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Abstract The reflection problem of the micropolar elastic waves at the non-free surface of a micropolar elastic
half-space is studied in this paper. Different from the classic elastic solid, there are four kinds of elastic waves
in the micropolar elastic solid and three of them are dispersive. The boundary conditions at the non-free surface
of a micropolar elastic half-space are used to obtain the linear algebraic equation sets fromwhich the amplitude
ratios of reflection waves to the incident wave can be determined. Then, the reflection coefficients in terms of
energy flux ratios are calculated numerically, and the normal energy flux conservation is used to validate the
numerical results. At last, the influence of the boundary parameters, which reflect the mechanical behavior
of the non-free surface, on the reflection energy partition of micropolar elastic waves is discussed based on
the numerical results. Two cases of incident longitudinal displacement wave and incident coupled transverse
displacement and transverse microrotational wave are considered.

1 Introduction

A micropolar elastic solid differs from a classical elastic solid in that each point has an extra microrotational
degree of freedom besides the translational degree of freedom and therefore applies to model the mechanical
behavior of the structure material with fibrous or granular microstructure. Eringen [3] proposed and developed
the theory of micropolar elastic solids. Smith [8], Parfitt and Eringen [6] and Ariman [1] studied early the
wave propagation in the micropolar elastic solids. It was found that there are four types of elastic waves:
the longitudinal displacement wave (LD wave); longitudinal microrotational wave (LR wave); and two sets
of coupled transverse displacement wave and transverse microrotational wave (CTDR wave). The transverse
displacement wave is similar to the classical shear wave and will reduce to it in the limit of classical elas-
ticity. The appearance of a transverse microrotational wave coupled with the transverse displacement wave
is new. More interesting is that the amplitude vectors of the transverse displacement wave and the transverse
microrotational wave, and the wave vector are mutually perpendicular. Because the micropolar solid can bear
couple stress in addition to the force stress, and microrotation in addition to the translational displacement,
the boundary conditions of a micropolar elastic solid and the interface condition at two different microp-
olar solids are different from the classic elastic materials. Using the appropriate boundary conditions, [6]
studied the reflection problem of micropolar waves from a free surface of a micropolar half-space and [1]
studied the reflection problem from a fixed surface of a micropolar half-space and discussed some special
cases of reflection waves. Tomar and Gogna [9–11] further studied the reflection and transmission problem of
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micropolar elastic waves at the interface between two different micropolar solids. Similar problem for the
interface between liquid and micropolar solid was studied by [12]. Recently, Singh [7] also studied the wave
propagation in the anisotropic micropolar elastic solid, and Khurana and Tomar [4,13] studied the electro–
mechanical coupling effects on the wave propagation in an electric-micropolar elastic solid. Moreover, [2] also
studied the Rayleigh waves in a micropolar elastic solid. Because the reflection and transmission problem is of
special importance in nondestructive tests (NDT), it therefore attracts special attentions frommany researchers.
In the above-mentioned works, the interface between two different micropolar solids is usually assumed to be
perfect, namely the weld contact interface, and the boundary surface where the micropolar elastic waves reflect
is usually assumed to be free surface, that is, traction-free surface. However, the interface may be imperfect due
to interface accumulative damage [5], and the boundary surface may be non-free but with various constraints
in actual engineering problem.

In this paper, the reflection problem of micropolar elastic waves at the non-free surface of a micropolar
half-space is studied. The non-free surface is modeled as a surface with distributed elastic constraint or support.
Each mass point at the surface is subjected to the normal and tangent translational constraint and the rotational
constraint. Three boundary parameters are introduced to represent respective constraint degree. The reflection
coefficients in terms of energy flux ratios are calculated from the boundary condition of non-free surface, and
the influences of boundary parameters on the reflection energy flux partitions of various waves are discussed
based on the numerical results. The results of corresponding problem for free surface as well as the fixed
surface can be recovered from the present surface model.

