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2D particle contact-based
meshfree method in CDEM and
its application in geotechnical

problems
Chun Feng and Shi-hai Li
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Institute of Mechanics, Chinese Academy of Sciences, Beijing, China, and

Eugenio Onate
International Centre for Numerical Methods in Engineering,
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Abstract
Purpose – Continuum-based discrete element method is an explicit numerical method, which is a
combination of block discrete element method (DEM) and FEM. When simulating large deformation
problems, such as cutting, blasting, water-like material flowing, the distortion of elements will lead to
no convergence of the numerical system. To solve the convergence problem, a particle contact-based
meshfree method (PCMM) is introduced in. The paper aims to discuss this issue.
Design/methodology/approach – PCMM is based on traditional particle DEM, and use particle
contacts to generate triangular elements. If three particles are contact with each other, the element will
be created. Once elements are created, the macroscopic constitutive law could be introduced in. When
large deformation of element occurs, the contact relationship between particles will be changed. Those
elements that do not meet the contact condition will be deleted, and new elements that coincide with
the relationship will be generated. By the deletion and creation of elements, the convergence
problem induced by element distortion will be eliminated. To solve FEM and PCMM coupled problems,
a point-edge contact model is introduced in, and normal and tangential springs are adopted to transfer
the contact force between particles and blocks.
Findings – According to the deletion and recreation of elements based on particle contacts, PCMM
could simulate large deformation problems. Some numerical cases (i.e. elastic field testing, uniaxial
compression analysis and wave propagation simulation) show the accuracy of PCMM, and others
(i.e. soil cutting, contact burst and water-like material flowing) show the rationality of PCMM.
Originality/value – In traditional particle DEM, contact relationships are used to calculate contact
forces. But in PCMM, contact relationships are adopted to generate elements. Compared to other
meshfree methods, in PCMM, the element automatic deletion and recreation technique is used to
solve large deformation problems.
Keywords Numerical simulation, Cutting, Meshfree method, Particle contact, PCMM, Rock and soil
Paper type Research paper

1. Introduction
Continuum-based discrete element method (CDEM) is an explicit numerical method.
Due to its combination of block discrete element method (DEM) and FEM, the
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progressive failure of geological body could be simulated well (Wang et al., 2005;
Li et al., 2004, 2007; Ma et al., 2011a, b). But when simulating some large deformation
problems, such as cutting, blasting, water-like material flowing, the numerical system
will become instable due to the serious distortion of elements. To eliminate this
problem, a particle contact-based meshfree method (PCMM) is introduced in.

The convergence problem induced by grid distortion is a traditional topic in FEM
in Lagrangian description. Generally speaking, any numerical methods which use
elements to calculate deformation force in Lagrangian coordinate system will meet
the problem. To eliminate the problem, adaptive remeshing procedures are good
choices (Littlefield, 2001; Oñate et al., 2004). However, it is generally tedious and time
consuming, and may introduce additional inaccuracy into the solution.

Another choice to solve mesh distortion is to describe material flow through a fixed
grid in space in Euler system, but the dissipation problem associated with mass flux
between adjacent elements will arise. Besides, it is difficult to catch the material
interface, although the level set or volume of fluid method could solve the problem
to some extent. Recently, there are some mixed methods to strengthen the advantages
of Lagrangian and Eulerian descriptions and to avoid their disadvantages,
such as arbitrary Lagrangian-Eulerian (ALE) (Liu et al., 1986, 1991). Unfortunately,
the convective transport effect in ALE often leads to spurious oscillation that needs to
be stabilized by artificial diffusion or Petrov-Galerkin stabilization.

These years, a strong interest is focussed on meshfree methods, and these methods
are expected to be superior to the conventional grid-based FEM or finite volume
method (FVM) for many applications. The key idea of the meshfree methods is to
provide accurate and stable numerical solutions for integral equations with all kinds
of possible boundary conditions with a set of arbitrarily nodes or particles, so that the
difficulties associated with mesh distortion can be avoided or alleviated. Nevertheless,
most of meshfree methods suffer from higher computational cost and the accuracy of
some meshfree methods is still dependent on the node regularities to some extent.
Therefore, only a few of them perform well in large deformation simulation, such as
smoothed particle hydrodynamics (SPH) and material point method (MPM).

