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a b s t r a c t

An accurate evaluation of the ultimate bearing capacity of a cylindrical foundation is crucial for
predicting pipe–soil interaction behaviors. A general slip-line field solution is derived for the ultimate
bearing capacity of a pipeline on the drained soil obeying Mohr–Coulomb criterion. The slip-line field
around the pipeline matches well with the corresponding plastic incremental-displacement field
simulated by utilizing finite element analysis. Parametric studies indicate that as the internal friction
angle of the soil approaches zero, the derived bearing capacity factors for the pipeline on the drained soil
limit to those for the pipeline on the undrained soil obeying Tresca criterion. The bearing capacity factors
for a fully-smooth pipeline then limit to those for a conventional rectangular strip-footing while the
pipeline embedment approaches zero. Moreover, the dimensionless collapse load increases with
increasing the pipeline embedment and the pipe–soil interfacial friction.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The ultimate bearing capacity of a foundation is the pressure
causing shear failure of the supporting soil immediately below and
adjacent to the foundation (see Knappett and Craig (2012)). Unlike
conventional rectangular strip-footings, quite a few subsea struc-
tures, e.g., submarine pipelines, risers and mooring lines, hold
circular sections. An efficient evaluation of the ultimate bearing
capacity of a cylindrical foundation is crucial for predicting subsea
structure-soil interaction behaviors, which may significantly affect
the on-bottom stability of a submarine pipeline, the configuration
of a steel catenary riser (SCR) at its touchdown zone, or the
embedment of a circular mooring line into the seabed, etc. In the
offshore engineering practices, the possibility for excessive settle-
ment/sinking or floatation of such a subsea foundation should be
checked in the design and maintenance stages (Det Norske, 2010).

The ultimate bearing capacity of a conventional shallow foun-
dation with flat bottom on land has been investigated by applying
slip-line (stress) field theory and upper-bound theorem of classical
plasticity theory, revealing the failure mechanisms (Chen and Liu,
1990; Gourvenec and Randolph, 2003; Li et al., 2015). The bearing
capacity of a strip-footing can be treated as a plane-strain
problem. For a conventional strip-footing, Prandtl's solution has

been widely adopted to predict its bearing capacity. For the
submarine pipeline holding a circular cross-section, some
researchers, e.g. Small et al. (1971), predict its bearing capacity
by the Prandtl's solution with some empirical corrections, i.e.
using an equivalent width for certain value of the pipeline
embedment. Nevertheless, this simplified treatment obviously
could not well consider the effect of the circular section of pipeline
foundations. Recently, the slip-line field solution for bearing
capacity of a pipeline on clayey soils obeying Tresca failure
criterion was derived by Gao et al. (2013). The parametric study
indicated that the effect of circular section configuration on the
bearing capacity factor gets more obvious with increasing dimen-
sionless pipeline embedment (e0=r, where e0 is the pipeline
embedment into the seabed, and r is the radius of the pipeline).
That is, with the pipeline embedment e0=r increasing from zero (i.
e. the pipeline just touching soil surface) to 1.0 (i.e., the pipeline
being half buried), the bearing capacity factor for cohesion ðNcÞ
decreases from the value of “2þπ” to “4.0” accordingly. As such, if
the pipeline foundation (with a circular-bottom) is simplified as a
conventional strip footing (with a flat-bottom) without any correc-
tions would over-evaluate the bearing capacity.

If undrained bearing capacity is being considered, the soil can
be assumed to behave as a Tresca material; if drained bearing
capacity is under investigation, the soil can then be regarded as a
Mohr–Coulomb material (see Potts and Zdravković (2001)). Pre-
vious analytical solutions for the vertical bearing capacity of
pipeline foundations are mainly for the purely cohesive soils
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obeying Tresca criterion, e.g., the upper and lower bound solutions
by Murff et al. (1989); a slip-line field solution by Gao et al. (2013).
Based on the plasticity theory and series of sideswipe tests of a
partially embedded pipeline on calcareous sands, several pipe–soil
interaction models (or named as force-resultant plasticity models)
for the combined vertical and horizontal loading conditions have
been successively developed and employed for simulating the
pipeline on-bottom responses (e.g., Zhang et al., 2002; Tian and
Cassidy, 2008; Hodder and Cassidy, 2010; Tian et al. 2010). As for
the aforementioned pipe–soil interaction models, the behaviors of
the entire pipe foundation were encapsulated by relating the
resultant forces to the corresponding displacements. In the exist-
ing sideswipe or penetration tests, the loads on the pipe founda-
tion were normally not beyond its vertical bearing capacity. The
vertical bearing capacity is a critical value of the pressure inducing
sudden settlement/collapse of the pipe foundation while pene-
trating into the soil, which is crucial for the vertical on-bottom
stability of a submarine pipeline.

In this study, a general slip-line field solution is derived for the
ultimate vertical bearing capacity of a pipeline on the drained soil
obeying Mohr–Coulomb criterion, taking into account both the
cohesion and the internal friction angle of the soil. The slip-line
field for a pipeline on Mohr–Coulomb soils is constructed. Para-
metric studies are further conducted for understanding the failure
mechanism of the pipeline foundation on drained soils.

