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The classical Adomian decompositionmethod (ADM) is implemented to solve amodel of HIV infection of CD4+T cells.The results
indicate that the approximate solution by using the ADM is the same as that by using the Laplace ADM, but it can be obtained in a
more efficient way. We also use Padé approximation and Laplace transform as a posttreatment technique to obtain the result of the
ADM.The advantage of the posttreatment is illustrated by numerical experiments.

1. Introduce

Because of human immunodeficiency virus (HIV), more and
more people are infected with more and more casualties
especially in Africa. CD4

+T cells are themost abundant white
blood cells of the immune system in body. Though HIV
infects also other cells, it seriously damages the CD4+T cells
in blood and this decreases the immune ability.Mathematical
modeling is an important tool established for understanding
HIV infection concerning CD4+T cells. In 1989, Perelson
established a simple and important model in the field of HIV
infection [1]. In 1993, Perelson et al. proposed a fitted model
based on an old model which appeared in [2]. This HIV
infection model of CD4+T cells is given by the system of
nonlinear differential equations:

𝑑𝑇

𝑑𝑡
= 𝑝 − 𝛼𝑇 + 𝑟𝑇(1 −

𝑇 + 𝐼

𝑇max
) − 𝑘𝑉𝑇,

𝑑𝐼

𝑑𝑡
= 𝑘𝑉𝑇 − 𝛽𝐼,

𝑑𝑉

𝑑𝑡
= 𝑁𝛽𝐼 − 𝛾𝑉,

(1)

with the initial conditions

𝑇 (0) = 𝑟
1
,

𝐼 (0) = 𝑟
2
,

𝑉 (0) = 𝑟
3
.

(2)

This model neglects the proliferation of infected CD4+T
cells. Here 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) describe the concentration of
susceptible CD4+T cells, CD4+T cells infected by the HIV,
and free HIV particles in the blood, respectively; 𝛼, 𝛽, and 𝛾

represent natural turnover rates of uninfectedT cells, infected
T cells, and virus particles, respectively; 𝑘(> 0) is the infection
rate;𝑝 denotes a rate at which the body produces CD4+T cells
from precursors in the bone narrow and thymus; 𝑟 represents
a rate at which T cells multiply through mitosis when the
T cells are stimulated by antigen or mitogen; 𝑁 means the
virus particles that each infected CD4+T cell produces during
its life, including all its daughter cells; 𝑇max indicates the
maximum CD4+T cells concentration in the body. Also, (1 −
(𝑇+ 𝐼)/𝑇max) describes the logistic growth of healthy CD4

+T
cells. In this paper, all parameters are the same as those in
[3, 4]; that is, 𝑝 = 0.1, 𝛼 = 0.02, 𝛽 = 0.3, 𝑟 = 3, 𝛾 = 2.4,
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𝑘 = 0.0027, 𝑇max = 1500, 𝑁 = 10, 𝑟
1
= 0.1, 𝑟

2
= 0, and 𝑟

3
=

0.1.
In the recent twenty years, all kinds of models of HIV

infection of CD4+T cells have been established and studied.
These models are usually described by the nonlinear dif-
ferential equations. When the analytic solution can not be
obtained in close form, the numerical and/or approximate
solutions need to be computed. Adomian decomposition
method (ADM) [5] and Laplace ADM (LADM) [6] are some
typical approaches, which give the approximate solution of
linear or nonlinear problems [7]. Padé approximation and
Laplace transform have been regarded as posttreatment tools
that are used to obtain some results of nonlinear differential
equations [8–14]. Gauss elimination, LU factorization, and
chasingmethods are classical direct methods [15], and Jacobi,
Gauss-Seidel, SOR, (preconditioned) Krylov subspace, and
(preconditioned) HSS methods are iteration methods for
solving systems of linear equations [15–19]. Besides, Newton,
Euler, Runge-Kutta, Newton-HSS, and Newton-Krylov sub-
space methods are numerical methods for solving systems of
nonlinear equations [20–23]. In this paper, we deeply study
ADM and the posttreatment technique for solving the model
of HIV infection (1).

