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Abstract 

A new method for constructing weighted essentially non-oscillatory (WENO) scheme is proposed. The idea of this method is 
to combine Henrick’s mapping function and the idea of improving the accuracy of WENO-Z scheme one-by-one order. The 
particular advantage of the new constructing method is that it can improve the accuracy of WENO scheme near discontinuities. 
Numerical examples show that the new constructing method is very efficient and robust, and the new WENO scheme is more 
accurate than the original ones. 
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Nomenclature 

f             flux function 
g             mapping function 
h             numerical flux function 
p             pressure 
t              time 
u             unknown variable/velocity 
Greek symbols 
 density 
,  weights 

Subscripts 
i ,k indices 
Superscripts 
l index 
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1. Introduction 

The weighted essentially nonoscillatory(WENO) schemes have been developed and widely used in past two 
decades. The basic idea of WENO scheme was firstly proposed by Liu et al.[1], in which the smoothest stencil of 
the ENO schemes[2] is replaced by aconvex combination of the reconstructions on all candidate stencils. In order 
to obtain higher order accuracy in smooth regions and keep the essentially non-oscillatory property around 
discontinuities, the design of the weight of each stencil is very important.  

Jiang and Shu[3] analyzed that an r thorder ENO scheme can only be converted into an )1(r th order 
WENO scheme by using the smoothness indicator introduced byLiu et al.[1]. And then a classic fifth-order 
WENO scheme with a general framework for designing the smoothness indicators and weights was proposed by 
Jiang and Shu[3]. Henrick et al.[4] pointed out that the smoothness indicatorsof Jiang and Shu fail to improve the 
accuracy order of WENO scheme at critical points, where the first derivatives arezero. A mapping function is 
proposed by Henrick et al. [4] to obtain the optimal order at critical points.Recently, Borgeset al. [5] suggest use 
the whole 5-points stencil to devise a smoothness indicator of higher order than the classicalsmoothness indicator 
proposed by Jiang and Shu [3]. On the other hand, a class of higher than 5th order weighted essentiallynon-
oscillatory schemes are designed by Balsara and Shu in [6] and by Gerolymos et al. in[7]. Wang and Chen [8] 
proposed optimizedWENO schemes for linear waves with discontinuity. Martin et al[9] proposed a symmetric 
WENO methodby means of a new candidate stencil, the new schemes are 2rth-order accurate and symmetric, and 
lessdissipative than Jiang and Shu's scheme. 

Most of the above mentioned WENO schemes are designed to have ( 12r )th or r2 th[9] order of accuracy 
in thesmooth regions directly from rth ENO schemes. Their focus is mainly on improving the accuracy in smooth 
regions, especially at the critical point( 0'

if ). Hence, for a solution containing discontinuity, these methods 
cannot obtain the optimal accuracy at transition point, which connects a smooth region and a discontinuity point. 
For example, Shen and Zha[10] analyzed the existed fifth order WENO schemes, their accuracy at transition point 
is only the third order. This shortcoming can affect the general performance of the fifth-order WENO schemes, for 
example, it can results in the reduced accuracy in simulating the local separated flow induced by shock waves, the 
excessive numerical diffusion in the flows with shock/turbulence interaction.  

Since the solution at the transition point is still smooth, ideally, the discretization accuracy of its first-order 
derivative can reach to fourth order if only if a smooth stencil with five points (notice that, for constructing the 
conservative numerical flux, the stencil has one point less. That is, a fourth-order numerical flux can be 
constructed by using a smooth stencil with four points) is used. In [10], Shen and Zha introduced two fourth-order 
reconstructions combined with an estimation of smoothness/ non-smoothness of two adjacent four-point stencils 
to improve the accuracy. In early work[11], Shen et al. indicate that the smoothnessindicator kIS of Jiang and 

Shu's WENO scheme does not satisfy the condition ))(1( 2xODk  atthe critical point ( 0'
if ), and 

proposed a step-by-step reconstruction to avoid the strict condition. But the method does not satisfy the necessary 
and sufficient conditionsfor fifth-order convergence[4] atcritical point. 

In this paper, based on the analysis[10], a new method for constructing weighted essentially non-oscillatory 
(WENO) scheme is proposed. The idea of this method is to combine Henrick’s mapping function and the idea of 
improving the accuracy of WENO-Z scheme one-by-one order. The particular advantage of the new constructing 
method is that it can improve the accuracy of WENO scheme near discontinuities without reducing the accuracy 
in smooth regions. Numerical examples show that the new constructing method is very efficient and robust, and 
the new WENO schemes is more accurate than the abovementioned ones. 
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2. The numerical algorithm 

For the hyperbolic conservation law in the form 

0)(
x
uf

t
u

                                     (1) 

the flux function )(uf can be split into two parts as )()()( ufufuf with 0/)( duudf and

0/)( duudf . The semi-discretizationform of (1) can be written as 

)(1)(
2/12/1 ii

i hh
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            (2) 

where the numerical flux is 2/12/12/1 iii hhh . In this paper, only the positive part 2/1ih  is described and 

the superscript“+” is dropped for simplicity. The 2/1ih is evaluated following the symmetric rule about 2/1ix . 