2 Statements of problem

The motion equations of mass point in the micropolar elastic solid can be expressed as (see [6])
(
c21 + c23

)∇ (∇ · u) − (
c21 + c23

)∇ × (∇ × u) + c23∇ × ϕ = ü, (1a)
(
c24 + c25

)∇ (∇ · ϕ) − c24∇ × (∇ × ϕ) + ω2
0∇ × u − 2ω2

0ϕ = ϕ̈, (1b)

where c21 = (λ + 2μ) /ρ, c22 = μ/ρ, c23 = K/ρ, c24 = γ /ρ j, c25 = (α + β) /ρ j, ω2
0 = c23/j = K/ρ j . λ and

μ are the Lamé constants. K , α, β, and γ are the micropolar elastic moduli. ρ is the mass density, and j is the
microinertia. u and ϕ are the displacement vector and the microrotational vector, respectively. Here, the body
force and the body couples are assumed to be zero. In order to uncouple Eq. (1), we represent u and ϕ with a
scalar potential and a vector potential by the application of Helmholtz decomposition of a vector, namely

u = ∇q + ∇ × U, ∇ · U = 0, (2a)
ϕ = ∇ξ + ∇ × �, ∇ · � = 0, (2b)

Inserting Eq. (2) into Eq. (1) leads to
(
c21 + c23

)∇2q = q̈, (3a)
(
c24 + c25

)∇2ξ − 2ω2
0ξ = ξ̈ , (3b)

(
c22 + c23

)∇2U + c23∇ × � = Ü, (3c)

c24∇2� + ω2
0∇ × U − 2ω2

0� = �̈. (3d)

The solution of Eq. (3) can be expressed as

(q, ξ,U, �) = (a, b,A,B) exp [ik (n · r − V t)] , (4)

where a, b,A, andB are the complex amplitudes of four waves, respectively. V is the wave speed, k is the wave
number, n is the unit vector of propagation direction, r is the position vector. Inserting Eq. (4) into Eq. (3), the
dispersive relations of four basic waves are obtained (see [6]).

(a) The longitudinal displacement wave (LDwave) reflects the nature of the physical field q . The wave speed
is V1 = √

(λ + 2μ + K ) /ρ. It is a non-dispersive wave.
(b) The longitudinal microrotational wave (LR wave) reflects the nature of the physical field ξ . The wave

speed is V2 =
√

(α + β + γ ) /ρ j
(
1 − 2K/ρ jω2

)
.
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(c) Two sets of coupled transverse displacement wave and transverse microrotational wave (CTDR3 wave
with speed V3 and CTDR4 wave with speed V4) consist of the transverse displacement field U coupled
with the transverse microrotational field �. Their wave speeds are

V 2
3,4 = 1

2 (1 − η)

[
c24 + c23 + c22 − (

c22 + c23/2
)
η ± 


]
,

where


 =
{[(

c24 − c22 − c23
) + (

c22 + c23/2
)
η
]2 + 2c23c

2
4η

}1/2
, η = 2ω2

0/ω
2.

It is noted that V2 and V3 are nonnegative only when ω >
√
2ω0. Therefore, ωc = √

2ω0 is the cutoff
frequency of the LR wave and the CTDR3 wave. It should be pointed out that the amplitude vectors A and B
are orthogonal to each other and both are orthogonal to the propagation direction n of the coupled waves. The
explicit relation between them is

B = − iω2
0

kp
(
V 2
p − 2ω2

0/k
2
p − c24

)n × A, (5)

where p = 3, 4 stands for CTDR3 and CTDR4 wave, respectively.
Moreover, an important difference between CTDR3 wave and CTDR4 wave, which was neglected by

previous references, is that the transverse microrotational field dominates in CTDR3 wave while the transverse
displacement field dominates in CTDR4 wave. In order to show this difference clearly, the amplitude ratio
|B/A| of two sets of coupled waves for the micropolar material whose material parameter is given in the next
section is shown in Fig. 2. It is noted that this difference becomes more evident as the circular frequency
increases.