The type of HIV infection model (1) has been deeply
discussed in [3, 4]. Arafa et al. proposed generalized Euler
method (GEM) to solve the fractional order model in [24].
Ongun used the LADM to solve the system of nonlinear
differential equations (1) in [4]. Doğan proposed the mul-
tistep LADM to solve the system of nonlinear differential
equations (1) in [3]. We will use ADM to solve HIV infection
model (1), andwewill utilize Padé approximation andLaplace
transform for obtaining some new results.

The remainder of this paper is organized as follows. in
Section 2, we apply ADM for solving HIV infection model
(1). In Section 3, we use Padé approximation and Laplace
transform as posttreatment technique to improve the results
of ADM. In Section 4, we give numerical results for the
system of nonlinear differential equations (1) and compare
these results with those of the classical fourth-order Runge-
Kutta (RK4) method.

2. Application of ADM

In this section, the classical ADM is used to solve the system
of nonlinear differential equations (1), whose results are the
same as that using the LADM [4]. For this class of problems,
ADM is a simple and convenient method.

Now, let us use ADM to solve the system of nonlinear
differential equations (1). Rewriting HIV infection model (1)
in an operator form,

𝐿
𝑡
𝑇 = 𝑝 − (𝛼 − 𝑟) 𝑇 −

𝑟

𝑇max
𝑇
2

−
𝑟

𝑇max
𝑇𝐼 − 𝑘𝑉𝑇,

𝐿
𝑡
𝐼 = 𝑘𝑉𝑇 − 𝛽𝐼,

𝐿
𝑡
𝑉 = 𝑁𝛽𝐼 − 𝛾𝑉,

(3)

where the differential operator 𝐿
𝑡
denotes

𝐿
𝑡
=

𝜕

𝜕𝑡
. (4)

Letting the inverse operator 𝐿−1
𝑡
be an integral operator of the

form

𝐿
−1

𝑡
= ∫

𝑡

0

𝑑𝑡 (5)

and applying 𝐿
−1

𝑡
on both sides of the equations in (3), we

obtain

𝑇 = 𝑇 (0) + 𝑝𝑡 − (𝛼 − 𝑟) 𝐿
−1

𝑡
𝑇 −

𝑟

𝑇max
𝐿
−1

𝑡
𝑇
2

−
𝑟

𝑇max
𝐿
−1

𝑡
(𝑇𝐼) − 𝑘𝐿

−1

𝑡
(𝑉𝑇) ,

𝐼 = 𝐼 (0) + 𝑘𝐿
−1

𝑡
(𝑉𝑇) − 𝛽𝐿

−1

𝑡
𝐼,

𝑉 = 𝑉 (0) + 𝑁𝛽𝐿
−1

𝑡
𝐼 − 𝛾𝐿

−1

𝑡
𝑉.

(6)

Using the ADM,we express the unknown items as the infinite
series

𝑇 = Σ
∞

𝑛=0
𝑇
𝑛
,

𝐼 = Σ
∞

𝑛=0
𝐼
𝑛
,

𝑉 = Σ
∞

𝑛=0
𝑉
𝑛

(7)

and rewrite the nonlinear items as the Adomian polynomials

𝑇
2

= Σ
∞

𝑛=0
𝐴
𝑛
,

𝑇𝐼 = Σ
∞

𝑛=0
𝐵
𝑛
,

𝑉𝑇 = Σ
∞

𝑛=0
𝐶
𝑛
.

