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Abstract 

In this paper, a numerical analysis is performed to investigate the dynamic characteristics of submerged floating tunnels (SFTs)

under seismic wave passage effect. The large mass method is examined firstly and then used to simulate numerically the dynamic 

response of SFTs. It is found that the dynamic response of SFTs is influenced remarkably by the multi-support excitation with the 

seismic wave passage effect and varies with the velocity of seismic waves in a non-monotone way. The numerical results show 

that the response under the multi-support excitation is much larger than that under the simultaneous excitation except for the 

displacement response in some velocities, and there exists a peak velocity of seismic waves that corresponds the maximum 

response of the structure. In addition, for every velocity, the most remarkable response appears near the shore connection 

corresponding to output end of the seismic wave. This finding reflects the unique behavior of SFTs under the multi-support 

excitations and is meaningful to the seismic design of SFTs as well as other periodic long-span structures. 

© 2010 Published by Elsevier Ltd. 
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1. Introduction 

Submerged floating tunnels (SFTs or Archimedes Bridges) are a new type of structural concept proposed for 

crossing lakes, sea-straits and fjords (Fig. 1) [1]. It consists of several linked cylindrical tubes stayed at a certain 

depth under water, anchored either by cables connected to the sea bed or floating pontoons to the surface of the sea 

depending on site conditions and different buoyancy weight ratios. As compared with the conventional bridges, a 

SFT is a more environmental-friendly and economical structural type as it does not bother to dig under seabed, as 

did usually for the conventional tunnels, and is relatively more convenient to build. 

* Corresponding author. Tel.: +86-10-82544195; fax: +86-10-62561284. 

E-mail address: ghuang@imech.ac.cn 

Procedia Engineering 4 (2010) 217–224

www.elsevier.com/locate/procedia

1877-7058 c© 2010 Elsevier Ltd.
doi:10.1016/j.proeng.2010.08.025

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.proeng.2010.08.025
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 W. Chen, G. Huang / Procedia Engineering 2 (2010) 000–000 

Fig. 1. Overview of SFT 

However, none of SFTs has been built in the world from its initial conception in the 20th century till now despite 

its promising future. A main concern is about the complexity of its dynamic response under environmental forces. 

One of the issues is the dynamic response under seismic excitation. Several research work has been done to resolve 

this issue. Brancaleoni et al. [2] studied the dynamic response of different types of tunnels under seismic excitation. 

Satoshi Morita’s research [3] revealed that the compressibility of water can not be ignored without causing 

inaccuracy in computing the seismic response. In Di Pilato et al.’s work [4], an ad hoc nonlinear five-degree of 

freedom finite element was developed to model the anchor bar and implemented in a numerical procedure to analyze 

the 3D dynamic response of SFT under multiple support seismic excitation. Xiao and Huang studied the dynamic 

behavior of submerged floating tunnels under uniform seismic excitation and the seismic characteristics of an SFT 

with different bridge-shore connection types [5]. Since SFTs are used for crossing lakes and fjords, they are usually 

long-span structures. Time delays caused by the arrival of earthquake waves on the different excitation sites may 

play an important role in their dynamic characteristics, which is called wave passage effect. The previous analyses 

on conventional long-span bridges such as cable-stayed bridges have shown that the seismic wave passage effect can 

not be neglected while considering the dynamic response of this kind of structures [6, 7]. 

This paper studies in detail the behavior of SFTs under seismic wave passage effect with an emphasis on the 

influence of different seismic wave velocities. Time domain analysis is performed by using commercial code 

ANSYS11.0. For the sake of simplifying the procedure, soil-structure interaction is ignored and the large mass 

method is incorporated in ANSYS11.0 in conducting the computation. Hydrodynamic force due to Fluid-structure 

interaction is considered by using the Morison’s equation and thus the problem is a non-linear one. The time history 

record of acceleration from El Centro earthquake is used as an excitation source and the structural dynamic 

responses under various seismic wave velocities are computed and compared. From the results, some distinguishing 

features of the response are revealed, showing a unique resonance effect, which hopefully would be of some value 

for the aseismic design of SFTs and similar periodic long-span structures. 