SPH is one of the earliest particle methods, which was proposed by Lucy (1977)
and Gingold (Gingold and Monaghan, 1977) simultaneously in 1977 for solving
astrophysical problems. The basic idea of SPH is to approximate field quantities by
kernel function in a smoothing length. According to the differentiation and integration
of kernel function, the differentiation and integration of spatial field quantities could
be obtained. Nowadays, SPH and its improved versions have been successfully applied
in many fields, such as free surface fluid flow (Cleary et al., 2006), hypervelocity impact
(Michel et al., 2006) and progressive failure of geological body (Ma et al., 2011a, b).
However, due to the normalization and compact of kernel function, some errors will
occur when particles locate on or near the boundaries (Ma et al., 2009), although there
are some methods to solve the problem (Campbell, 1989; Randles and Libersky, 2000).
Furthermore, SPH converts the integration over the support domain into a summation
only over a finite number of particles, so insufficient sampling points for integration
may result in numerical instability. When particles are under tensile stress state, the
motion of the particles become unstable, and that may lead to particle clumping or
complete blowup in the computation (Swegle et al., 1995). Recently, some improved
methods are suggested to solve the tensile instability, such as corrective smoothed
particle method (Chen et al., 1999), artificial force (Monaghan, 2000) and stress points
(Dyka et al., 1997).
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MPM (Sulsky et al., 1994, 1995) is a finite element-based particle method, which is
evolved from particle in cell method (Brackbill and Ruppel, 1986). In MPM, material
domain is discretized by a group of points, termed as particles or material points. These
Lagrangian particles carry all material information and track the deformation history.
The momentums equations are solved on a predefined background grid, which can be
fixed in space or arbitrarily defined, and provide an Eulerian description of the material
domain (Ma et al., 2009). Compared with SPH, MPM owns higher accuracy, better
computational stability and lower computational time consuming. However, the
density of material points used in computation will influence the computational results
(Ambati et al., 2012).

In this paper, a PCMM is introduced. In Section 2, the basic principles of PCMM are
introduced; in Section 3, some simple numerical cases are presented to show the
accuracy of PCMM; and in Section 4, the numerical cases in geotechnical problems are
shown to demonstrate the rationality of this method.

2. Principles of PCMM
2.1 Main idea
Contact pairs searching and contact forces calculation are two main steps in DEM. Due
to the abundant information in contact pairs, the elements which are used to calculate
deformation force could be formed easily.

PCMM is the method which uses the contact pairs of DEM to generate the elements
and uses the elements to simulate engineering problems. By renewing neighbors for
each particle in each step, the elements will be created or deleted correspondingly,
and then the element distortion problems will be solved automatically. Figure 1 shows
the main idea of PCMM.

Incremental-based explicit method is adopted for PCMM, and forward-difference
approximation is used. In PCMM, all the field variables (i.e. stress, strain, density,
acceleration, velocity and displacement) are stored in particles. Particles are adopted to

Evolvement of
contact pairs

Evolvement of
contact pairs

Evolvement of
elements

Evolvement of
elements

(a) (b) (c)

Notes: (a) Elements creation based on particle contacts; (b) elements deletion; (c) elements
recreation

Figure 1.
Main idea of PCMM
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compute movement, and elements are used to calculate deformation force. Several steps
should be repeated in each time step:

(1) Neighbor deletion: delete neighbors which do not contact with the particle.

(2) Neighbor searching: find neighbors for each particle.

(3) Element deletion: delete elements which do not satisfy corresponding condition.

(4) Element creation: create elements based on new neighbor relationship.

(5) Deformation force calculation: based on continuous constitutive law, calculate
stress and node force.

(6) Contact force calculation: if particle-block contact exists, calculate the contact
force.