Let the oxy coordinate plane be the non-free surface of a micropolar elastic half-space, see Fig. 1. An
incident wave travels along the direction n0 in the half-space with incident angle θ0 and impinges the non-free
surface z = 0. We consider only the plane strain case, namely

u = (0, u2, u3), ϕ = (φ1, 0, 0).

Fig. 1 Reflection of micropolar elastic waves from a non-free surface of a micropolar elastic half-space
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Fig. 2 Amplitude ratios of the transverse microrotational field to the transverse displacement field in two sets of coupled waves

It is noticed that the longitudinal rotational wave (LR) cannot appear in the case. The incident wave
(indicated by superscript “I”) and the reflection waves (indicated by superscript “R”) can be expressed as

q I = aI
1 exp

[
ik I1

(
sin θ I

1 y − cos θ I
1 z

)
− iωI

1 t
]
, (6a)

UI
p = AI

px i exp
[
ik Ip

(
sin θ I

p y − cos θ I
pz

)
− iωI

pt
]
, (6b)

�I
p =

[
BI
pyj + BI

pzk
]
exp

[
ik Ip

(
sin θ I

p y − cos θ I
pz

)
− iωI

pt
]
, (6c)

qR = aR
1 exp

[
ikR1

(
sin θ R

1 y + cos θ R
1 z

)
− iωR

1 t
]
, (7a)

UR
p = iAR

px exp
[
ikRp

(
sin θ R

p y + cos θ R
p z

)
− iωR

p t
]
, (7b)

�R
p =

[
BR
pyj + BR

pzk
]
exp

[
ikRp

(
sin θ R

p y + cos θ R
p z

)
− iωR

p t
]
, (7c)

where ω = kV, p = 3 stands for the CTDR3 wave and p = 4 stands for the CTDR4 wave. i, j, and k are the
unit vectors of the coordinate axes.

The constitutive relation of micropolar solid can be expressed as

tkl = λur,rδkl + μ
(
uk,l + ul,k

) + K
(
ul,k − εklrφr

)
, (8a)

mkl = αφr,rδkl + βφk,l + γφl,k, (8b)

where tkl and mkl are the force stress components and the couple stress components, respectively. Inserting
Eqs. (6) and (7) into Eq. (8), we obtain

tzz = λ∇2q + (2μ + K )
(
q,zz −Ux,yz

)
, (9a)

tzy = μ
(
q,zy −Ux,yy

) + (μ + K )
(
q,yz +Ux,zz

) + K
(
�z,y − �y,z

)
, (9b)

mzx = γ
(
�z,yz − �y,zz

)
. (9c)

These force stress and couple stress components are zero for the free surface. But they may have finite
value and are proportionate to the displacement components and the rotational components for the non-free
surface, namely ⎡

⎣
tzz
tzy
mzx

⎤

⎦ = −i

⎡

⎣
S1 0 0
0 S2 0
0 0 S3

⎤

⎦

⎡

⎣
uz
uy
φx

⎤

⎦, (10)

where S1, S2, and S3 are the proportional coefficients which reflect the stiffness of the normal, tangent, and
rotational elastic support. When S1, S2, and S3 all trend to zero, the free surface is recovered. When S1, S2, and
S3 all trend to infinite, the fixed surface is recovered. The free surface and the fixed surface are two extreme
cases of the non-free surface. In general, S1, S2, and S3 take certain finite values and model the constraint
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surface. Recall that the displacement field and stress field are expressed in terms of complex quantities, it
is noted there is a phase shift between the stress field and the displacement field due to the mathematical
operation ui, j = ik j ui . The extra phase shift does not exist, in fact. Therefore, a negative imaginary unit, −i ,
is introduced into the right side of Eq. (10) to rectify the phase shift.

