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Abstract In this study, the behavior of polycrystalline
metals at different temperatures is investigated by a new
thermo-elasto-plasticity constitutive theory. Based on solid
mechanical and interatomic potential, the constitutive equa-
tion is established using a new decomposition of the defor-
mation gradient. For polycrystalline copper and magnesium,
the stress–strain curves from 77 to 764 K (copper), and 77 to
870 K (magnesium) under quasi-static uniaxial loading are
calculated, and then the calculated results are compared with
the experiment results. Also, it is determined that the present
model has the capacity to describe the decrease of the elastic
modulus and yield stress with the increasing temperature, as
well as the change of hardening behaviors of the polycrys-
talline metals. The calculation process is simple and explicit,
which makes it easy to implement into the applications.

Keywords Thermo-elasto-plasticity constitutive theory ·
Yield stress · Hardening behaviors · Finite temperature

1 Introduction

Polycrystalline metals have been investigated widely for
many years, as they are importantmaterials for the aerospace,
energy, and chemical processing industries.Also, theirmater-
ial response at different temperatures has drawn the extensive
attention of researchers. The results of experimental investi-
gations [1–8] have determined that the yield stress and hard-
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ening of polycrystalline metals decreases with the increase
in temperature at the same strain rate.

In previous years, theoretical models for polycrystalline
plasticity have been developed. For example, the classic
Taylor [9], self-consistent [10], and crystal plasticity finite-
element models [11] have made significant progress from
both macro and micro angles. First of all, the classic Tay-
lor model [9] assumes that all grains must accommodate the
same plastic strain, which is equal to the macroscopic strain
and neglects the interaction between crystals. Therefore, it is
more applicable for the face centered cubic (FCC) and body
centered cubic (BCC) metals due to their crystallographic
symmetry [12–14]. The next models are those based on the
self-consistent approach. These models have been applied in
the hexagonal close packed (HCP) [10,15] and other poly-
crystalline materials [16] for many decades. These models
have the ability to describe the stress and strain variations
from one grain to another and the interaction among the
grains for the low crystallographic symmetry in polycrystals
[17–19]. Moreover, new research has revealed that the self-
consistent approach could potentially be implemented into
the complicated loading condition deformation process [20],
thereby describing the visco-plastic deformation using the
dislocation-density constitutive law [21]. Lastly, the crystal
plasticity finite-elementmodels have been used to investigate
the effects of the dislocation creep [22,23], hardening behav-
ior [24], and crystal orientation [25] on the plastic behavior
of metals at various temperatures. This model offers vari-
ous constitutive formulations at the elementary shear system
level, and can be applied easily into complicated boundary
conditions [11].

In addition to the above mentioned theories, some new
models have been proposed in recent years [26–32]. For
example, the Johnson–Cook model [27], Zerilli–Armstrong
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model [28], and Khan–Huang–Liang model [29–32]. These
models have improved the constitutive descriptions of the
dynamic plasticity of metals and have described the strain,
strain-rate, and temperature relations formetals in large strain
and high strain-rate regimes. The above models have all
played important roles in the investigation of thermo-elasto-
plastic deformations for polycrystalline metals. However,
none of them have accounted for the thermal expansion in
the deformation histories, which limits their applications to
structural calculation with some boundary constraints. At the
same time, we also need concise descriptions to reflect the
temperature effects on the yield stress and hardening behav-
iour.

In this study,we propose a thermo-elasto-plasticity consti-
tutive theory to describe behaviors of polycrystalline metals
at different temperatures. First of all, a new decomposi-
tion of the deformation gradient is presented, and then the
thermo-elasticity constitutive equation for single crystals is
established. This is followed by obtaining the polycrystal
elastic constants from single crystal elastic constants through
integral transformation. The next focus is a macroscale plas-
tic constitutive equation implementation to obtain the plastic
deformation of the polycrystal. In the calculation process,
a simple exponential relationship is proposed in order to
describe the decrease of the yield stress with temperature
increases, so that a law change of the material behaviour can
easily be obtained. Lastly, the comparisons between the cal-
culated and experimental results are presented.