(7) Particle evolvement calculation: based on Newton’s law, calculate the movement
of each particle.

2.2 Elements creation
In PCMM, the element type is triangle element. For creating triangle elements, three
conditions should be satisfied at the same time: first, the three particles of which the
triangle element consists should contact with each other (Equation (1)); second, to
ensure the quality of elements, each internal angle of the triangle element should
be between 30 and 150 degree (Equation (2)); and third, each edge length of the element
should be larger than 0.5 times of average radius of three particles (Equation (3)).
Where Ri denotes the radius of particle i, dij means the distance between particle i and
j, θi is the internal angle and δ means the tolerance for contact searching:

dijpRiþRjþd

i ¼ 1; 2; 3; j ¼ 1; 2; 3; ia j

(
(1)

303pyip1503 i ¼ 1; 2; 3 (2)

dij ⩾ 0:5� R1 þR2 þR3
3

i ¼ 1; 2; 3; j ¼ 1; 2; 3; ia j

(
(3)

For setting up good element system, especially based on a series of random particles,
δ should be large enough to avoid gaps. In Figure 2, with small δ, only triangle elements
T136, T356 and T345 will be formed; while with large δ, triangle elements T136,
T356, T345, T123 and T234 will be created.

For searching contact pairs and creating elements easier, the corresponding contact
linked-lists and element linked-lists are stored in each particle. To search particle
contact pairs efficiently, static bin is adopted and 2D bin array is created (Figure 3). The
host cell (X3, Y3) of host particle A should be located first, and then neighbor search
will be executed on surrounding nine cells, from (X2, Y2) to (X4, Y4).

If particle i is the neighbor of host particleA, adds particle i to the contact linked-list
of A. After finishing neighbor search for particle A, calculates the position angle for
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each contact pairs, then sequences the neighbors based on the position angle
(anticlockwise sequencing scheme is adopted). If the included angle between two
adjacent neighbors is smaller than 30 degree, the neighbor which is farther from host
particle A should be deleted from contact linked-list (Figure 4).

small �

1

2

3
4

5
6

large �

1

2

3
4

5
6

Figure 2.
Different element
systems due to
different δ

1 2 3 4

1

2

3

4

A

X

Y

Figure 3.
Bin array for
neighbor searching

A
i+2

i+1

i+3

i

X

Y

Position angle
calculation

Neighbor sequencing Triangle elements
creation

Figure 4.
Neighbor sequencing
and element creation
according to
position angle
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After sequencing and deleting neighbors which are mentioned above, loops the contact
linked-list of host particle A and checks if particle A, i and i+1 could form a triangle
element. If the quasi-element satisfies Equations (1)-(3), and it is a new element (does not
exist in element linked-list), adds this element to the element linked-list of particle A
(Figure 4).

After finishing contact linked-lists creation and element linked-lists generation, the
element system based on contact pairs is generated.

2.3 Superposition algorithm
Based on element creating strategy and storing mechanism mentioned in Section 2.2,
overlapping elements will be created. If three particles contact with each other (Figure 5(a)),
three overlapping elements will be created, which are T123 stored in particle 1, T231
stored in particle 2 and T312 stored in particle 3. If four particles contact with each
other (Figure 5(b)), eight overlapping elements will be created, which are T123 and
T143 stored in particle 1, T214 and T234 stored in particle 2, T321 and T341
stored in particle 3 and T432 and T412 stored in particle 4. If five particles contact
with each other (Figure 5(c)), 15 elements will be created, which are T123, T134 and
T145 stored in particle 1, T234, T245 and T251 stored in particle 2, T345, T351
andT312 stored in particle 3,T451,T412 andT423 stored in particle 4 andT512,
T523 and T534 stored in particle 5. In 3-particle cluster, the cluster domain D123
is overlapped three times; in four-particle cluster, the cluster domain D1234 is
overlapped four times; and in five-particle cluster, the cluster domain D12345
is overlapped five times.