2. A general slip-line solution for the bearing capacity of A
pipeline foundation

2.1. Construction of the slip-line field for a pipeline on Mohr–
Coulomb soils

For a submarine pipeline laid on a topographically flat seabed,
its length is typically much larger than the section dimension, thus
the pipeline's bearing capacity is usually treated as a plane-stain
problem. As aforementioned, the slip-line field for the cylindrical
foundation or pipeline on Treaca soils has been constructed (Gao
et al., 2012, 2013). In this section, a general slip-line field for the
pipeline foundation on a Mohr–Coulomb soil will be further
constructed.

As shown in Fig. 1, the pipeline with radius r is laid on a seabed
with an embedment e0 and uniform surcharge pressure q on the
ground surface adjacent to the pipeline. Similar to the previous
treatment for the surcharge pressures, in this study, the surcharge
pressures (q) are set as follows: (1) for the case of e0=rr1, q is set to
zero; (2) for the case of e0=r41, the pipeline embedment can be
treated as e0=r¼ 1 with an equivalent uniform surcharge pressure
q¼ γ0 e0�rð Þ, where γ0 is the submerged (buoyant) unit weight of
the soil.

In the analytical study, the seabed is assumed as a homogenous,
isotropic and perfectly-plastic material, obeying Mohr–Coulomb

failure criterion. As well known, the Tresca criterion/model is for total
stress analysis, and the Mohr–Coulomb criterion is for effective stress
analyses. If the soil cohesion (c) is replaced with the undrained shear
strength (e.g., to simulate the undrained behavior of the saturated
clayey soils) and the angle of shearing resistance ϕ is set to zero, the
Mohr–Coulomb failure criterion can be degenerated to the Tresca
criterion (see Potts and Zdravković (1999)).

The slip-line field is divided into three regions: the uniform
region CFG, the extrusion region CBD and the transition region
CDF (see Fig. 1). The direction of α and β slip-lines can be uniquely
determined once the mean stress σ (Note:σ ¼ σ1þσ3ð Þ=2) and the
shear stress (or normal stress) on an arbitrary direction are given.
Under certain boundary conditions, the slip-line field could be
constructed using characteristic functions of slip-line.

With the Riemann condition on CG and CEB, the stresses of
the region CFG, CBD and CDF can be calculated successively. The
soil within the slip-line field is supposed to be in critical failure
condition. The direction of the third principle stress is vertical in
the uniform region CFG. Given the value of the uniform load q,
the stresses in field CFG and along the boundary CF can be
solved. The field CBD is the extrusion region. The direction of the
first principle stress at line CEB is radial for a purely smooth
pipe. Point E at the boundary CEB are connected with CF by α
slip-line and the shear stress can be determined if interfacial
friction f is properly defined, the details of which is given in
Section 2.2. Therefore, the stresses on the boundary CEB is
determined using the characteristic functions. Then the stresses
in the field CDB and line CD can be obtained, identically using
the characteristic functions. Thus, CDF can be determined
according to the stresses at CF and CD. By adopting a finite
difference approximation, the whole slip-line field can be con-
structed (as shown in Fig. 1). Noting that, in the construction of
the slip-line field for a Mohr–Coulomb soil, the soil cohesion can
be arbitrary, i.e. the magnitude of the slip-line field is not related
to the value of soil cohesion. The β and α lines in the uniform
region (CFG) are straight lines while the α lines are curved in the
extrusion region CBD and the transition region CDF.

2.2. Collapse load: slip-line field solution for Mohr–Coulomb soils

The collapse load ðPuÞ for the ultimate bearing capacity of a
pipeline foundation can be expressed with the integral of the
stresses along the pipe–soil interface as follows:

Pu ¼ 2
Z φ0

0
rσE;ydφ: ð1Þ

In which σE;y is the vertical component of the pipe–soil interfacial
force; φ0 is the embedment angle ∠BOC(see Fig. 1), i.e.
φ0 ¼ arccos 1�e0=r

� �
; φ¼∠BOE is an arbitrary angle for the integra-

tion along the pipe–soil contact boundary. Based on the slip-line field
theory, the stress equation along the α line for the soil obeying Mohr–
Coulomb criterion is derived as (see Appendix A):

σ0e�2ω tan ϕ ¼ const1 ð2Þ

As shown in Fig. 1, the points A and E are along the same α line.
Thus the following relationships exist for the stresses at point A
and E, i.e.

σ0Ee�2ωE tan ϕ ¼ σ0Ae�2ωA tan ϕ; ð2’Þ
In which, σ0 ¼ c cot ϕþσ, where c and ϕ are the cohesion and

internal friction angle of the soil respectively; σð ¼ σ1þσ3ð Þ=2Þ is
the mean stress in the soil; ω is the angle from the x-axis to the
first principal stress plane in the clockwise direction (see Fig. 9).

The point-A is along the soil surface, ωA ¼ π=2 and
σ0A ¼ ðqþc cot ϕÞ=ð1� sin ϕÞ. Fig. 2 shows the Mohr-circle for

Fig. 1. The slip-line field of the pipeline foundation on a soil obeying Mohr–
Coulomb failure criterion: a smooth pipe; internal frictional angle ϕ¼ 151.
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the point-E. The angle from the x-axis to the first principal stress
plane at the point-E

ωE ¼ π�φþΔ=2; ð3Þ
In which, Δ=2 is the angle from the tangent of the pipe–soil

interface to the first principal stress plane (clockwise), Δ¼
arcsin f =ðσ0E sin φÞ� �

. Note: the subscript “E” or “A” denotes the value
of the labeled parameter at the point-E or point-A, respectively.
Submitting the values of ωA, σ0A and ωE into Eq. (2’), σ0E can be
obtained as:

σ0E ¼
qþc cot ϕ
1� sin ϕ

exp π�2φþΔð Þ tan ϕ½ �: ð4Þ

The vertical component of the pipe–soil contact force ðσE;yÞ can
be expressed as:

σE;y ¼ τ sin φþσ cos φ; ð5Þ
i.e.