2 Thermo-elasto-plasticity constitutive relationship
for single crystals

2.1 Decomposition of the deformation gradient

In this paper, a new decomposition of deformation gradient
is proposed to describe the thermo-elasto-plasticity deforma-
tion behavior, which is different from the kinematical theory
[33–35]. As shown in Fig. 1, the whole deformation process
is decomposed into four parts: the initial configuration at the
undeformed state of 0 K (Fig. 1a), the first intermediate con-
figuration after free thermal expansions at T K (Fig. 1b), the
second intermediate configuration after elastic deformation
at T K (Fig. 1c), and the current configuration after plastic
deformation at T K (Fig. 1d).

The total deformation gradient is decomposed as

F = FpFeF∗, (1)

where Fe is the elastic deformation gradient, Fp is the plas-
tic deformation gradient, and F∗ is the thermal deformation
gradient due to the free thermal expansion.

The thermal strain tensor E∗, elastic strain tensor Ee, and
plastic strain tensor Ep take the respective forms as

Fig. 1 Decomposition of deformation configuration. a Initial con-
figuration. b First intermediate configuration. c Second intermediate
configuration. d Current configuration

E∗ = 1

2

(
F∗TF∗ − I

)
, (2a)

Ee = 1

2

(
FeTFe − I

)
, (2b)

Ep = 1

2

(
FpTFp − I

)
. (2c)

Therefore, the total strain tensor is expressed as

E = 1

2

[(
F∗TFeTFpTFpFeF∗) − I

]

= 1

2

(
F∗TFeTFeF∗ − I

)
+ F∗TFeTEpFeF∗

= E∗ + F∗TEeF∗ + F∗TFeTEpFeF∗. (3)

Based on the polar decomposition of the tensor, the defor-
mation gradients F∗ and Fe are written respectively as

F∗ = R∗U∗, (4)

Fe = ReUe, (5)

where R∗ and Re are the rotation tensors, and U∗ and Ue

are the stretch tensors.
Assuming that R∗ = I , Re = I , the total strain tensor is

expressed as

E = E∗ + U∗EeU∗ + U∗UeEpUeU∗. (6)

Based on Eqs. (2a), (2b), (4) and (5), we can obtain

E∗ = 1

2

[(
U∗)2 − I

]
, (7a)

Ee = 1

2

[(
Ue)2 − I

]
. (7b)

The Taylor expansions of U∗ and Ue are

U∗ = (I + 2E∗)1/2 = I + E∗ − 1

2

(
E∗)2 + · · · , (8a)

Ue = (I + 2Ee)1/2 = I + Ee − 1

2

(
Ee)2 + · · · . (8b)
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If the thermal strain tensor E∗ and elastic strain tensor Ee

are small, we can obtain

U∗ ∼= I + E∗, (9a)

Ue ∼= I + Ee, (9b)

and

U∗ ∼= I, (10a)

Ue ∼= I . (10b)

Then, the total strain tensor takes

E = E∗ + Ee + Ep. (11)

Equation (11) is a new strain tensor expression of the elas-
tic and plastic deformation at the finite temperature, and it
extends the kinematical theory of the elastic-plastic defor-
mation of the crystal.

2.2 Thermal strain

When an undeformed body is heated up from temperature T0
to T , the thermal strain εT is given by [36]

εT =
T∫

T0

αdT , (12)

where T0 is the reference temperature. α is the coeffi-
cient of thermal expansion, which can be obtained from the
experimental results [37] and also can be calculated by the
theoretical method [38].

For the metal material, the thermal strain tensor E∗ is as

E∗ =
⎡
⎣

εT 0 0
0 εT 0
0 0 εT

⎤
⎦ . (13)

The calculations for lattice constant r (0)(T ) at temperature
T were given by Jiang [39] as follows:

r (0)(T ) = r (0)(T0)

⎛
⎜⎝1 +

T∫

T0

αdT

⎞
⎟⎠ . (14)

2.3 Thermo-elasticity constitutive equation for single
crystals

The second Piola–Kirchhoff stress is expressed as

S = ∂W

∂Ee = 1

V ∗

[
∂Utot (Ee)

∂Ee

]
, (15)

where V ∗ is the volume at the first intermediate configuration
as shown in Fig. 1b, Utot is the total potential energy of the
system.

The rate of the second Piola–Kirchhoff stress takes

Ṡ = 1

V ∗

[
∂U 2

tot (E
e)

∂Ee∂Ee

]
: Ėe

= 1

V ∗

[
∂U 2

tot (E
e)

∂Ee∂Ee

]
: (Ė − Ė

p − Ė
∗
). (16)

Equation (16) can be written as

Ṡ = Csig : Ėe
, (17)

where Csig is the thermo-elastic stiffness tensor for single
crystals. And the change of lattice constant with temperature
is considered in the calculation of total potential energyUtot.
So the stiffness Csig changes with temperature.