(8)

Based on the above expressions and the initial conditions, we
can obtain the following recursive relationship:

𝑇
0
= 𝑟
1
+ 𝑝𝑡,

𝑇
𝑛+1

= − (𝛼 − 𝑟) 𝐿
−1

𝑡
𝑇
𝑛
−

𝑟

𝑇max
𝐿
−1

𝑡
𝐴
𝑛
−

𝑟

𝑇max
𝐿
−1

𝑡
𝐵
𝑛

− 𝑘𝐿
−1

𝑡
𝐶
𝑛
,

𝐼
0
= 𝑟
2
,

𝐼
𝑛+1

= 𝑘𝐿
−1

𝑡
𝐵
𝑛
− 𝛽𝐿
−1

𝑡
𝐼
𝑛
,

𝑉
0
= 𝑟
3
,

𝑉
𝑛+1

= 𝑁𝛽𝐿
−1

𝑡
𝐼
𝑛
− 𝛾𝐿
−1

𝑡
𝑉
𝑛
,

(𝑛 = 0, 1, 2, . . .) .

(9)
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By the aid of the software “Mathematica,” we can write
the first seven terms from the zeroth to the sixth components
of 𝑇(𝑡), 𝐼(𝑡), and 𝑉(𝑡) and then give their sums as follows:

𝑇
𝑞6

:=

6

∑

𝑖=0

𝑇
𝑖
(𝑡)

= 0.1 + 0.397953𝑡 + 0.592849𝑡
2

+ 0.588719𝑡
3

+ 0.438295𝑡
4

+ 0.260863𝑡
5

+ 0.129195𝑡
6

+ 0.0136354𝑡
7

− 0.278755 × 10
−4

𝑡
8

+ 1.00825

× 10
−8

𝑡
9

− 1.34165 × 10
−12

𝑡
10

+ 8.06031

× 10
−17

𝑡
11

− 2.22614 × 10
−21

𝑡
12

+ 2.29896

× 10
−26

𝑡
13

,

𝐼
𝑞6

:=

6

∑

𝑖=0

𝐼
𝑖
(𝑡)

= 2.7 × 10
−5

𝑡 + 1.72737 × 10
−5

𝑡
2

− 8.40515

× 10
−6

𝑡
3

+ 6.14728 × 10
−6

𝑡
4

− 2.83586

× 10
−6

𝑡
5

+ 1.1533 × 10
−6

𝑡
6

− 3.92561 × 10
−7

𝑡
7

+ 4.57012 × 10
−11

𝑡
8

− 2.67794 × 10
−14

𝑡
9

+ 7.55134 × 10
−19

𝑡
10

+ 1.54535 × 10
−22

𝑡
11

− 6.38153 × 10
−27

𝑡
12

,

𝑉
𝑞6

:=

6

∑

𝑖=0

𝑉
𝑖
(𝑡)

= 0.1 − 0.24𝑡 + 0.288041𝑡
2

− 0.230415𝑡
3

+ 0.138243𝑡
4

− 0.0663528𝑡
5

+ 0.0265397𝑡
6

+ 2.48124 × 10
−6

𝑡
7

+ 1.28486 × 10
−10

𝑡
8

− 3.58846 × 10
−15

𝑡
9

− 1.44871 × 10
−19

𝑡
10

+ 2.57662 × 10
−23

𝑡
11

.

(10)

We now analyze the expressions 𝑇
𝑞6
, 𝐼
𝑞6
, and 𝑉

𝑞6
. In fact,

the first seven terms in the expressions of 𝑇
𝑞6
, 𝐼
𝑞6
, and 𝑉

𝑞6

are exact because the other terms will be changed by the
remaining components. That is to say, the coefficients from
𝑡
0 to 𝑡
6 are invariable. So the truncated Taylor series of the

approximate solutions𝑇
𝑞6
, 𝐼
𝑞6
, and𝑉

𝑞6
should be of the forms

𝑇
𝑡6
(𝑡) = 0.1 + 0.397953𝑡 + 0.592849𝑡

2

+ 0.588719𝑡
3

+ 0.438295𝑡
4

+ 0.260863𝑡
5

+ 0.129195𝑡
6

,

𝐼
𝑡6
(𝑡) = 10

−5

× (2.7𝑡 + 1.72737𝑡
2

− 0.840515𝑡
3

+ 0.614728𝑡
4

− 0.283586𝑡
5

+ 0.11533𝑡
6

) ,

𝑉
𝑡6
(𝑡) = 0.1 − 0.24𝑡 + 0.288041𝑡

2

− 0.230415𝑡
3

+ 0.138243𝑡
4

− 0.0663528𝑡
5

+ 0.0265397𝑡
6

.