In order to satisfy the boundary conditions at any boundary point and at any time, the following relations
are necessary:

ωI
p = ωR

p (p = 1, 3, 4), (11)

k Ip sin θ I
p = kRp sin θ R

p (p = 1, 3, 4). (12)

Equation (11) means that the reflection waves have the same circle frequency with the incident waves.
Equation (12) means that the apparent wave number of every wave is same. This is same as in the classic
elastic solid. After inserting Eq. (9) into Eq. (10), the boundary conditions at the non-free surface can be
expressed in the form of matrix

D · Z = E, (13)

where Z = (z1, z2, z3)T is a column matrix which consist of the amplitude ratio of reflection waves with
respect to the incident wave, namely

z1 = aR
1

aI
1

, z2 = AR
3x

a I
1

, z3 = AR
4x

a I
1

(14a)

for incident longitudinal displacement wave (LD wave), and

z1 = aR
1

AI
px

, z2 = AR
3x

AI
px

, z3 = AR
4x

AI
px

(14b)

for incident coupled transverse displacement and transverse rotational wave (p = 3 or 4). E is the column
matrix, which is only related with the incident wave:

E =

⎛

⎜
⎜
⎝

[λ + (2μ + K )cos2 θ I
1 ] (k I1

)2 − cos θ I
1 k

I
1 S1

(2μ+K )sin θ I
1 cos θ I

1

(
k I1

)2 − sin θ I
1 k

I
1 S2

0

⎞

⎟
⎟
⎠ (15a)

for incident longitudinal displacement wave (LD wave), and

E =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎝

(2μ+K )sin θ I
pcos θ I

p

(
k Ip

)2 − sin θ I
pk

I
pS1

−
[
(
μcos 2θ I

p + K cos2 θ I
p

) (
k Ip

)2 + Kω2
0

V 2
p−2ω2

0/
(
k Ip

)2−c24

]

+ cos θ I
pk

I
pS2

− γω2
0cos θ I

pk
I
p

V 2
ρ −2ω2

0/
(
k Ip

)2−c24

+ ω2
0S3

V 2
p−2ω2

0/
(
k Ip

)2−c24

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎠

(15b)

for incident coupled transverse displacementwave and transversemicrorotationalwave (p = 3, 4). The explicit
expressions of each element in matrix D are listed in Appendix A. As two extreme cases, the free surface and
the fixed surface get special concerns. The explicit expressions of matrixD andE for the two extreme cases are
also provided in AppendixA. Due to relative simplification, the amplitude ratios of reflection wave to incident
wave can be further deduced. It is noted that the amplitude ratios for free surface reduce to Eqs. (78) and (79)
in [6] and the amplitude ratio for fixed surface reduces to Eq. (45) in [1]. From Eq. (13), the amplitude ratios
of reflection waves to incident waves for a non-free surface can be obtained for any given incident angle and
frequency.

In order to investigate the energy partition between various reflection waves, the energy fluxes carried by
the incident wave and the various reflected waves are estimated by

Pi (t) = 1

2
(u̇ jσ j i + ϕ̇ jmi j ). (16)
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Fig. 3 Influences of normal stiffness S1 on the reflection coefficients. a S1 = 105; b S1 = 1011; c S1 = 1012; d S1 = 1013;
e S1 = 1014; f S1 = 1020

The averaged energy flux in one period is defined as

P̄i = ω

2π

∫ π/ω

−π/ω

Pi (t) dt = 1

2
Re(u̇∗

jσ j i + ϕ̇∗
j mi j ), (17)

where the superscript “∗” in u̇∗
i and ϕ̇∗

i indicates the conjugated complex. The energy flux along the propagation
direction n is

P̄n(n) = P̄x cos(n, x)+P̄y cos(n, y). (18)

Define the reflection coefficients as the energy flux ratios of the reflection waves to the incident wave.

Es = P̄ R
n (ns)

P̄ I
n (n0)

; (s = 1, 3, 4), (19)

where P̄ I
n (n0) is the energy flux of the incident wave, and P̄ R

n (ns)(s = 1, 3, 4) is the energy flux of the
reflection LD wave, CTDR3 wave and CTDR4 wave.