The constitutive equation (16) is established by the rate of
the second Piola–Kirchhoff stress and the rate of the Green
strain based on the new deformation gradient decomposi-
tion. Since the decomposition is obtained under the condition
that the elastic and thermal strain is small (Eqs. (9–10)), the
constitutive equation can also be applied under this condi-
tion. Although the plastic strain of metal material always
exceeds small deformation range, the decomposition is avail-
able because the elastic and thermal strain is small enough.

3 Thermo-elasto-plasticity constitutive relationship
for polycrystal

3.1 Thermo-elastic constants for polycrystal

Polycrystalline material can be considered an aggregate of
randomly oriented single crystals. The orientation of a crys-
tallite in a polycrystalline sample is specified by means of
Euler angles (θ, ϕ, ψ) [40]. The component of the thermo-
elastic stiffness tensor for the polycrystalline Cpol

i jkl can be
obtained by

Cpol
i jkl =

∫ π

0

∫ 2π

0

∫ 2π

0
(Rim)−1 (

R jn
)−1 (

Rkp
)−1 (

Rlq
)−1

×Csig
mnpq f (θ, ϕ, ψ) sin θdψdϕdθ, (18)

where Csig
mnpq is the component of thermo-elastic stiffness

tensor for the single crystals, which can be obtained by Eq.
(17), R is the rotation tensor described by the Euler angles,
and its expression is given by Reo [40], Ri j is the component
of R, and f (θ, ϕ, ψ) is the crystalline orientation distribu-
tion function in the polycrystalline sample. This satisfies

∫ π

0

∫ 2π

0

∫ 2π

0
f (θ, ϕ, ψ) sin θdψdϕdθ = 1. (19)
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Then, assuming that crystalline orientations satisfy the
uniform distribution, f (θ, ϕ, ψ) would be constant as:

f (θ, ϕ, ψ) = 1

8π2 . (20)

The component of the thermo-elastic stiffness tensor for
the polycrystal is written as

Cpol
i jkl

= 1

8π2

∫ π

0

∫ 2π

0

∫ 2π

0
(Rim)−1 (

R jn
)−1 (

Rkp
)−1 (

Rlq
)−1

×Csig
mnpq sin θdψdϕdθ. (21)

For the single crystals of cubicmetals, there are three inde-
pendent elastic constants:Csig

1111,C
sig
1122,C

sig
1212, and the elastic

constants of polycrystalline cubic materials are calculated as

Cpol
1111 = 0.6Csig

1111 + 0.4(Csig
1122 + 2Csig

1212), (22a)

Cpol
1122 = 0.2Csig

1111 + 0.8Csig
1122 − 0.4Csig

1212, (22b)

Cpol
1212 = 0.2Csig

1111 − 0.2Csig
1212 + 0.6Csig

1212. (22c)

While there are five independent elastic constants for the sin-
gle crystals of hexagonal metals: Csig

1111, C
sig
3333, C

sig
1122, C

sig
1133,

Csig
1212, C

sig
1313. The elastic constants of polycrystalline hexag-

onal materials are calculated as:

Cpol
1111 = 0.533Csig

1111 + 0.2Csig
3333

+ 0.266
(
Csig
1133 + 2.0Csig

1313

)
, (23a)

Cpol
3333 = 0.533Csig

1111 + 0.2Csig
3333

+ 0.266
(
Csig
1133 + 2.0Csig

1313

)
, (23b)

Cpol
1122 = 0.0667

(
Csig
1111 + Csig

3333

)
+ 0.333Csig

1122

+ 0.533Csig
1133 − 0.2668Csig

1313, (23c)

Cpol
1133 = 0.0667

(
Csig
1111 + Csig

3333

)
+ 0.333Csig

1122

+ 0.533Csig
1133 − 0.2668Csig

1313, (23d)

Cpol
1313 = 0.233c1111 + 0.0667Csig

3333 − 0.1667Csig
1122

− 0.133Csig
1133 + 0.4Csig

1313, (23e)

Cpol
1212 = 1

2

(
Cpol
1111 − Cpol

1122

)

= 0.233Csig
1111 + 0.0667Csig

3333

− 0.1667Csig
1122 − 0.133Csig

1133 + 0.4Csig
1313. (23f)

From Eqs. (23a)–(23f), it can be found that though the sin-
gle crystals of hexagonalmetals are anisotropic, there also are
three independent elastic constants of polycrystalline hexag-
onal materials. This result is due to the assumption that the

crystalline orientations satisfy uniform distribution in the
polycrystalline sample.