σE;y ¼ σ0E sin φ sin Δ sin ϕþ cos ϕ σ0E�c cot φþσ0E sin φ cos Δð Þ:
ð6Þ

The definition of the pipe–soil friction (f) is needed to deter-
mine the value of Δ, half value of which is the clockwise angle
from the tangent of the pipe–soil interface to the first principal
stress plane. For the pipe laid on a Mohr–Coulomb soil, the pipe–
soil friction f is defined as:

f ¼ μaσ0; ð7Þ
where μa is an apparent friction coefficient for the pipe–soil
interface, which is physically relative with the roughness of the
pipe's surface, the particle diameter of the neighboring soils, etc.;
σ0 ¼ c cot ϕþ0:5 σ1þ σ3Þ

�
, indicating the soil cohesion, internal

friction angle and the mean effective principal stress are taken
into account. As Δ¼ arcsin f =ðσ0 sin φÞ� �

(see Fig. 2), the value of Δ
can then be calculated with

Δ¼ arcsin
μa

sin ϕ

� �
: ð8Þ

Referring to Fig. 2, the values of pipe–soil friction f are not
larger than the radius of the Mohr circle ðσ0 sin ϕÞ, i.e.
μa

sin ϕ
r1:0:

Submitting Eqs. (6) and (8) into Eq. (1), the collapse load for the
pipeline foundation can be derived as:

Pu ¼
2r qþc cot ϕð Þ

1� sin ϕð Þ 1þ4 tan 2ϕ
� � � sin ϕ sin Δ 2 tan ϕ sin φ0þ cos φ0

� ���

þ 1þ sin ϕ cos Δð Þ sin φ0�2 tan ϕ cos φ0
� ��

eðπ�2φ0 þΔÞ tan ϕ

þ sin ϕ sin Δþ2 1þ sin ϕ cos Δð Þ tan ϕ½ �eðπþΔÞ tan ϕ

�2rc cot ϕ sin φ0 ð9Þ

Referring to the bearing capacity of strip footings (see Knappett
and Craig (2012)), the bearing capacity of the pipeline foundation
on a Mohr–Coulomb soil can be expressed as:

Pu

2r sin φ0
¼ cNcþqNqþγ0r sin φ0Nγ ; ð10Þ

where “2r sin φ0” is the width of the pipe–soil interface (see
Fig. 1). The bearing capacity factors are derived theoretically
assuming the soil is weightless (i.e.γ0 ¼ 0). Submitting Eq. (9) into
Eq. (10), the bearing capacity factor for the cohesion ðNcÞ and that
for the distributed load ðNqÞ can thereby be obtained as follows:

Nc ¼
cot ϕ

sin φ0 1� sin ϕð Þ 1þ4 tan 2ϕ
� � � sin ϕ sin Δ 2 tan ϕ sin φ0þ cos φ0

� ���

þ 1þ sin ϕ cos Δð Þ sin φ0�2 tan ϕ cos φ0
� ��eðπ�2φ0 þΔÞ tan ϕ

þ sin ϕ sin Δþ2 tan ϕ 1þ sin ϕ cos Δð Þ½ �eðπþΔÞ tan ϕ

� sin φ0 1� sin ϕð Þ 1þ4 tan 2ϕ
� �g; ð11aÞ

Nq ¼Nc tan ϕþ1: ð11bÞ
Due to the complexity of the governing hyperbolic partial

differential equations of the slip-line field theory, it is rarely
possible to obtain analytical stress field solutions for a frictional
soil (i.e.ϕ40) which has weight. As well known, Nγ has been
obtained from approximate calculations assuming the soil has
weight, but no cohesion and surcharge. One of the most popular
expressions for Nγ proposed by Hansen (1970) is adopted (see
Knappett and Craig (2012)):

Nγ ¼ 1:80 Nq�1
� �

tan ϕ ð11cÞ

As with many of the alternatives, this expression can be used
for both rough and smooth footings (Potts and Zdravković, 2001).

3. Comparison with numerical simulation

The bearing capacity of the pipeline foundation on the hor-
izontally flat soil can be regarded as a symmetric plane-strain
problem. A symmetrical plane-strain finite element model is used
to simulate the vertically-loaded pipe–soil interaction (see Fig. 3).
As the stiffness of a steel pipeline is much larger than that of the
soil, the pipe is assumed to be rigid in this numerical simulation.
The plasticity characteristics of the seabed sediments may result in

Fig. 2. Mohr-circle for point-E along the pipe–soil interface.