2.1. Weighted essentially non-oscillatory (WENO) scheme[3-5] 

The flux of the fifth-order WENO scheme can be written as 
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kIS is a smoothness indicator on stencil 3
kS . In [3], Jiang and Shu proposed kIS  as 
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3.00c , 6.01c , and 1.02c are the optimal weights which generate the fifth-order central upstream 

scheme. If 0'
if , Eq. (5) gives ))(1( xODISk and )( xOckk , this will degrade the 

convergence accuracy of the scheme[4,5,11].  
Henrick et al. [4] implemented a detailed truncation error analysis of Jiang and Shu’s WENO scheme, and gave 

the necessary and sufficient conditions for fifth-order convergence of WENO scheme as the following, 
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where kA is the coefficient of third-order term ( 3x ) in the Taylor series expansion of kq  to the fifth-order 

central upstream approximation[4]. To improve the accuracy of weights k , a mapping function )(kg  is 
defined in [4]as 
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and an improved WENO scheme (WENO-M) is constructed by using )(kg  to generate new weights. WENO-
M obtained fifth-order convergence at critical points. 

Borges et al.[5] proposed a sufficient condition for the fifth-order WENO scheme, 

                                                                    )( 3xOckk ,                          (8) 

and introduced a parameter 5  as || 205 ISIS  to construct the new smoothness indicator z
kIS  as the 

following, 

                                                                     5k

kz
k IS

ISIS .                     (9) 

Using the z
kIS  to construct the WENO scheme(called as WENO-Z), the new weights can satisfy the sufficient 

condition Eq.(8) at critical points. 
In all formula, the parameter  is used to avoid the division by zero, -610  is used in [3] and -4010  is 

used in [4,5]. p is chosen to increase the difference of scales of distinct weights at non-smooth parts of the 
solution. 

2.2. New constructing method for WENO scheme 

The analysis of fifth-order WENO schemes of Shen and Zha[10] shows that the accuracy of fifth-order WENO 
scheme is reduced at the transition point point 1i in Fig.1 from smooth region to discontinuous point and 
viceversa.Shen and Zhaproposed a reconstructions method by using an estimation of smoothness/ non-smoothness 
of two adjacent four-point stencils to improve the accuracy. 

In this paper, a new constructing method for WENO scheme is proposed by combining Henrick’s mapping 
function[4] and the idea of improving the accuracy of WENO-Z scheme one-by-one order[11]. Fig. 2 can be used 
to illustrate the method.  

First step, two fourth-order weighted fluxes are constructed as the following. 
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The weights l
k

,4 ( 1,0k ; 1,0l ) is calculated by combining the method of WENO-Z scheme and mapping 
function, 
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and 25.00,4
0c , 75.00,4

1c ; 5.01,4
0c , 5.01,4

1c . 
Second step, the final fifth-order weighted flux is obtained as the following 
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     Now, let’s analyze the accuracy of the new method (10) and (12). Using Taylor expansion, there is 
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it is easy to find that 
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Similarly, there is 

)( 95 xockk or )( 35 xockk             (16) 

That means, in above two steps, the sufficient condition of (8) is always satisfied no matter whether 0'
if  or 

0'
if and 0''

if . Hence there is no accuracy reducing in the multi-step process, the method of (10) and (12) is 
fifth-order accuracy in smooth regions.  

If ix  is a transition point (for example, the discontinuity is between 1ix and 2ix ), then in the first step, the 

fourth-order flux 4
0h is obtained from Eq.(10). In the second step, the final flux 2/1ih  is approximated as 

4
02/1 hhi  due to 12 ISIS  and 01  in Eq. (12). Hence the fourth-order accuracy at the transition 

point is obtained. 

 
Fig.1 The sketch of transition point 
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Fig.2 Multi-step constructing process 

3. Numerical examples 

In this paper, the 4th order Runge-Kutta-type method[12] is used for the time integration. 

3.1. Linear transport equation 

The linear transport problems are controlled by 
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(1) Initial solution )sin(sin)(0
xxxu  

Table 1 gives the errors and accuracy order. It can be seen that, for the smooth solution, the presentscheme 
obtains the same fifth-order accuracy as WENO-M and WENO-Z schemes. 