Considering that a thin layer at surfacewith the length of onewave length 2l (l = π/k) and the infinitesimal
thickness δ → 0. The energy conservation within the thin layer requires that the input energy flux is equal to
the output energy flux, namely

E =
(
P̄ R
z (n1) + P̄ R

z (n3) + P̄ R
z (n4) + P̄ t

z

)
/P̄ I

z (n0) = 1, (20)

where P̄ I
z (n0) is the input energy flux carried by incident wave. P̄ R

z (n1), P̄ R
z (n3), and P̄ R

z (n4) are the out-
put energy fluxes carried by reflection LD wave, CTDR3 wave, and CTDR4 waves, respectively. P̄ t

z =
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Fig. 4 Influences of tangent stiffness S2 on the reflection coefficients. a S2 = 105; b S2 = 1010; c S2 = 1011; d S2 = 1012;
e S2 = 1013; f S2 = 1020

1
2

(
u̇z S1uz + u̇ y S2uy + ϕ̇x S3ϕx

)
and Et = P̄ t

z /P̄
I
z stand for the energy flux and energy flux ratio stored

in the constraint springs. Equation (20) can be used to validate the numerical results in the next section.

3 Numerical results and discussions

In the numerical examples, the material constants of micropolar elastic half-space are ρ = 2600 kg/m3, λ =
2.2×1010 Pa, μ = 1.1×1010 Pa, K = 8.8×108 Pa, γ = 2×108 N, j = 6×10−7 m2, which are taken from
[10]. Because the coupled transverse displacement and transversemicrorotational waves (CTDR3 andCTDR4)
are both dispersive, the reflection CTDR3 wave and the reflection CTDR4 wave are not only dependent on
the incident angle but also on the circular frequency of the incident wave. Considering that the influence of
the circular frequency on the reflection amplitude ratio was already discussed in [6], the incident circular
frequency is assumed fixed in the present work, namely ω2/ω2

0 = 8, which is above the cutoff frequency of
CTDR3 wave. The reflection coefficients in terms of energy flux ratio are calculated in the present work for
different incident angles in the case of incident LD wave and incident CTDR3 wave. In order to investigate the
influences of constraint on the reflection energy partition, some finite values of constraint stiffness coefficients
between 0 and ∞ are used.

3.1 In the case of incident LD wave

Figure 3 shows the influence of the normal stiffness S1 on the reflection energy flux partition. The reflection
coefficients are calculated for normal stiffness S1 = 105, 1011, 1012, 1013, 1014, and 1020, respectively, while
keeping the tangent stiffness and the rotational stiffness zero, namely S2 = S3 = 0. It is observed that the
reflection coefficients of CTDR3 wave and the CTDR4 wave decrease gradually as the normal stiffness S1
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Fig. 5 Influences of rotational stiffness S3 on the reflection coefficients. a S3 = 105; b S3 = 108; c S3 = 109; d S3 = 1010;
e S3 = 1011; f S3 = 1020

Fig. 6 Reflection coefficients for the free surface and the constraint surface with very small constraint stiffness (S1 = S2 = S3 =
100). a The free surface, b the constraint surface

increases. However, the reflection coefficient of LD wave decreases first and then increases gradually as the
normal stiffness increases. The reflection coefficients of LDwave reachminimum around S1 = 1012. Although
the influences of the normal stiffness S1 on LD wave are opposite before and after S1 = 1012, the increase
in S1 always suppress the energy flux of CTDR3 wave and CTDR4 wave. This means that the existence of
normal stiffness suppresses the mode conversion.