(11)

Note that these results are the same as those of LADM in
[4]. We believe that the results by using ADM are the same
as those by using LADM, because LADM is essentially the
same as that of ADM. LADM firstly uses the Laplace trans-
form to the original equations. Then, based on the idea of
ADM, a recursive relationship of the LADM is obtained [4].
And lastly, an approximate solution of the unknown function
is derived by using the inverse Laplace transform. From the
implementation procedure, we find that LADM ismore com-
plicated than ADM, because LADM uses not only Laplace
transform but also inverse Laplace transform. However,
ADMonly uses inverse operator. So we can directly use ADM
to solve the system of nonlinear differential equations (1).

3. Posttreatment of ADM

In this section, we first introduce Padé approximation and
then combine Laplace transform with Padé approximation
to conduct the results of ADM. By using this posttreatment
technique, we can obtain better approximate solutions.

Assume that a function 𝑓(𝑥) has a Taylor expansion
𝑓(𝑥) = ∑

∞

𝑖=0
𝑐
𝑖
𝑥
𝑖 at the zero point.Wewant to compute a Padé

approximation to 𝑓(𝑥). To this end, let the [𝐿/𝑀] Padé
approximation have the form

[
𝐿

𝑀
] =

𝑃
𝐿
(𝑥)

𝑄
𝑀
(𝑥)

=
𝑎
0
+ 𝑎
1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝐿
𝑥
𝐿

1 + 𝑏
1
𝑥 + ⋅ ⋅ ⋅ + 𝑏

𝑀
𝑥
𝑀
. (12)

Bymatching the coefficients of Taylor expansion of𝑓(𝑥)with
those of [𝐿/𝑀] Padé approximation, we have

𝑎
0
+ 𝑎
1
𝑥 + ⋅ ⋅ ⋅ + 𝑎

𝐿
𝑥
𝐿

= (1 + 𝑏
1
𝑥 + ⋅ ⋅ ⋅ + 𝑏

𝑀
𝑥
𝑀

) (𝑐
0
+ 𝑐
1
𝑥 + ⋅ ⋅ ⋅) .

(13)

The coefficients 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝐿
and 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑀
can be com-

puted via the above equality.Thismeans that the power series
of 𝑓(𝑥) equals the [𝐿/𝑀] Padé approximation from 𝑥

0 to
𝑥
𝐿+𝑀, or, in other words, it holds that

𝑓 (𝑥) −
𝑃
𝐿
(𝑥)

𝑄
𝑀
(𝑥)

= 𝑂 (𝑥
𝐿+𝑀+1

) . (14)

It is known that [𝐿/𝑀] Padé approximation of a function is
uniquely determined [25]. We want to apply Padé approxi-
mation to the approximate solutions of ADM. Because the
coefficients of the first seven terms are invariable, to obtain
better approximate solutions we should adopt [3/3] Padé
approximation. In [4] the author was aware of the invariance
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of the coefficients of the first seven terms but used the [4/4]
Padé approximation. According to the characteristic of the
Padé approximation, the [3/3] Padé approximation should be
better than the [4/4] Padé approximation [25].