Based on the above derivation, we are able to determine
the rate of the second Piola–Kirchhoff stress of the polycrys-
talline material as

Ṡ = Cpol : Ėepol
, (24)

where Ė
epol

is the rate of the Green strain for the polycrys-
talline material.

3.2 Plastic constitutive equation for polycrystal

In order to determine the relationship between the plastic
strain, and the stress at a given temperature, the power law
of the macroscopic uniaxial strain–stress curve is adopted,
and has been effectively adopted by the theoretical model
[27,31,32,41]:

σ =
{
cεm, σ ≥ σys
E ′ε, σ < σys

, (25)

where c and m are parameters, E ′ is secant modulus of elas-
ticity, and σys is yield stress, which can be obtained by

σys = cεmys = E ′εys, (26)

where εys is yield strain, which remains unchanged for the
same material; then Eq. (25) can be written as follows:

σ

σys
=

⎧⎪⎪⎨
⎪⎪⎩

(
ε

εys

)m

, σ ≥ σys

ε

εys
, σ < σys

. (27)

In Eq. (27), when the yield stress σys and parameterm are
determined at a given temperature, the stress–strain curve
can then be obtained.

With consideration to the yield stress always changing
with temperature, and in order to describe the temperature
effects on the yield stress, we proposed the exponential curve
based on the previous experiment and theoretical investiga-
tions as:

σys = σ 0
yse

−βT ∗
, (28)

where, T ∗ = T
T0

−1, and T0 is the reference temperature, σ 0
ys

is the yield stress at reference temperature, andβ is parameter
which reflects the change of yield stress with temperature.

When, σ ≥ σys (T), the stress is obtained by:

σ =
(

ε

εys

)m

σ 0
yse

−βT ∗
. (29)
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Fig. 2 Thermal strain of copper

4 Calculation results

In this study, the uniaxial stress–strain curves of FCC poly-
crystalline copper and HCP polycrystalline magnesium at
various temperatures are calculated based on the present
model, and the calculation results are compared with the
experiment results [3,5,6].

4.1 FCC polycrystalline copper

The experimental results for the quasi-static uniaxial stress–
strain curves of polycrystalline copper from 77 to 764Kwere
obtained by Roberts and Bergström [6].

4.1.1 Thermal strain and lattice constants for copper

The thermal strain and lattice constants at different tempera-
tures are calculated based on Eqs. (12) and (14), respectively,
and the thermal expansion α in Eqs. (12) and (14) is obtained
from the experimental results [37]. Figures 2 and 3 show the
thermal strain and the lattice constant versus temperature for
copper. The thermal strain at room temperature is set as zero.

4.1.2 Elastic constants for copper

For copper, the EAM potential proposed by Mishin [42] is
adopted to calculate the potential energy Utot in Eq. (16).
The change of lattice constant with temperature is consid-
ered in the calculation of thermo-elastic stiffness tensor [Eq.
(17)], and the elastic constants of the polycrystalline copper
at different temperatures can be easily obtained (Fig. 4).

4.1.3 Determination of calculated parameters for copper

For copper, the reference temperature is 293 K and yield
strain εys is 0.2 %. Based on Eq. (29), only three parameters

Fig. 3 Lattice constants of copper

E
la

st
ic

 c
on

st
an

ts
/G

P
a

Temperature/K

100 200 300 400 500 600 700 800
-50

0

50

100

150

200

250

Copper
C11 C22 C12

Fig. 4 Elastic constants of copper

are required: σ 0
ys, β, and m. The yield stress σ 0

ys and para-
meter m are determined firstly by the stress–strain curve at
293 K. Then, from another stress–strain curve at a different
temperature, the parameter β can be obtained. Figure 5 is the
calculated curve of the yield stress versus the temperature for
copper, which agrees well with the experimental results. And
the calculated parameters for copper are shown in Table 1.