Figure 4 shows the influence of the tangent stiffness coefficients on the reflection energy flux partition.
The reflection coefficients are calculated for tangent stiffness S2 = 105, 1010, 1011, 1012, 1013, and 1020,
respectively, while keeping the normal stiffness and the rotational stiffness zero, namely S1 = S3 = 0. It is
found that the tangent stiffness S2 can influence all kinds of reflection waves. The reflection coefficient of LD
wave increases gradually, and the reflection coefficients of the CTDR3 wave and the CTDR4 wave decrease
gradually as the tangent stiffness S2 increases. This means that the tangent constraint can also suppress the
mode conversion as the normal constraint. Moreover, the reflection coefficients are most sensitive to the
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Fig. 7 Reflection coefficients for the fixed surface and the constraint surface with very large constraint stiffness (S1 = S2 = S3 =
1020). a The fixed surface, b the constraint surface

Fig. 8 Influences of normal stiffness S1 on the reflection coefficients. a S1 = 105; b S1 = 1011; c S1 = 1012; d S1 = 1013;
e S1 = 1014; f S1 = 1020

tangent stiffness around S2 = 1011 − 1012. When the tangent stiffness coefficient is very small or very large,
the reflection coefficients are insensitive to stiffness coefficient.

Figure 5 shows the influence of rotational stiffness on the reflection energy partition. The reflection coef-
ficients are calculated for rotational stiffness S3 = 105, 108, 109, 1010, 1011, and 1020, respectively, while
keeping the normal stiffness and the tangent stiffness fixed, namely S1 = S2 = 0. Different from the normal
and tangent stiffness, the rotational stiffness has only evident influence on the CTDR3 wave, while it has
nearly unnoticed influences on the LD wave and the CTDR4 wave. This means that the existence of rotational
stiffness S3 only suppresses the CTDR3 wave.

In order to validate the numerical results about reflection energy flux ratios, the energy flux conservation
is checked up. The energy flux conservation principle requires the output energy fluxes are equal to the input
energy flux at same area of non-free surface. The curves indicated by “E” in Figs. 3, 4, and 5 keep nearly unit
in total range of incident angle, which implies that the energy flux conservation is satisfied in total range of
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Fig. 9 Influences of tangent stiffness S2 on the reflection coefficients. a S2 = 105; b S2 = 1010; c S2 = 1011; d S2 = 1012;
e S2 = 1013; f S2 = 1020

incident angles. The curves indicated by “Et” in Figs. 3, 4, and 5 represent the energy stored in the constraint
spring, which is evidently dependent on the constraint stiffness. By observing Figs. 3, 4, and 5, it is noted that
the normal constrain spring stores energy most evidently around S1 = 1012 ∼ 1013, the tangent constraint
spring stores energy most evidently around S2 = 1011 ∼ 1012, and the rotational constraint spring stores
energy most evidently around S3 = 109 ∼ 1010. By comparison, the normal constraint spring stores energy
most evidently, while the rotational constraint spring stores energy least evidently.

The free surface was often used to study the reflection problem in the previous literatures. It is actually
a limiting case of the present non-free surface model when the normal, tangent, and rotational constraint
stiffness, S1, S2, and S3 all tend to zero. Therefore, the reflection coefficients for the free surface can be
recovered from the present non-free surface model by assigning very small values to S1, S2, and S3. Figure 6
shows the reflection coefficients obtained from the free surface accurately and obtained from present model
by assigning very small value to S1, S2, and S3. It is found that there is a good consistence between them.
Similarly, the fixed surface can be recovered also as another limiting case of present non-free surface model
when the normal, tangent, and rotational constraint stiffness, S1, S2, and S3 all tend to infinity. Figure 7 shows
the reflection coefficients obtained from the fixed surface accurately and obtained from the present non-free
surface by assigning very large values to S1, S2, and S3. It is also found that there is a good consistence between
them. This can also be a validity of present numerical results.