 
 
 
 
 
 
 
 

i-2

i-1 i

i-1 i

i+1

i i+1 i+2

i+1/2

i+1/2

i+1/2

step 1

step 2

S

S

S

S

S

S

3
0

3
1

3
2

4
0

4
1

5

i-2

i-1

i-1

i-1

i

i

i

i+1 i+1

i+1

i+2

i+2

i-2

h

h

h

i+1/2

4
0

4
1



426   Y.Q. Shen et al.  /  Procedia Engineering   67  ( 2013 )  420 – 429 

Table 1.Comparison of accuracy, T=2. 

Scheme N 1L error 1L order L error L order

WENO-Z

40 
80 
160 
320 
640 

0.217102e-3
0.649393e-5
0.204882e-6
0.748874e-8
0.364893e-9

- 
5.063 
4.986 
4.774 
4.359 

0.677211e-4
0.237405e-5
0.785200e-7
0.250232e-8

0.779779e-10

- 
4.834 
4.918 
4.971 
5.004 

WENO-M

40 
80 
160 
320 
640 

0.210766e-3
0.648426e-5
0.204671e-6
0.640983e-8
0.200631e-9

- 
5.023 
4.986 
4.997 
4.998 

0.672781e-4
0.225867e-5
0.720345e-7
0.226830e-8

0.710974e-10

- 
4.897 
4.971 
4.989 
4.996 

present 

40 
80 
160 
320 
640 

0.203332e-3
0.649369e-5
0.204635e-6
0.640982e-8
0.200642e-9

- 
4.969 
4.988 
4.997 
4.998 

0.714827e-4
0.229242e-5
0.724031e-7
0.227140e-8

0.711126e-10

- 
4.963 
4.985 
4.994 
4.997 

Initial solution 
10   ,1

2
1)sin(

01       ,
2
1)sin(

)(
3

3

0
xxx

xxx
xu  

Fig. 3 shows the numerical solutions at t = 6. It can be seen that, near the discontinuity, the presentmethod 
obtains more accurate solution than WENO-Z and WENO-M schemes. 

3.2. Nonlinear transport equation 

The nonlinear transport equation 

                            
20    ,0 x

x
uu

t
u

                                                            (18) 

is solved with initial and boundary conditions: 
)sin(7.03.0)(0 xxu , 20 x , periodic boundary. 

The flux splitting 2/)( auff  is applied, where 2/2uf and )max( iua . Fig. 4 shows the results 

at t = 2 with grid number of N = 80. It can be seen that, near the shock, thesolution calculated by the present 

scheme is closer to the discontinuous solution than WENO-Z and WENO-M schemes. 

3.3. One dimensional shock tube problems 

The one dimensional Euler equations of gas dynamics is solved. The first-order global Lax-Friedrichsflux[5,6] 
isused as the low-order building block for the high-order reconstruction of various WENO schemes. 
(1) Sod problem 

The initial conditions are 
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The solution at 0.14t is given in Fig. 5. It can be seen that, near shocks, the present method is more accurate 
than both WENO-Z and WENO-M schemes. 
(2) Shu-Osher problem 

The initial conditions are 

           4when                               ),1 ,0 ,5sin1(
4    when ),33333.10  ,629369.2  ,857143.3(

),,(
xx
x

pu                              (20) 

This case [13] represents a Mach 3 shock wave interacting with a sine entropy wave. The results at time 8.1t  
are plotted in Fig. 6. The ‘exact’ solutions are the numerical solutions of WENO-Z scheme with grid points of

2000N . It can be seen that, even in thesmooth region, the present scheme are more accurate than WENO-Z 
and WENO-M schemes. This indicates that,if the solution varies dramatically, the new method is lesser 
dissipative than the other two schemes. 

4. Conclusion 

By combining Henrick’s mapping function and the idea of improving the accuracy of WENO-Z scheme one-
by-one order,a new method for constructing weighted essentially non-oscillatory (WENO) scheme is developed. 
In each step of weighting process, the sufficient condition for fifth-order convergence is kept, hence the final 
scheme can obtain the fifth-order accuracy in smooth regions even containing critical points. The particular 
advantage of the new scheme is that it improves the accuracy of WENO scheme at transition points, hence its 
numerical dissipation near discontinuities is smaller than other fifth-order WENO schemes. Numerical examples 
show that the new scheme is efficient, robust, and accurate. 
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Fig. 3 Numerical results, t=6 

 
Fig. 4 Numerical results, t=2 
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Fig.5 Density, Sod problem 

 
Fig.6 Density, Shu-Osher problem 
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