To solve above mentioned overlapping problems, superposition algorithm is
adopted. That means, when calculate element deformation force, the contribution of
each element should be divided by particle number in a given cluster (Equation (4)).
Where, N means the number of particles which contact with each other, Fi

r denotes the
real deformation force contributed by element i, and Fi

v means the virtual deformation
force of element i:

Fi
r ¼

Fi
v

N
(4)

For simulating continuous problems well, the masses of particles in PCMM are
obtained from cluster domain (Equation (5)). Where, Mi denotes the mass of particle

1 2

3

1 2

34

1
2

3

4

5

3-particle cluster 4-particle cluster 5-particle cluster

(a) (b) (c)

Figure 5.
Different particle

clusters
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i, ρj means the density of cluster domain j, Sj represents the volume of cluster
domain j in 2D, Nj is the particle number of cluster domain j, and H denotes the total
cluster number related to particle i:

Mi ¼
XH
j¼0

rjSj

N j
(5)

2.4 Element stress and deformation force calculation
Incremental-based FVM is adopted (Jing and Stephansson, 2007) to calculate element
stress and deformation force. In numerical time t0, particle velocity could be gotten
from Newton’s law, and the velocity gradient of each triangle element could be obtained
by Gauss’s theorem (Equation (6)). Where @vi=@xj

� �
means the average velocity

gradient of element, Se denotes the volume of element in 2D, vi represents the average
velocity in edge k, nkj is the jth component of unit normal vector in edge k and ΔLk
is the length of edge k.

@vi
@xj

� @vi
@xj

� �
¼ 1

Se

X3
k¼1

vinkjDL
k (6)

Based on Equation (6), incremental strain of the element could be calculated
(Equation (7)), where Δεij denotes element incremental strain, and Δt means
time step:

Deij ¼
1
2

@vi
@xj

þ@vj
@xi

� �
Dt (7)

According to Equations (8) and (9), the stress increment Δσij and the stress σij
could be gotten. Where K denotes bulk modulus, G means shear modulus, Δθ means
incremental bulk strain, δij is Kronecker delta and σij-old is element stress in last step.
Δθ could be obtained by Equation (10), and σij-old could be calculated by Equation (11).
Where, sp1ij�old , s

p2
ij�old and sp3ij�old are the stresses of three particles in last step:

Dsij ¼ 2GDeijþ K�2
3
G

� �
Dydij (8)

sij ¼ Dsijþsij�old (9)

Dy ¼ De11þDe22þDe33 (10)

sij�old ¼ sp1ij�oldþsp2ij�oldþsp3ij�old

� 	
=3 (11)

If some plastic constitutive law is adopted, the stress will be corrected. In this paper,
maximum tensile criteria and Mohr-Coulomb criteria are adopted (Equation (12)).

1086

EC
32,4

D
ow

nl
oa

de
d 

by
 K

un
gl

ig
a 

T
ek

ni
sk

a 
H

ög
sk

ol
an

 A
t 0

0:
52

 2
6 

Fe
br

ua
ry

 2
01

6 
(P

T
)



Where σij-new is corrected element stress in this step, T, C and ϕ denote tensile
strength, cohesion and inner friction angle:

sij�new ¼ f sij;T;C;f

 �

(12)

According to corrected stress tenser σij-new, the deformation force of the element could
be calculated by Equation (13), where Fp

i means the ith component of deformation
force of node p (particle p) in triangle element (each node owns two corresponding
edges):

Fp
i ¼ sij�new

X2
k¼1

nkjDL
k=2

� 	
(13)

Due to the superposition algorithm described in Section 2.3, if a particle cluster contains
N particles, the contributions of related elements should be divided by N (Equation
(14)):

Fp
i ¼

1
N

sij�new

X2
k¼1

nkjDL
k=2

� 	
(14)

After all the stresses and deformation forces of elements have been calculated, the
element strains and stresses should be transformed to particles (Equations (15)
and (16)). Where epij�new and spij�new denote particle strain and stress in this step, epij�old
means particle strain in last step, Dekij�new and skij�new mean kth element strain
increment and stress in this step, and M represents the element number related to the
particle:

epij�new ¼
XM
k¼1

Dekij�new=Mþepij�old (15)

spij�new ¼
XM
k¼1

skij�new=M (16)