3.2 In the case of incident CTDR3 wave

Figure 8 shows thedependenceof reflection coefficients on thenormal stiffness S1 in the case of incidentCTDR3
wave. It is observed that the reflection coefficient of LDwave decreases gradually, and the reflection coefficient
of the CTDR4 wave increases gradually with increasing normal stiffness S1. The reflection coefficient of the
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Fig. 10 Influences of rotational stiffness S3 on the reflection coefficients. a S3 = 105; b S3 = 108; c S3 = 109; d S3 = 1010;
e S3 = 1011; f S3 = 1020

CTDR3 wave keeps nearly independent of the normal stiffness. This observation implies that the larger normal
stiffness does not help the mode conversion.

Figure 9 shows the dependence of reflection coefficients on the tangent stiffness S2. As in the case of
incident LDwave, the tangent stiffness influences all types of reflection waves. It is observed that the reflection
coefficients of LD wave and CTDR4 wave decrease, while the reflection coefficient of the CTDR3 wave
increases gradually with increasing tangent stiffness S2. Compared with the normal stiffness S1, the tangent
stiffness has more evident influences on the CTDR4 wave and thus has more evident suppressant effect on the
mode conversion.

Figure 10 shows the dependence of reflection coefficients on the rotational stiffness S3. As in the case
of incident LD wave, the rotational stiffness has only evident influence on the CTDR3 wave, while it has
nearly unnoticed influences on the LD wave and CTDR4 wave. When the rotational stiffness S3 increases, the
reflection coefficient of the CTDR3 wave decreases first and then increases gradually after about S3 = 1010.
Moreover, it is observed that the reflection coefficient of the CTDR4 wave becomes very small when the
rotational stiffness S3 is not zero. This means that the existence of rotational stiffness has evident suppressant
effect on the reflection CTDR4 wave.

In order to validate the energy flux conservation, incident energy flux and the reflection energy flux along
the normal surface and the energy flux stored in the constraint spring are also calculated. The curves indicated
by “E” in Figs. 8, 9, and 10 keep nearly unit in total range of incident angle, which implies that the energy
flux conservation is satisfied in total range of incident angles. However, different from the case of incident LD
wave, the rotational constraint stiffness stores energy most evidently from the observation on curves indicated
by “Et” in Figs. 8, 9, and 10. This phenomenon can be explained by that the dilatational deformation dominates
in the deformation response to the incident LD wave and thus the normal constraint spring stores energy most
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evidently, while themicrorotational deformation dominates in the deformation response to the incident CTDR3
wave and thus the rotational constraint spring stores energy most evidently.

4 Conclusions

The non-free surface of a micropolar elastic half-space is a generalized surface model. The free surface,
slippery surface, and the fixed surface can be recovered by the non-free surface model. At the non-free surface,
the surface macrotraction and microcouple are assumed to be proportional to the surface macrodisplacement
and surface microrotation. The normal, tangent, and rotational stiffness represent the mechanical behavior of
non-free surface and have different influences on the reflection waves. (a) The rotational stiffness has only
evident influence on the CTDR3 wave; however, the normal and tangent stiffness have influences on all types
of reflection waves. (b) The tangent stiffness has evident suppressant effects on the CTDR4 wave, but has
opposite influences on the LD wave and the CTDR3 wave for both incident LD wave and incident CTDR3
wave. (c) The normal stiffness suppresses the CTDR4 wave for incident LD wave but enhances CTDR4 wave
for incident CTDR3 wave. The mode conversion phenomena are most evident at the free surface and disappear
at the fixed surface. The non-free surface has evident suppressant effect on the mode conversion compared
with the free surface. The normal and tangent constraints suppress all types of reflection waves, while the
rotational constraint only suppresses the reflection CTDR3 wave. Moreover, different from the free surface
and the fixed surface, the non-free surface can store energy and therefore makes the normal energy flux of all
reflection waves not equal to that of incident waves. The amplitude of energy stored in the constrained spring
is dependent on the specific value of stiffness coefficients, which can be deliberately designed to adjust the
energy fluxes carried by various reflection waves. Due to the deformation responses to incident LD wave and
incident CTDR3 wave are different, the normal constraint, the tangent constraint, and the rotational constraint
play different roles in storing energy.
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Appendix A