4.1.4 Calculated results for copper

Figure 6a–6c is the comparison of the uniaxial stress–strain
curves for copper between the simulation and the experi-
mental results at different temperatures (77–764 K). It can
be found that the present model can potentially describe the
behavior of the FCC polycrystalline copper effectively.

4.2 HCP polycrystalline magnesium

The experimental results of the magnesium come from data
of two different studies: low and medium temperatures [3]:
77–523 K; high temperatures [5]: 675–870 K. Therefore, the
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0

ys

0

ysys

Fig. 5 Comparison of yield stress for copper between the calculated
curve and experimental data at different temperatures

Table 1 Calculated parameters for copper

T (K) σ 0
ys (MPa) β m

77–764 16.5 0.387 0.67

reference temperature is 293 K for low and medium temper-
atures, and 675 K for high temperatures, and the yield strain
εys is 0.05 %.

Based on previous investigations regarding magnesium
[43], it can be determined that the low symmetry of the
crystallographic structure, as well as the twinning behavior,
would make the plastic deformation of the HCP polycrys-
talline more complicated. In comparing the two groups of
experimental results, we found that the temperature effects
on the plastic behavior at lower temperatures are more dif-
ficult to describe. Therefore, we adopted a special handling
in the calculation of the magnesium at the low and medium
temperatures.

4.2.1 Thermal strain and lattice constants for magnesium

The thermal strain and lattice constants for magnesium are
obtained by the same method as copper, and the results are
shown in the Figs. 7 and 8.

4.2.2 Elastic constants for magnesium

For magnesium, the EAM potential proposed by Zhou [44]
is adopted to calculate the potential energy. The elastic con-
stants at different temperatures for magnesium are as shown
in Fig. 9.

4.2.3 Determination of calculated parameters
for magnesium at high temperature

Similar to copper, the calculated parameters for magnesium
at high temperatures is determined by two experimental

77K-196K

a

b

c

298K-479K

568K-764K

Copper

Copper

Copper

E

C

E

C

E

C

Fig. 6 Comparisons of uniaxial stress–strain curves for copper
between the simulation and experiment results at different tempera-
tures. a 77–196 K. b 298–479 K. c 568–764 K

stress–strain curves [5]. The calculated curve of the yield
stress versus temperature for magnesium at high tempera-
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Magnesium

Fig. 7 Thermal strain of magnesium

Magnesium

Fig. 8 Lattice constants of magnesium

ture is as shown in Fig. 10. The calculated parameters are
illustrated in Table 2.

4.2.4 Calculated results for magnesium at high temperature

Figure 11a–11b shows the comparison of the uniaxial stress–
strain curves of the simulation and experiment results at
different temperatures for copper (675–870 K).

4.2.5 Determination of calculated parameters for
magnesium at low and medium temperatures

From the stress–strain curves of the experiment [3], it can be
determined that the plastic deformation of the HCP polycrys-
talline magnesium at low and medium temperatures appears
to be more complicated than the above calculated results.
If the parameter m remains unchanged at different tempera-
tures, we are unable to obtain the correct calculated results.
In order to describe accurately the temperature effects on
the hardening behavior for magnesium at low and medium

Magnesium

Fig. 9 Elastic constants of magnesium

Magnesium

F

E

Fig. 10 Comparison of yield stress for magnesium between the calcu-
lated curve and experimental data at high temperatures

Table 2 Calculated parameters for magnesium at high temperature

T (K) σ 0
ys (MPa) β m

675–870 6.5 4.28 0.07

temperatures, we adopted a bilinear function to describe the
change of parameter m with the various temperatures as

m = m0(1 + aT ∗ + bT ∗2), (30)

where m0 is the value of m at reference temperature, and a
and b are parameters.

Then, the yield stressσ 0
ys andm0 are first determinedby the

stress–strain curve at the reference temperatures. The para-
meters a and b can be obtained by another two stress–strain
curves at different temperatures. Meanwhile, the parameter
β can be obtained. Figure 12 is the comparison of the calcu-
lated curve for m with the experimental results at different
temperatures. Figure 13 is the comparison of the calculated
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a 

b 

Magnesium

Magnesium

E

C

E

C

Fig. 11 Comparisons of uniaxial stress–strain curves for magnesium
between the simulation and experiment results at high temperature.
a 675–773 K. b 813–870 K

curve for yield stress σys with the experimental results. It
can be seen that the calculated curves agree well with the
experimental results.