Fig. 3. A symmetrical plane-strain FE model for the vertically-loaded pipe–soil
interaction: illustration of the meshes and boundary conditions.
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significant effects on the bearing capacity of the pipeline founda-
tion. Similar with the basic assumptions in the slip-line field
analysis, the elasto-plastic Mohr–Coulomb model is used in the
finite element simulation of the elasto-plastic behavior of the
sediments, especially when the drained bearing capacity of a
foundation is under investigation. The yield function of Mohr–
Coulomb model is written as (see Knappett and Craig (2012)):

J� c
tan ϕ

þp0
� �

g θð Þ ¼ 0 ð12Þ

in which, J is the deviatoric stress invariant; p0 is the mean
effective stress

g θð Þ ¼ sin ϕ

cos θþ sin θ sin ϕ=
ffiffiffi
3

p ;

where θ is the Lode's angle.
The pipe–soil interface changes while the pipeline penetrating

into the soil, thus the interfacial behavior is vitally important to
efficiently simulate the vertical pipe–soil interaction. As shown in
Fig. 3, the contact-pair algorithm provided in the ABAQUS software
(Hibbitt and Sorensen, 2006) is employed for simulating the
contacting boundary between the partially-embedded pipeline
and the neighboring soil; and the left non-contact surface of the
seabed is regarded as a free boundary. The vertical pipe–soil
interaction is a symmetric plane-strain problem. As such, the left
side is regarded as an axisymmetric boundary, i.e. both the
rotational and the translational degree of freedom in the horizon-
tal (x) direction are restrained. The right side of the mesh is also
restrained in the horizontal direction. At the bottom of the model,
the translational degrees of freedom in both x and y directions are
fixed. The FE mesh gets more refined at closer proximity to the
pipeline, so as to obtain high calculation efficiency. Following grid
analyses, the width of numerical model is chosen as 20r and the
depth as 20r. In the FE model, the elasticity modulus of the soil
E¼1.0 MPa; mass density ρ¼ 1:8� 103 kg=m3; Poisson ratio
ν¼ 0:3 for a drained sandy soil, ν¼ 0:48 for an undrained clayey
soil; the radius of the rigid pipe r¼0.25 m. The values of the soil
cohesion c and the internal friction angle ϕ are various for the
comparison with the slip-line field solution.

The failure mechanism for a shallow foundation can be inter-
preted by the incremental-displacement vector field in the numer-
ical simulation (see Potts and Zdravković, 2001; McMahon et al.,
2014). Fig. 4(a) and (b) shows the incremental-displacement
vector field numerically simulated with the above finite element
model and the slip-line field constructed with the newly derived
theoretical solution, respectively, for a smooth pipeline laid on an
undrained clayey soil ðϕ-0Þ with c� 5 kPa, which is suffering a
general shear failure. The orientations of these vectors (see Fig. 4
(a)) indicating the directions of soil movement match well with
the α lines of the slip-line field solution (see Fig. 4(b)).

Similarly, Fig. 5(a) and (b) shows the plastic incremental-
displacement vector field simulated with the numerical model
and the slip-line field constructed with the theoretical solution,
respectively, for a smooth pipeline laid on a Mohr–Coulomb
soil with c� 5 kPa, ϕ¼ 181. The orientations of the plastic
incremental-displacement vectors (see Fig. 5(a)) match well with
the α lines of the slip-line field solution (see Fig. 5(b)). Comparison
between Fig. 4 (for ϕ-0) and Fig. 5 (for ϕ¼ 181) indicates that, an
increase of the internal friction angle of the soil enlarges the
magnitude of the slip-line field and eventually increases the
bearing capacity of the pipeline foundation. The effects of internal
friction angle will be further investigated in Section 4.

To make a quantitative comparison between the newly derived
slip-line solutions and the numerical results, the dimensionless
collapse load Pu=cr is employed. Then Eq. (10) for the bearing
capacity of a pipeline on Mohr–Coulomb soils can be expressed

with non-dimensional form as follows:

Pu=cr¼ 2 Ncþq
c
Nqþγ0r sin φ0

c
Nγ

� �
sin φ0 ð13Þ

Table 1 shows the results of the collapse load with finite
element modeling (denoted as PuFE) and those of the slip-line
field solution (denoted asPuSL) for various values of soil para-
meters, respectively. In this comparison, the conditions of weight-
less soil ðγ0 ¼ 0Þ and no surcharge ðq¼ 0Þ are taken into account for
the simplification purpose. Fig. 6 shows the variation of the
dimensionless ultimate loads ðPu=crÞ with the dimensionless pipe-
line embedment/settlement ðe0=rÞ for various values of ϕ. The
comparison between the slip-line field solutions and those of
finite element modeling indicates that they match well with
similar trends for the variation of Pu=cr with e0=r. For a given
value of ϕ (e.g., ϕ¼51, 101, 151), Pu=crincreases gradually with the
increase of e0=r. Note that, the pipeline settlement in the elasto-
plastic FE modeling involves both the elastic-deformation compo-
nent and the plastic-deformation one of the neighboring soils; but
in the slip-line field solutions, only plastic-deformation are
involved. As such, the numerical results are slightly higher than
those of the slip-line field solutions for the same values of e0=r and
ϕ (see Fig. 6). The relative difference PuSL�PuFEð Þ=PuSLis within 15%
for the examined soil parameters (also see Table 1).

Fig. 4. (a) Plastic incremental-displacement vector field simulated with the
numerical model; (b) Slip-line field constructed with the theoretical solution for
a smooth pipeline: c� 5 kPa, ϕ¼ 0.
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A parametric study on the bearing capacity factors is for the
pipeline foundation on Mohr-Coulomb soils will be further made
in Section 4.