In the case of non-free surface, the explicit expressions of each element in matrix D in Eq. (13) are

d11 = −
[
λ + (2μ + K ) cos2 θ R

1

]
(kR1 )2 − cos θ R

1 k
R
1 S1,

d12 = (2μ + K ) sin θ R
3 cos θ R

3

(
kR3

)2 + sin θ R
3 k

R
3 S1,

d13 = (2μ + K ) sin θ R
4 cos θ R

4

(
kR4

)2 + sin θ R
4 k

R
4 S1,

d21 = (2μ + K ) sin θ R
1 cos θ R

1

(
kR1

)2 + sin θ R
1 k

R
1 S2,

d22 =
[
(
μ cos 2θ R

3 + K cos2 θ R
3

) (
kR3

)2 + Kω2
0

V 2
3 − 2ω2

0/
(
kR3

)2 − c24

]

+ cos θ R
3 k

R
3 S2,

d23 =
[
(
μ cos 2θ R

4 + K cos2 θ R
4

) (
kR4

)2 + Kω2
0

V 2
4 − 2ω2

0/
(
kR4

)2 − c24

]

+ cos θ R
4 k

R
4 S2,

d31 = 0, d32 = − γω2
0 cos θ R

3 k
R
3

V 2
3 − 2ω2

0/
(
kR3

)2 − c24
+ ω2

0S3

V 2
3 − 2ω2

0/
(
kR3

)2 − c24
,

d33 = − γω2
0 cos θ R

4 k
R
4

V 2
4 − 2ω2

0/
(
kR4

)2 − c24
+ ω2

0S3

V 2
4 − 2ω2

0/
(
kR4

)2 − c24
.

In the case of free surface, the explicit expressions of each element in matrix D are

d11 = −
[
λ + (2μ + K ) cos2 θ R

1

] (
kR1

)2
, d12 = (2μ + K ) sin θ R

3 cos θ R
3

(
kR3

)2
,
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d13 = (2μ + K ) sin θ R
4 cos θ R

4

(
kR4

)2
, d21 = (2μ + K ) sin θ R

1 cos θ R
1

(
kR1

)2
,

d22 =
[
(
μ cos 2θ R

3 + K cos2 θ R
3

) (
kR3

)2 + Kω2
0

V 2
3 − 2ω2

0/
(
kR3

)2 − c24

]

,

d23 =
[(

μ cos 2θ R
4 + K cos2 θ R

4

) (
kR4

)2 + Kω2
0

V 2
4 − 2ω2

0/
(
kR4

)2 − c24

]

,

d31 = 0, d32 = − γω2
0 cos θ R

3 k
R
3

V 2
3 − 2ω2

0/
(
kR3

)2 − c24
, d33 = − γω2

0 cos θ R
4 k

R
4

V 2
4 − 2ω2

0/
(
kR4

)2 − c24
.

Efree can be obtained from Eqs. (15a) and (15b) by letting S1, S2, and S3 equal to zero, respectively.
In the case of fixed surface, the explicit expressions of each element in matrix D are

d11 = cos θ R
1 k

R
1 , d12 = − sin θ R

3 k
R
3 , d13 = − sin θ R

4 k
R
4 , d21 = sin θ R

1 k
R
1 , d22 = cos θ R

3 k
R
3 ,

d23 = cos θ R
4 k

R
4 , d31 = 0, d32 = ω2

0

V 2
3 − 2ω2

0/
(
kR3

)2 − c24
, d33 = ω2

0

V 2
4 − 2ω2

0/
(
kR4

)2 − c24
,

Efixed = (
cos θ I

1 k
I
1 , − sin θ I

1 k
I
1 , 0

)T
for incident LD wave, and

Efixed =
(

sin θ I
pk

I
p, cos θ I

pk
I
p, − ω2

0

V 2
p−2ω2

0/
(
k Ip

)2−c24

)T

for incident CTDR3 wave (p = 3) or CTDR4 wave

(p = 4).
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