The calculated parameters for magnesium at low and
medium temperatures are as shown in Table 3.

4.2.6 Calculated results for magnesium at low and medium
temperatures

Figure 14a, 14b is the comparison of the uniaxial stress–
strain curves for the magnesium between the calculation and
the experimental results at low and medium temperatures
(77–523 K). It can be determined that the present model can
potentially describe the behavior of the HCP polycrystalline
magnesium efficiently.

Magnesium
E
C

Fig. 12 Comparison of parameter m for magnesium between the cal-
culated curve and experimental data at low and medium temperatures

Magnesium
E

C

Fig. 13 Comparison of yield stress for magnesium between the cal-
culated curve and experimental data at low and medium temperatures

5 Discussion

When compared with the kinematical theory described by
Asaro [33,34], whose deformation gradient is written as
F = FeFp, the new decomposition of the total deforma-
tion gradient is effective when the constitutive equation is
applied to the thermal strain. Moreover, the new decompo-
sition equation F = FpFeF∗ in this study is able to obtain
the simple strain tensor in Eq. (11), which is more favorable
than the other decomposition expressions. Then, based on the
new decomposition, we established the constitutive equation
for crystals. However, the new decomposition is established
under the condition that the elastic and thermal strain is small
enough, so the new constitutive equation is also applicative
in this condition.

The plastic deformation and the decrease of yield stress
with temperature are reflected by simple power and expo-
nential relationships respectively. The calculation is more
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Table 3 Calculated parameters formagnesium at low andmedium tem-
peratures

T (K) σ 0
ys (MPa) β

77–523 14.5 0.178

m0 a b

0.5 −0.57 −0.58

a 

b 

C

Magnesium
Experiment

C

Magnesium
Experiment

Fig. 14 Comparisons of uniaxial stress–strain curves for magnesium
between the simulation and experimental results at low and medium
temperatures. a 77–293 K. b 423–523 K

concise, and the parameters can be determined by only
two or three uniaxial stress–strain curves at different tem-
peratures. Therefore, it is easy to describe the temperature
effects on the thermo-elasto-plasticity behaviors of the mate-
rials.

By comparing the calculations between the FCC poly-
crystalline copper and the HCP polycrystalline magnesium,
it can be found that the material behaviors of the magnesium
at low and medium temperature is the more complex. The
parameterm drops off for the magnesium at low andmedium

temperatures, which is described by a bilinear function in Eq.
(30). Based on many previous theories investigated in the lit-
erature [45–48], these phenomena can be explained by the
differences of the crystallographic structure, the interaction
among grains, and the plastic mechanism between the FCC
(or BCC) and the HCP polycrystalline metals. First of all, the
FCC (or BCC) polycrystalline metals keep the symmetry of
the crystallographic structure, and their slip systems for the
dislocation motion have roughly equal resistance. Therefore,
the plastic deformation in most FCC materials is dominated
by crystallographic slip. However, due to the low symmetry
of the crystallographic structure of the HCP polycrystalline
metals, one must carefully take into account the details of
the stress/strain variations from the grain, and the interac-
tion between the crystals and grains. Also, different types of
slip systems exist, and both slip and twinning contribute to
the plastic deformation in the HCP crystals [17,49,50]. As
the temperature increases, the plastic deformation transits
from being twinning dominated to a combination of slip and
twinning [49] or slip dominated [43]. All the above factors
show that the simulation of the plastic behaviors at differ-
ent temperatures for the HCP is more difficult than for the
FCC. In this paper, we provide a concisemethod to reflect the
different of macroscopic behavior of the FCC and the HCP
polycrystalline materials.

6 Conclusion

In this study, a new thermo-elasto-plasticity constitutive the-
ory is proposed to investigate the behaviors of polycrystalline
metals. First of all, the present new decomposition of the
deformation gradient is effective when applied to the ther-
mal strain, and the calculation of the total strain is simpler
andmore explicit. Then, the constitutive equations of a single
crystal and polycrystal are established, and we provide a new
method to describe the temperature effects on the yield stress,
as well as the hardening behavior of the FCC and HCP poly-
crystalline. Lastly, the comparisons between the calculations
and the experimental results show that the present model can
potentially accurately reflect the behavior of the polycrys-
talline metals at different temperatures with a concise and
clear calculation process.
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