4. Parametric study on bearing capacity factors

4.1. Bearing capacity factors: comparison between Mohr–Coulomb
solution and Tresca solution

In Section 2.2, the derived general solutions of the bearing
capacity factors is for the pipeline foundation on Mohr–Coulomb

soils, i.e. both the soil cohesion and the internal friction angle are
taken into account. While the internal friction angle approaches
zero, the newly derived slip-line field solution for a pipeline
foundation on Mohr–Coulomb soils should limit to that for Tresca
soils. The derivation details are given as follows:

The bearing capacity factor for the cohesion Nc (Eq. (11a)) can
be expressed as:

Nc ¼
Α1þΑ2þΑ3

sin φ0 1� sin ϕð Þ 1þ4 tan 2ϕ
� � ð14Þ

in which,

Α1 ¼ 4 tan ϕ sin ϕ sin φ0�4 tan ϕ sin φ0þ2 sin ϕ cos ΔeðπþΔÞ tan ϕ

�2 sin ϕð sin Δ sin φ0þ cos Δ cos φ0Þeðπ�2φ0 þΔÞ tan ϕ; ð15aÞ

A2 ¼ cot ϕ sin φ0ðeðπ�2φ0 þΔÞ tan ϕ�1Þ; ð15bÞ

A3 ¼ ð cos ϕ cos Δ sin φ0� cos ϕ sin Δ cos φ0�2 cos φ0Þeðπ�2φ0 þΔÞ tan ϕ

þð cos ϕ sin Δþ2ÞeðπþΔÞ tan ϕþ cos ϕ sin φ0: ð15cÞ

As the internal friction angle approaches zero ðϕ-0Þ, the
extrema forA1, A2 and A3 are obtained as:

lim
ϕ-0

A1 ¼ 0; ð16aÞ

lim
ϕ-0

A2 ¼ lim
ϕ-0

sin φ0eðπ�2φ0 þΔÞ tan ϕsec2ϕðπ�2φ0þΔÞ
sec2ϕ

¼ sin φ0ðπ�2φ0þΔÞ;

ð16bÞ

lim
ϕ-0

A3 ¼ sin φ0� sin Δ cos φ0þ cos Δ sin φ0�2 cos φ0þ sin Δþ2:

ð16cÞ
It is worth noting that the L’Hôpital's rule is used in the

calculation the limit in (16b). Submitting Eqs. (16a)–(16c) into
the limit expression of (14), and meanwhile calculating the limit of
(11-b), then

lim
ϕ-0

Nc ¼
sin Δ 1� cos φ0

� ��2 cos φ0�1
� �

sin φ0
�2φ0þ cos ΔþΔþπþ1;

ð17aÞ

lim
ϕ-0

Nq ¼ 1; ð17bÞ

which matches exactly the slip-line field solution for a pipeline
foundation on Tresca soils previously obtained by the Gao et al.

Fig. 5. (a) Plastic incremental-displacement vector field simulated with the
numerical model; (b) Slip-line field constructed with the theoretical solution for
a smooth pipeline:c� 5 kPa, ϕ¼ 181.

Table 1
Numerical results and slip-line field solutions for the collapse loads for a smooth
pipeline on Mohr–Coulomb soils.

e0 mð Þ e0=r c kPað Þ ϕð3 Þ PuFE kN=m
� �

PuFE=cr PuSL=cr PuSL �PuFE
PuSL

0.083 0.33 5 5 9.5 7.60 7.91 3.9%
0.212 0.85 10 5 23.1 9.24 9.58 3.5%
0.198 0.79 15 5 33.5 8.93 9.53 6.3%
0.210a 0.84a 20a 5a 43.2a 8.64a – –

0.095 0.38 5 10 11.5 9.20 10.16 9.4%
0.146 0.58 10 10 24.8 9.61 11.19 14.1%
0.226 0.90 15 10 39.8 9.92 11.75 15.6%
0.226a 0.90a 20a 10a 50.0a 10.00a – –

0.107 0.43 5 15 14.1 11.52 13.14 12.3%
0.190 0.76 10 15 31.0 12.40 14.44 14.1%
0.240 0.96 15 15 47.4 12.64 14.63 13.6%

a Represents the numerical results for the pipeline foundation suffering
punching shear failure.

Fig. 6. Comparison between slip-line field solutions and numerical results: varia-
tion of Pu=cr with e0=r for various values of ϕ.
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(2013), i.e.

Nc ¼
sin Δð1� cos φ0Þ�2ð cos φ0�1Þ

sin φ0

þ1þΔþπþ cos Δ�2φ0 Trasca solutionð Þ; ð18aÞ

Nq ¼ 1 Trasca solutionð Þ ð18bÞ

For the case of the partially-embedded pipeline laid on Tresca
soils, if the pipeline surface is fully-smooth ðΔ¼ 0Þ, then the two
extrema of the bearing capacity factorNc(see (16a)): lim

φ0-0
Nc ¼

2þπ; lim
φ0-

π
2

Nc ¼ 4.