2.5 Elements deletion
After some steps, element deformation will occur. If the deformation continues, the
distortion will happen. To avoid element distortion, elements should be deleted if any
condition mentioned below is satisfied:

(1) three particles of the triangle element do not contact with each other;

(2) any internal angle of the triangle element is smaller than 30 degree or larger
than 150 degree; and

(3) any edge length of the element is smaller than 0.5 times of average radius of
three particles.

According to Section 2.4, incremental method is used in PCMM, and all the variables
(i.e. stress, strain, mass and velocity) are stored in particles. When uses element to
compute deformation force, element strain and stress in last step are obtained from
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particles by average algorithm, and element strain increment in this step is gotten from
particle velocity by FVM. Based on the element strain, stress in last step and strain
increment in this step, the new element strain and stress in this step could be computed,
and the deformation force could be calculated. After that, strain, stress and resultant
force of particles in this step will be obtained from the corresponding elements.
Considering that strain energy, kinetic energy and potential energy are all stored in
particles, element deletion will not cause the loss of force equilibrium, or the breakage
of momentum/energy conservation.

2.6 Point-edge contact force calculation
In PCMM, for computing contact force between particles and blocks, the point-edge
contacts should be set up (Figure 6). If the distance (Equation (17)) between particle P
and edge ij is smaller than radius of particle (dijoR) and the projection point of
particle lies in the edge (dik⩽dij, djk⩽dij), the point-edge contact with one normal
spring and one tangential spring will be created. Where V

!
pi denotes the position

vector, n! is the outer normal vector of edge ij. The weighted coefficient of edge ij
could be calculated by Equation (18):

d ¼ V
!

piU n
!��� ��� (17)

wi ¼ djk=dij
wj ¼ dik=dij

(
(18)

When calculating contact force, incremental method is adopted, and some steps should
be followed:

(1) calculate relative incremental displacement (Equation (19)), where vp
*
, vi
*

and vj
*

denote the velocity of particle p, and the velocity of node i and node j of element:

dg
*

¼ vp
*� wivi

*þwjvj
*

� 	h i
Dt (19)

(2) convert dg
*

to local coordinate system (Equation (20)), where [T] denotes
coordinate transformation matrix:

dl
*

¼ T½ �dg
*

(20)

(3) calculate contact force in local coordinate system (Equation (21)), where Kn and
Ks represent the normal and tangential stiffness, Fn and Fs denote normal and

d
R

n

Vpi

i

j

i

j

k
Figure 6.
Point-edge contact
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tangential contact force in this step, Fn-old and Fs-old are contact force in last
step, Δdl-n and Δdl-s are normal and tangential relative incremental
displacement in local coordinate system:

Fn ¼ Fn�old�KnDdl�n

Fs ¼ Fs�old�KsDdl�s

(
(21)

(4) correct contact force by maximum tensile criteria and Mohr-Coulomb criteria
(Equation (22)), where A means contact area:

ð1Þ I f �Fn ⩾TUA Fn ¼ Fs ¼ 0

next step C ¼ 0;T ¼ 0

ð2Þ I f Fs ⩾ Fn � tan ðfÞþCUA

Fs ¼ Fn � tan ðfÞþCUA;

next step C ¼ 0;T ¼ 0

8>>>>>><
>>>>>>:

(22)

(5) convert local contact force to global coordinate system (Equation (23)):

Fg

*

¼ T½ �TFl

*

(23)

(6) accumulate contact force to particles and edges (Equation 24), where Fp�new

*

,

Fi�new

*

and Fj�new

*

mean contact force vector of particle p, node i and node j in

this step, and Fp�old

*

, Fi�old

*

and Fj�old

*

denote contact force vector of particle p,
node i and node j in last step:

Fp�new

*

¼ Fp�old

*

�Fg

*

Fi�new

*

¼ Fi�old

*

þwiFg

*

Fj�new

*

¼ Fj�old

*

þwjFg

*

8>>>><
>>>>:

(24)

3. Precision test
3.1 Elastic analysis of rock under gravity load
The size of rock is 20 m× 20 m. The bottom boundary of rock is totally fixed, and the
direction of gravity load is vertically downward. The density of rock is 2,000 kg/m3,
elastic modulus is 30 GPa, and Poisson’s ratio is 0.25. For testing the robust of PCMM,
three different PCMM models (particle-based) and one traditional FVM model
(element-based) are used to represent this rock (Figure 7). Nine monitoring points with
X¼ 10 m are set up for each model (Figure 7, red square denotes monitoring point). In
regular PCMM model, particle radius is 0.5 m, particle number is 400 and contact
searching tolerance δ is 0.5 m. In cross PCMMmodel, particle radius is

ffiffiffi
3

p
=3 m, particle

number is 389 and contact searching tolerance δ is 0.01 m. In random PCMM model,
the random particles are generated by GiD (a pre and post processor), with the particle
radius 0.168-0.312 m, particle number 1,966 and contact searching tolerance 0.3 m.
In FVM element model, the element size is 1 m× 1 m, and element number is 400. Based
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on element creation algorithm mentioned in Section 2.2, three element systems related
to regular model, cross model and random model are set up (Figure 8).

The relationship between vertical displacement and model height at X¼ 10 m are
shown in Figure 9, and the relationship between vertical stress and model height at
X¼ 10 m is shown in Figure 10. From Figures 9 and 10, the results of three different
PCMM models are more or less the same as the element-based model, which shows the
accuracy of PCMM. However, because X coordinate of monitoring points in random
PCMM model (Figure 7(c)) do not equal 10 m exactly, the result of random model is
slightly different from other three models.

3.2 Uniaxial compression of rock
The size of the rock sample is 0.1 m× 0.2 m, with bottom boundary totally fixed and top
boundary horizontally fixed. To simulate quasi-static compression process, a small
constant velocity is applied on the top boundary on vertical direction. For simulating
the failure of the sample, Mohr-Coulomb criteria and maximum tensile criteria are
adopted, with the density 2,500 kg/m3, elastic modulus 30 GPa, Poisson’s ratio 0.25,
cohesion 3 MPa, tension 1 MPa, friction angle 40 degree.

Elements based on regular
model

Elements based on cross
model

Elements based on random
model

(a) (b) (c)

Figure 8.
Initial elements

based on particle
contacts in PCMM
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For testing the robust of PCMM, three different PCMM models and two different
element-based FVM models are set up (Figure 11). In PCMM regular model, the particle
radius is 2.5 mm, the particle number is 861 and contact searching tolerance δ is
2.5 mm. In PCMM cross model, the particle radius is 2.5 mm, the particle number
is 964 and contact searching tolerance δ is 0.01 mm. In PCMM random model, the
random particles are created by GiD, with the particle radius 1.09-2.02 mm, particle
number 2,246 and contact searching tolerance 2.3 mm. In FVM regular model and FVM
cross model, the element number are 800 and 1794, respectively. Based on element
creating method mentioned in Section 2.2, different triangle element systems are
created for regular, cross and random PCMM models (Figure 12).

The relationships between average stresses and strains of the five models are shown
in Figure 13. From Figure 13, the behaviors of the five models in elastic stage are nearly
the same, which demonstrates the robust of PCMM (little affection about particle
arrangement). In plastic stage, grid type will affect the result to some extent. However, the
results of particle regular model and element regular model are the same, and the results
of particle cross model and element cross model are the same. The different behaviors in
plastic stage show that, the gird type and style will affect the result, but with the same
configuration, the results of PCMM and element-based FVM are the same.

