered scale in the large eddy simulations(LES),
and suppose Δxc (2 ～ 5)Δxf .The multi-scale equa-
tions with scale-ranges being more than two can be

similarly deduced.The large-small scale(LSS)equa-
tions(3.1)and (3.2)can be used to determine the

ten unknown quantities Uci , Ufi(i =1 , 2 , 3),Pc ,Pf ,
ect(or Tc)and eft(or T f).Therefore , the LSS equa-

tions (3.1)and(3.2)are approximately closed and do

not contain any empirical constants or relations.And
the following conclusions can be reached:1)the non-
linear dynamics of the resolved large scales Δx >Δxc
are governed mainly by their interactions with the re-
solved small scales in the range Δxc >Δx >Δxf and
much smaller unresolved scales Δx <Δxf have negli-
gible effects on the resolved large scales Δx >Δxc ,
which are neglected;2)The dynamics of the resolved

small scales in the range Δxc >Δx >Δxf are largely

governed by their interactions with the resolved large

scales Δx >Δxc and much smaller unresolved scales

Δx <Δxf have secondary effects on the resolved small

scales , which are approximated by the resonant-range
eddy stress etc .It should be noted that the above con-
clusions agree with those obtained through the numer-
ical analysis of direct numerical simulation (DNS)
databases for the incompressible channel flow by J.
Domaradzki et al [ 3] .The other conclusion given by

the LSS equations(3.1)and(3.2)is that the fluctua-

tion motions of the resolved short-range small scales

ranging from Δxf to Δxc relating to the large scales

Δx > Δxc are caused mainly by the resolved large

scales Δx >Δxc .
A brief comparison of the multi-scale equations

(3.1)and(3.2)with the traditional LES equations

is as follows.In the former the unresolved small

scales Δx <Δxf act only on the resolved small scales

in the range Δxc >Δx >Δxf ;and in the latter the un-
resolved small scales Δx <Δxf act on the whole re-
solved scales Δx >Δxf .Therefore , as to detecting

the nonlinear interactions between contiguous scales

and their effects , the former gains dominance over

the latter.In addition , the unresolved small scalesΔx
<Δxf contain still a wide range of time- and space-
scales , therefore , any formulae expressing their in-
teractions with the resolved small scales are certainly

imperfect.Perhaps it is another choice to use empiri-
cal sub-grid scale(SGS)model instead of the formulae
of the resonant-range interactions.
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