Fig. 7 shows the variation of the bearing capacity factors Nc and Nq

with the internal frictional angle ϕ for various values of the embed-
ment ratio e0=r of a smooth pipeline, i.e. e0=r¼ 0, 0.13, 0.50,1.00 (the
corresponding embedment angle φ0¼0, 301, 451, 601, 901, respec-
tively). It is indicated that the internal friction angle of the soil has
much effect on the bearing capacity factors. The value of Nc increases
with the increase of the soil's internal friction angle. Under the
condition of the internal friction angle of the soil equals zero ðϕ¼ 0Þ,
the value of Nc and Nq for the pipe embedment approaching zero and
that for half burial are as follows: Nc ¼ 2þπ (when e0=r¼ 0),Nc ¼ 4
(when e0=r¼ 1:0); Nq ¼ 1 (when e0=ris arbitrary), which matches
well the slip-line field solution for the smooth pipeline on Tresca soils
(see Eqs. (18a) and (18b)). For the present slip-line field solution for
Mohr–Coulomb soils, let the apparent friction coefficient for the pipe–
soil interfaceμa ¼ α sin ϕ, then Δ¼ arcsinα (see Eq. (8)), being the
same definition as that in the slip-line field solution for a pipeline
foundation on Tresca soils. As for a pipeline is laid on the purely-
cohesive soils or a clayey soil under undrained condition (the internal

friction angle ϕ-0), the pipe–soil interfacial friction (tangent) would
vanish (see Eq. (7)).

4.2. Bearing capacity factors: comparison with those for a
conventional strip footing

To further compare with the existing solution for a conven-
tional strip footing with flat bottom would be helpful for under-
standing the bearing capacity of the pipeline foundation. For the
general shearing failure mechanism of a conventional strip footing,
the Prandtl–Reissner solution has been widely employed. The
ultimate bearing capacity of a rectangular strip footing on the
surface of a weightless soil is expressed as:

Pu

b
¼ cNcþqNq for a conventional strip footingð Þ; ð19Þ

in which, Pu and b are the ultimate load and the width of the
footing, respectively; Nc and Nq are the corresponding bearing
capacity factors for the conventional strip footing:

Nc ¼ ðNq�1Þcot ϕ; ð20aÞ

Nq ¼ eπ tan ϕ tan 2 π

4
þϕ

2

� �
: ð20bÞ

In this section, a degeneration analysis is made on the derived
slip-line field solution for Mohr–Coulomb soils. Submitting (11a)
into (11b), the bearing capacity factor of distributed load ðNqÞ can
be rewritten as:

Nq ¼ 1
1� sin ϕð Þ 1þ4 tan 2ϕ

� � �2 tan ϕ sin ϕ sin Δð�
þ sin ϕ cos Δþ1Þeðπ�2φ0 þΔÞ tan ϕ:

þ sin ϕ sin Δþ2 tan ϕ sin ϕ cos Δþ1ð Þ½ �
eðπþΔÞ tan ϕ� cos φ0e

ðπ�2φ0 þΔÞ tan ϕ
� �

= sin φ0

 ð21Þ

As the pipeline embedment angle approaches zero ðφ0-0Þ, the
limit of Nq is then derived as:

lim
φ0-0

Nq ¼ eðπþΔÞ tan ϕ

1� sin ϕð Þ 1þ4 tan 2ϕ
� � sin ϕ cos Δþ1ð Þ 1þ4 tan 2φ

� �

¼ eðπþΔÞ tan φ sin ϕ cos Δþ1
1� sin ϕ

: ð22Þ

For a fully-smooth pipeline ðΔ¼ 0Þ, Eq. (22) can be further
simplified as:

lim
φ0-0

Nq ¼ eπ tan ϕ tan 2 π

4
þϕ

2

� �
for a smooth pipelineð Þ; ð23Þ

Which matches exactly the bearing factor of the distributed
load for the conventional strip footing (i.e. (20b)). Similarly, the
expressions of the bearing factor of the soil cohesion ðNcÞ are same
for both fully-smooth pipeline and the conventional strip footing
while φ0-0, as the same correlation exists between Nc and Nq

(see (11b) or (20a)).
Fig. 8 shows the variation of bearing capacity factors with the

foundation embedment for various values of the internal friction
angle of the soil, i.e. ϕ¼ 0, 151 and 301. While the dimensionless
pipeline embedment ðe0=rÞ decreasing from the value of 1.0 (the
pipeline being half-buried) to zero (the pipeline just touching the
soil surface), the values of both Nc and Nqincrease gradually to the
solutions for a conventional strip-footings for the same value of
the internal friction angle of the soil ðϕÞ. That is, the bearing
capacity factors Nc and Nq for the smooth pipe as its embedment
approaching zero are equal to the well-known Prandtl-Reissner
solution for the conventional smooth strip footing. For a given
value of e0=r, the increase of ϕ brings an obvious increase of the

Fig. 7. Variation of bearing capacity factors with internal frictional angle for
various values of the embedment of a smooth pipeline: (a) Nc–ϕ, (b) Nq�ϕ.
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two bearing capacity factors (Nc and Nq), especially for the
shallowly-embedded pipelines. As shown in Fig. 8, when choosing
ϕ¼ 301, if the half-buried pipeline foundation ðe0=r¼ 1:0Þ is
treated as a conventional rectangular strip footing, the bearing
capacity factors of the pipeline would be over evaluated, whose
values are only 54% for Nc , and 57% for Nq of the strip-footing,
respectively.

4.3. Effects of pipe–soil interfacial friction

As discussed in Section 2.1, the directions of slip-lines in the
extrusion zone CBD are relative with the pipe–soil interfacial
friction. In this section, the effects of pipe–soil interfacial friction
are examined.