3.3 Wave propagation in a rock bar
For testing the wave propagation in a rock bar, three different PCMM models and one
element-based FVM model are set up (Figure 14), with the size 20m× 0.6 m. Fixed
boundary condition is applied on the right side, and dynamic sinusoidal velocity load is
applied on the left side, with the amplitude 10m/s, period 6ms and time duration 3 ms. The
density of this rock is 2,500 kg/m3, elastic modulus is 30 GPa and Poisson’s ratio is 0.25.

In regular PCMM model, the radius is 5 cm, the particle number is 1,206 and contact
searching tolerance δ is 5 cm. In cross PCMMmodel, the radius is 5 cm, particle number
is 1,404 and contact searching tolerance δ is 0.1 cm. In random PCMM model, the
random particles are created by GiD, with the particle radius 1.39-4.23 cm, particle
number 5,043 and contact searching tolerance 5 cm. In element FVM model, element
size is 10 cm× 10 cm, and the element number is 1,200.
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Figure 12.
Initial elements
created by
PCMM model
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Velocity history curve and stress history curve at X¼ 10 m (middle point) are shown
in Figures 15 and 16. From these two figures, time history curves of velocity and stress
of four models are almost the same, which shows that PCMM could simulate dynamic
problems well. However, particle arrangement will affect the result slightly, especially
for the random PCMM model.

4. Geotechnical problems simulation
4.1 Soil cutting
The soil cutting numerical model is shown in Figure 17, and the size of soil is 3 m× 1 m,
with bottom and right boundaries totally fixed. The blade consists of 375 triangle
elements, and soil is formed by PCMM particles (7,701 particles with the radius 0.01 m
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Horizontal stress
history curve at

X¼ 10 m
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and contact searching tolerance 0.01 m). Fixed horizontal velocity is applied on the left
boundary of blade, with the value 0.1 m/s. Elastic model is used for blade, and Mohr-
Coulomb model and maximum tensile model is used for soil. For the blade, the density
is 7,800 kg/m3, elastic modulus is 210 GPa and Poisson’s ratio is 0.3. For the soil, the
density is 1,750 kg/m3, elastic modulus 10 MPa, Poisson’s ratio 0.35, cohesion 10 kPa,
inner friction angle 20 degree and tensile strength 3 kPa. Three points used to monitor
vertical displacement are set on the top of the soil, with the name P1, P2 and P3,
respectively. One point used to monitor bulk stress is set near the right and bottom side,
with the name P4.

From Figure 18, when the blade moves toward to right-hand side gradually, the soil
is separated by blade gradually, and some soil on the top of the blade will fall down due
to the gravity load. At time 2 s, the first shear band forms basically; at time 6 s, the
second shear band forms totally; and at time 11 s, the third shear band forms.
From Figure 18, the distance between two adjacent shear bands is about 0.3 m.
The evolvement of plastic shear band in soil when cutting shows the accuracy
of PCMM.

The variations of vertical displacement and bulk stress with time on monitoring
points are shown in Figures 19 and 20. From Figure 19, the displacement evolvements
of these three points are more or less the same, and all of the displacements rise
gradually and decline sharply. Vertical displacement of P1 rises at time 3.9 s, and
reaches the peak at time 20 s, with the peak value 0.62 m, and then declines to −0.27 m

t = 2s t = 11st = 6s

t = 15s t = 24st = 20s

Shear plastic strain

0.01.0 0.5 0.250.75

Figure 18.
Shear plastic strain
of soil when cutting

soil
blade

P1 P2 P3

P410m/s

0.5m

0.5m
0.6m

1m

3m

Figure 17.
Soil cutting model
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quickly. From Figure 20, with the cutting time goes on, the bulk stress increases
gradually. Before time 15 s, there is a slow and linear increase of bulk stress. After time
15 s, the bulk stress increases exponentially. At time 27.5 s, the bulk stress reaches
−0.11 MPa.