2. Computational model 

2.1. Modeling of tunnel and environmental loadings 

The tunnel module of an SFT is modeled by the three-dimensional PIPE59 element [8] with the pipe option 

activated, while anchoring system is modeled by the same element with the cable option activated. The constraints 

where anchoring bars are connected to tunnel structure and ground are hinge joints, which are also assumed to be 

same as the tunnel-shore connections. 
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The aim of the analysis is to simulate the dynamic behavior of submerged floating tunnels under transverse 

seismic wave excitation. The seismic loading is the dominating excitation. In spite of that, buoyancy and the 

earthquake-induced hydrodynamic loading due to fluid-structure interaction are also considered. The latter is simply 

expressed by the modified Morrison’s equation [9, 10]. The force per unit length acting in the direction normal to 

the element axis is given as: 

� � � �
2

2 4
D M

D DC C� ��� � � � �q u x u x u x� � � � �� ��                                                                                                      (1)  

                                                            
where the following symbols are introduced: 

�             is the density of water;  

D             is the element diameter; 

                is the drag force coefficient;  

                is the inertia force coefficient; 

x�  , x��      are the velocity and acceleration vectors of the structure, respectively; 

u�  , u��      are the velocity and acceleration vectors of water, respectively; 

q is the hydrodynamic force vector. 

Initial state of surrounding water is assumed to be still, i.e., wave and current effects are not considered. For 

inviscous water, the state of still water will remain during transverse earthquake. DC and MC are functions of 

Reynolds number and cylinder roughness, which are, however, defined as constant values in this paper, for 

convenience.  

2.2. Equation of motion and solution strategy 

  For the afore-mentioned SFT model under multi-support excitation, the governing equation, based on structural 

dynamics [11], is  
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in which M , K and C  stand for mass, stiffness and damping matrices; X , X� and X��  are vectors of dynamic 

displacement, velocity and acceleration of the structure, respectively. The subscripts s  and b  denote the 

unconstrained degree of freedoms and constrained degree of freedoms, respectively. Here, they are corresponding to 

structural and ground ones, respectively. fP  and bP  are the load vectors on the unconstrained and constrained degree 

of freedoms, specifically the force vectors caused by hydrodynamic and seismic excitation, respectively. 

Seismic wave passage effect is simulated by introducing time delays with reference to different wave velocities 

between various support points of the structure; the computation is realized by large mass method [12]. Before the 

simulation, a numerical experiment is carried out to validate this method. As will be seen in the next section, the 

depicted SFT model above is computed under simultaneous seismic excitation with and without using large mass 

method, and the two results fit well, almost indistinguishable, verifying this method. 

3. Case study 

3.1. Modeling parameters 

A SFT model (Fig. 2) based on published data and design criteria about crossing of the Messina Strait between 

Punta S. Ranieri and Catona is constructed [13]. The computation conditions are as follows: 

� The tunnel structure is 4680 meters long and fixed at a depth of 30 meters below the surface of the sea where the 

water depth is a constant value of 210 meters and water density is 1000kg/m3. The tunnel section is a steel-

DC

MC
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concrete composite pipe with external and internal diameter of 15.95 meters and 13.95 meters, respectively. The  

equivalent elastic modulus is 3.0×1010 Pa. 

� The anchoring bars are considered to have a fixed length and spread with a constant spacing span of 72 meters 

along the tunnel structure (See Fig. 2). Also, it is considered that the anchoring system lies in the plane normal to 

the axis of tunnel structure and is inclined with a constant angle of 45
�

. The section of the anchoring system is a 

pipe with external and internal diameter being 1.85 and 1.72 meters, respectively. The elastic modulus is  

assumed to be 2.1×1011 Pa. 

� Soil-structure interaction effect is neglected. Constant values of 1.0 and 2.0 are adopted as the drag force 

coefficient and inertia force coefficient respectively in the generalized Morison’s equation. A damping ratio of 

0.05 is assumed for the structure. 

� As regard to the direction of seismic excitation, only transverse one is considered. Seismic wave goes from the 

left end to the right end in the model (See Fig. 2), which means the wave is taken as shear wave and only its 

horizontal component is considered. A 50-second-long El Centro earthquake time history record (Fig. 3) of 

acceleration is used as input excitation, with PGA being 0.32g. Various seismic wave velocities are considered. 
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Fig. 2. SFT model                                                                             Fig. 3. Time history of El Centro seismic wave 

3.2. Results and discussion 

Some results of the analysis are shown below. Table 1 shows the first 50 modal frequencies of the SFT model.

Figs. 4 and 5 are mainly for the purpose of validating the large mass method. In these figures, the envelopes of the 

transverse moment, transverse shear force and time history of transverse moment at middle section of tunnel 

computed with and without large mass method are compared. It can be easily found that the two curves in each 

graph coincide well, thus validating the use of large mass method. 

Figs. 6 and 7 illustrate the envelopes of the transverse moment, transverse shear force and transverse relative 

displacement. The latter is acquired by subtracting the displacement of base point from the displacement of the 

corresponding point at the tunnel structure, under wave passage effect and simultaneous excitation. From these 

figures, the characteristics of dynamic response of SFT under wave passage effect can be summarized as follows:  

� Dynamic responses of SFT are generally magnified with the wave passage effect with some exceptions in the 

relative transverse displacement. Note that simultaneous excitation corresponds to the infinite velocity in the 

figures. 