In the expressions for the bearing capacity factors, i.e. (11a)–
(11c), besides the soil cohesion, the internal friction angle of the
soil, and the pipeline embedment etc., the pipe–soil interfacial
friction is also involved. According to the slip-line field theory (see
Section 2.1 and Appendix A), the slip-line fields of the pipeline
foundation are constructed for the rough pipes with various values
of pipe–soil interfacial friction μa (e.g., μa ¼ 0:18; 0:36) on a Mohr–
Coulomb soil with ϕ¼ 301 (see Fig. 9). It is shown that, with
increasing the pipe–soil contact friction from μa ¼ 0:18 to 0.36, the
slip-line field is expanded generally, but the extrusion zone CBD
becomes narrower horizontally and deeper.

Fig. 10(a) and (b) show the variation of bearing capacity factor
Nc and that of Nq with the pipeline foundation embedment e0=r
for various values of the apparent interfacial friction angle (e.g.,
μa ¼ 0:18; 0:36), respectively. In this parametric study, the internal
friction angle of the soil is chosen as ϕ¼ 301. As shown in Fig. 10
(a) and (b), both Nc and Nq increases monotonically with the
increase of e0=r in the range of 0re0=rr1:0. The curves are
approximately parallel to each other for various values of the
apparent interfacial friction angle. As aforementioned in Section
2.1, for the case of the pipeline embedment is larger than the
pipeline's radius ðe0=r41:0Þ, the pipeline embedment can be
treated as e0=r¼ 1 with an equivalent uniform surcharge pressure
q¼ γ0 e0�rð Þ. That is, both of the bearing capacity factors are
constant, whose values are dependent on the interfacial friction.

For better understanding bearing capacity of the rough pipeline
foundation, the effects of pipe–soil interfacial friction on the
dimensionless collapse load Pu=cris further investigated. Under
the conditions of weightless soil ðγ0 ¼ 0Þ and no surcharge ðq¼ 0Þ,
the variations of Pu=cr with e0=r for various values of μa are shown
in Fig. 11. It is indicated that, there exists a notable positive

Fig. 8. Variation of bearing capacity factors with foundation embedment for
various values of the internal frictional angle of the soil (solid lines: a smooth
pipeline; dash lines: a conventional smooth strip-footing): (a) Nc�e0=r,
(b) Nq�e0=r.

Fig. 9. Construction of slip-line fields of rough pipelines with various values of μa
on a Mohr–Coulomb soil ðϕ¼ 301Þ.

Fig. 10. Variation of bearing capacity factors with the pipeline foundation embed-
ment for various values of the apparent interfacial friction angle: (a) Nc�e0=r,
(b) Nq�e0=r.
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correlation of the dimensionless collapse load with the pipeline
embedment and the pipe–soil interfacial friction. Under the same
pipe–soil interfacial friction condition, the collapse load (Pu=cr)
increases gradually from zero to a relatively constant value with
increasing the pipeline embedment from e0=r¼ 0 to 1.0. For a
given value of the pipeline embedment ðe0=rÞ, the collapse load
ðPu=crÞ increases greatly with increasing the pipe–soil interfacial
friction ðμaÞ.

5. Conclusion

Unlike the previous analytical solutions for the bearing capacity
of pipeline foundations, which mainly for the purely cohesive soils
obeying Tresca criterion, a general slip-line field solution is
derived for the ultimate bearing capacity of the pipeline on the
drained soil obeying the Mohr–Coulomb criterion. Comparative
study is then made for validation of the present slip-line field
solution with numerical simulations. Moreover, based on the
derived general slip-line field solution, parametric studies are
made for better understanding the failure mechanism of the
pipeline foundation. The conclusions are drawn as follows.

1. The derived slip-line field solution for the ultimate load of the
pipeline foundation on Mohr–Coulomb soils matches well with
the finite element simulations. The failure mechanism by the
analytical solution is reasonably comparable to the
incremental-displacement vector field simulated by utilizing
finite element analysis.

2. As the internal friction angle of the soil approaches zero, the
derived bearing capacity factors for the pipeline foundation
obeying Mohr–Coulomb criterion can limit to those for a
pipeline foundation obeying Tresca criterion previously derived
by Gao et al. (2013).

3. Moreover, the derived bearing capacity factors for a fully-
smooth pipeline limit to those for a conventional rectangular

strip-footing while the pipeline embedment approaches zero. If
the shallowly-embedded pipeline foundation is simply treated
as a conventional strip-footing, the bearing capacity factors for
the pipeline would be over evaluated.

4. The pipe–soil interfacial friction also has much effect on the
bearing capacity of the pipeline foundation. The dimensionless
collapse load increases with increasing the pipeline embed-
ment and the pipe–soil interfacial friction.
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Appendix A. Slip-line field theory: Mohr–Coulomb criterion

The slip-line field theory is on the basis of equilibrium
equations and the failure criterion of the material. In this study,
the soil is assumed to obey Mohr–Coulomb failure criterion, which
under the plane strain condition can be expressed as:

σx�σy
2

� �2
þτ2xy ¼

σxþσy
2

þccotϕ
� �2

sin 2ϕ ðA:1Þ

(A.1) can also be generally expressed with stress invariants (see
Eq. (12)). The stress components in the soil obeying Mohr–
Coulomb failure criterion (i.e. in the slip-line field) can be written
as follows:

σx ¼ σ0�c cot ϕ�σ0 sin ϕ cos 2ω; ; ðA:2aÞ

σy ¼ σ0�c cot ϕþσ0 sin ϕ cos 2ω; ðA:2bÞ

τxy ¼ �σ0 sin ϕ sin 2ω; ðA:2cÞ
where x and y are the coordinates for the point in the slip-line
field; the positive directions of the stress components are shown
in Fig. 9; ω is the angle from the x-axis to the first principal stress
plane in the clockwise direction (see Fig. 12).