4.2 Contact burst
For simulating contact burst, JWL model (Equation 25) is adopted for blasting source,
where P is the pressure of explosive product, V′ is the relative specific volume, E is the
internal energy, and A, B, R1, R2 and ω are experimental parameters. In this
simulation, blasting source assumes as TNT, with A¼ 371.2 GPa, B¼ 3.2 GPa,
R1¼ 4.2, R2¼ 0.95 and ω¼ 0.3. The blasting object assumes as soft rock, and
Mohr-Coulomb model and maximum tensile model are used for this target, with density
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2,500 kg/m3, elastic modulus 20 GPa, Poisson’s ratio 0.25, cohesion 0.1 MPa, tension
0.05 MPa, friction angle 30 degree:

p ¼ A 1� o
R1V

0

� �
e�R1V þB 1� o

R2V
0

� �
e�R2V þoE

V 0 (25)

The size of the numerical model is 8 m× 2 m, and the bottom, left and right boundaries
of the model are all no reflection boundaries. Blasting source locates on the top of the
model, with the charge radius 0.15 m. The numerical model consists of 40,501 PCMM
particles, with the particle radius 0.01 m and contact tolerance 0.01 m. Three points
named P1, P2 and P3 are set on the top right of the model to obtain the horizontal
displacement history, and other three points named P4, P5 and P6 are set on the middle
to monitor the pressure history (Figure 21).

After blasting, the pressure wave propagates to the soft rock gradually, and the
value of pressure decreases gradually (Figure 22). From Figure 22, with the time goes
on, the explosion crater becomes larger and larger. At time 3.6 ms, the top diameter of
the crater is 1.4 m, and the depth of the crater is 0.35 m. The failure process of this soft
rock demonstrates the rationality of PCMM.

The variation of horizontal displacement and pressure with time on monitoring
points are shown in Figures 23 and 24. From Figure 23, the horizontal displacement of
P1 increases linearly after time 0.46 ms, and then the displacements of P2 and P3
increase gradually. From Figure 24, the peak pressures of P4, P5 and P6 are 1,369 MPa,
931.8 MPa and 699.6 MPa, respectively.

4.3 Water-like material flowing
According to Equation (8), ifG¼ 0 andK¼ 2 GPa, water-like material flowing could be
simulated. The water and blocks interaction model is shown in Figure 25. The water is
discretized by 5,528 PCMM particles, with the radius 3-8 mm and contact searching
tolerance 5 mm. The size of the water is 0.8 m× 1.4 m, and the size of each block is
10 cm× 10 cm, the distance between right boundary of water and left boundary of
blocks is 1.15 m. The contact properties between blocks are cohesion 0 MPa, inner
friction angle 25 degree and tensile strength 0 MPa.

When the board on the right-hand side of water is removed, water will move toward
to the block system gradually under gravity load. When water touches the block
system, the blocks will begin to move under the water pressure. Two different block
systems named four columns system and two columns system are set up to simulate
the interaction between water and blocks, and the numerical results are shown in

No reflection boundary

P1 P2 P3

P4

P5

P6

Soft rock

Blasting source

Figure 21.
Contact burst model
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Figures 26 and 27. From Figure 26, the impact action of water just causes little
movement of blocks, and most of the water is confined to the left of block system.
From Figure 27, block system topples to right-hand side under the impact of water, and
the water occupies the bottom of sink. Different numerical results in these two figures
show the correctness of PCMM.

5. Conclusions
PCMM is based on traditional particle DEM, and uses particle contacts to generate
triangular elements. If three particles are contact with each other, the triangle
element will be created. Once the elements are created, the macroscopic constitutive
law could be introduced in. When large deformation of element occurs, the
contact relationship between particles will be changed. Those elements that do not
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meet the contact conditions will be deleted and new elements that coincide
with the relationships will be generated. According to the deletion and recreation
of the elements by particle contacts, PCMM could simulate large deformation
problems. Some numerical cases (i.e. elastic field testing, uniaxial compression
analysis and wave propagation simulation) show the accuracy of PCMM, and
others (i.e. soil cutting, contact burst and water-like material flowing) show the
rationality of PCMM.

However, PCMM requires more validation, such as the selection of contact searching
tolerance, principles to create or delete elements and approaches of information
transformation between particles and elements.
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