� The dynamic response, no matter whether it is the transverse moment, transverse shear force or relative 

transverse displacement, reaches its peak at various sections of the tunnel, when subjected to the wave passage 

effect with the velocity span of about 240m/s to 260m/s. The maximum transverse moment at the velocity of 
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260m/s is nearly three times that of simultaneous excitation, as shown in Fig. 6(a). Similar results can be found in 

both Fig. 6(b) and Fig. 7. 

� Maximum response usually occurs at the right end of the tunnel structure, or the output end of seismic wave. It 

seems that the response is accumulating with the traveling of the seismic wave along the tunnel structure until it 

reaches the peak near the right end, especially as shown in Fig. 7.  

Table 1. First 50 modal frequencies (Hz) of the SFT model 

No. of modes 1 2 3 4 5 6 7 8 9 10 

Frequency(Hz) 0.20240 0.32125 0.40479 0.42508 0.42510 0.42518 0.42537 0.42575 0.42642 0.42749

No. of modes 11 12 13 14 15 16 17 18 19 20 

Frequency(Hz) 0.42908 0.43134 0.43442 0.43848 0.44370 0.45023 0.45825 0.46789 0.47931 0.49262

No. of modes 21 22 23 24 25 26 27 28 29 30 

Frequency(Hz) 0.50792 0.52529 0.54478 0.56642 0.59023 0.60719 0.61621 0.63680 0.63681 0.63685

No. of modes 31 32 33 34 35 36 37 38 39 40 

Frequency(Hz) 0.63696 0.63719 0.63761 0.63830 0.63934 0.64082 0.64251 0.64286 0.64433 0.64558

No. of modes 41 42 43 44 45 46 47 48 49 50 

Frequency(Hz) 0.64909 0.65353 0.65904 0.66575 0.67378 0.67457 0.68328 0.69436 0.70689 0.70714
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Fig. 4. Dynamic response of SFT under simultaneous seismic excitation computed with and without large mass method. (a) Envelope of 

transverse moment; (b) Envelope of transverse shear force 

�

Fig. 5. Time history of transverse moment at middle section of SFT computed with and without large mass method, respectively 
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Fig. 6. Dynamic response of submerged floating tunnels under simultaneous excitation and seismic wave passage effect. (a) Envelopes of 

transverse moment; (b) Envelopes of transverse shear force 
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Fig. 7. Envelopes of relative transverse displacement of SFT under simultaneous excitation and seismic wave passage effect, respectively 
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Fig. 8. Maximum transverse response of different sections on SFT under wave passage effect with various wave velocities. (a) Maximum 

transverse moment; (b) Maximum transverse shear force 
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More detailed views can be found in Figs. 8(a) and 8(b), which illustrate the maximum dynamic response of 

different sections against seismic wave velocities. The five sections A, B, C, D and E are defined as the left end, 

one-fourth, two-fourth, three-fourth and right end of the tunnel structure, respectively. In these figures, it can be 

clearly seen that the dynamic responses of different sections in the structure reach their peaks with nearly the same 

seismic wave velocity, being about 250m/s for the present model.  

The above results indicate much remarkable effect of seismic wave passage effect, as compared with that 

reported previously for the conventional and cable-stayed bridges. SFT features longer span and more periodic 

supports that may cause a resonance owing to the periodic hitting of seismic wave. When the hitting frequency 

coincides with the structural natural frequency of certain mode and the predominant frequency of seismic wave, the 

response is magnified gradually with the propagation of seismic wave. A detailed analytical study on this 

mechanism will be presented in another companion paper of the authors. 

Intensive response with the seismic wave passage effect demonstrate that special attentions should be paid to the 

multiple support seismic excitation in the design of SFTs. Mitigation of  the resonance is an important issue for 

further research. The present study is helpful to the more comprehensive understanding of the seismic dynamic 

response of SFTs and their aseismic design in practice.  

4. Conclusion 

A numerical model of submerged floating tunnel is built by using finite element method. Large mass method is 

incorporated and implemented to perform the study of seismic wave passage effect, which is proved to be an 

effective way. Time domain analysis on an example of SFTs illustrates that the dynamic response of the structure 

subjected to the multiple support seismic excitation is more intensive than that subjected to the uniform seismic 

excitation. This distinguishing feature of SFTs necessitates the special concern with the seismic wave passage effect 

in the aseismic design of this kind of periodic long-span structures.  
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