For a plane strain problem, the equilibrium equations are as
follows:

∂σx
∂x

þ∂τxy
∂y

¼ 0; ðA:3aÞ

∂τxy
∂x

þ∂σy
∂y

¼ 0; ðA:3bÞ

Submitting Eqs. (A.2a)–(A.2c) into Eqs. (A.3a) and (A.3b), the
following equations can be obtained:

1� sin ϕ cos 2ωð Þ∂σ0
∂x

� sin ϕ sin 2ω
∂σ0
∂y

þ2σ0 sin ϕ sin 2ω
∂ω
∂x

�2σ0 sin ϕ cos 2ω
∂ω
∂y

¼ 0; ðA:4aÞ

� sin ϕ sin 2ω
∂σ0
∂x

þ 1þ sin ϕ cos 2ωð Þ∂σ0
∂y

�2σ0 sin ϕ cos 2ω
∂ω
∂x

�2σ0 sin ϕ sin 2ω
∂ω
∂y

¼ 0: ðA:4bÞ
The characteristic equation for Eqs. (A.4a) and (A.4b) is

det aijdy�bijdx
� �¼ 0; ðA:5Þ

Fig. 11. Variations of Pu=cr with e0=r for various values of μa .

Fig. 12. Mohr circle for the point in the slip-line field obeying Mohr–Coulomb
failure criterion.
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In which, the coefficient determinants aij and bij are

aij ¼
1� sin ϕ cos 2ω 2σ0 sin ϕ sin 2ω
� sin ϕ sin 2ω �2σ0 sin ϕ cos 2ω

 !
;

bij ¼
� sin ϕ sin 2ω �2σ0 sin ϕ cos 2ω
1þ sin ϕ cos 2ω �2σ0 sin ϕ sin 2ω

 !
:

The characteristic Eq. (A.5) can be further expressed as:

dy=dx� tan ωþπ=4þϕ=2
� �� �

U dy=dx� tan ω�π=4�ϕ=2
� �� �¼ 0;

ðA:6Þ
where dy=dx¼ tan ωþπ=4þϕ=2

� �
and dy=dx¼ tan ω�π=4��

ϕ=2Þ;are the characteristic functions for α line and for β line,
respectively. The geometrical characteristics of the slip-lines
indicated by (A.6) can be figured with Figs. 9 and 12. The
differential along α line and that along β line are

∂
∂Sα

¼ cos ωþπ=4þϕ=2
� � ∂

∂x
þ sin ωþπ=4þϕ=2

� � ∂
∂y
; ðA:7aÞ

∂
∂Sβ

¼ cos ω�π=4�ϕ=2
� � ∂

∂x
þ sin ω�π=4�ϕ=2

� � ∂
∂y

; ðA:7bÞ

where Sα and Sβ represent the length of the arc along α and β line,
respectively. Set

B1 ¼ cos ωþπ=4þϕ=2
� �þ cos ωþπ=4þϕ=2

� �
sin ϕ cos 2ω

þ sin ωþπ=4þϕ=2
� �

sin ϕ sin 2ω;

B2 ¼ sin ωþπ=4þϕ=2
� �� sin ωþπ=4þϕ=2

� �
sin ϕ cos 2ω

þ cos ωþπ=4þϕ=2
� �

sin ϕ sin 2ω:

Then, Eq. (A.4a) multiplied by B1 plus Eq. (A.4b) multiplied by
B2makes

cos 2ϕ
∂σ0
∂x

cos ωþπ=4þϕ=2
� �þ∂σ0

∂y
sin ωþπ=4þϕ=2
� � �

þ2σ0
∂ω
∂x

sin ϕ sin 2ω cos ωþπ=4þϕ=2
� ��

þ sin 2ϕ� sin ϕ cos 2ω
� �

sin ωþπ=4þϕ=2
� �i

�2σ0
∂ω
∂y

sin 2ϕþ sin ϕ cos 2ω
� �

cos ωþπ=4þϕ=2
� �h

þ sin ϕ sin 2ω sin ωþπ=4þϕ=2
� ��¼ 0: ðA:8Þ

Eq. (A.8) can be further simplified as:

cos 2ϕ ∂σ0
∂x cos ωþπ=4þϕ=2

� �þ ∂σ0
∂y sin ωþπ=4þϕ=2

� �h i
�2σ0 sin ϕ cos ϕ

∂ω
∂x

cos ωþπ=4þϕ=2
� �þ∂ω

∂y
sin ωþπ=4þϕ=2
� � �

¼ 0:

ðA:9Þ

Referring to Eq. (A.7a), then the following stress equation along
the α line can be derived as:

1
σ0
dσ0 ¼ 2 tan ϕdω: ðA:10Þ

Take the integral of Eq. (A.10) with respect of σ0 andω:

σ0e�2ω tan ϕ ¼ const1 ðalong α lineÞ: ðA:11aÞ
Similarly, the following stress equation along β line can be

derived as:

σ0e2ω tan ϕ ¼ const2 ðalong β lineÞ: ðA:11bÞ
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