By “Mathematica” software, the [3/3] Padé approxima-
tions of 𝑇

𝑞6
(𝑡), 𝐼
𝑞6
(𝑡), and 𝑉

𝑞6
(𝑡) are, respectively, given by

𝑇
𝑃3

=
0.1 + 0.249038𝑡 + 0.0889628𝑡

2
+ 0.0369466𝑡

3

1 − 1.48915𝑡 + 0.887248𝑡
2
− 0.220151𝑡

3
,

𝐼
𝑃3

= 10
−5

×
2.7𝑡 + 3.57914𝑡

2
+ 0.50175𝑡

3

1 + 0.685843𝑡 + 0.0583565𝑡
2
− 0.051507𝑡

3
,

𝑉
𝑃3

=
0.1 − 0.119945𝑡 + 0.0575645𝑡

2
− 0.011445𝑡

3

1 + 1.20055𝑡 + 0.576566𝑡
2
+ 0.115382𝑡

3
.

(15)

Usually, Laplace transform can make the coefficients of
a power function become large, the constants disappear, and
the index of unknown number increase by one. For example,
applying Laplace transform to 𝑇

𝑡6
(𝑡), 𝐼
𝑡6
(𝑡), and 𝑉

𝑡6
(𝑡), we

obtain

Ψ (𝑇
𝑡6
(𝑡)) =

0.1

𝑠
+
0.397953

𝑠
2

+
1.1857

𝑠
3

+
3.53231

𝑠
4

+
10.5191

𝑠
5

+
31.3036

𝑠
6

+
93.0202

𝑠
7

,

Ψ (𝐼
𝑡6
(𝑡)) = 10

−5

× (
2.7

𝑠
2
+
3.45473

𝑠
3

−
5.04309

𝑠
4

+
14.7535

𝑠
5

−
34.0303

𝑠
6

+
83.0376

𝑠
7

) ,

Ψ (𝑉
𝑡6
(𝑡)) =

0.1

𝑠
−
0.24

𝑠
2

+
0.576081

𝑠
3

−
1.38249

𝑠
4

+
3.31783

𝑠
5

−
7.96234

𝑠
6

+
19.1086

𝑠
7

.

(16)

For simplicity, we let 𝑠 = 1/𝑡. Then the above expressions
become

Ψ (𝑇
𝑡6
(𝑡)) = 0.1𝑡 + 0.397953𝑡

2

+ 1.1857𝑡
3

+ 3.53231𝑡
4

+ 10.5191𝑡
5

+ 31.3036𝑡
6

+ 93.0202𝑡
7

,

Ψ (𝐼
𝑡6
(𝑡)) = 10

−5

× (2.7𝑡
2

+ 3.45473𝑡
3

− 5.04309𝑡
4

+ 14.7535𝑡
5

− 34.0303𝑡
6

+ 83.0376𝑡
7

) ,

Ψ (𝑉
𝑡6
(𝑡)) = 0.1𝑡 − 0.24𝑡

2

+ 0.576081𝑡
3

− 1.38249𝑡
4

+ 3.31783𝑡
5

− 7.96234𝑡
6

+ 19.1086𝑡
7

.

(17)

The highest indices of the Laplace transformationsΨ(𝑇
𝑡6
(𝑡)),

Ψ(𝐼
𝑡6
(𝑡)), and Ψ(𝑉

𝑡6
(𝑡)) are 7. Hence, Laplace transform

increases the index by one for each component.
To combine Laplace transform and Padé approximation,

we adopt [3/4]Padé approximation to approximateΨ(𝑇
𝑡6
(𝑡)),

Ψ(𝐼
𝑡6
(𝑡)), and Ψ(𝑉

𝑡6
(𝑡)). Because the highest indices of these

power functions are 7, by Mathematica software again we
have
Ψ (𝑇
𝑡6
(𝑡))
𝑃

=
0.1𝑡 − 0.521777𝑡

2
− 0.622784𝑡

3

1.0 − 9.1973𝑡 + 18.5161𝑡
2
+ 0.0436746𝑡

3
− 0.0324062𝑡

4
,

Ψ (𝐼
𝑡6
(𝑡))
𝑃

= 10
−5

×
2.7𝑡
2
+ 9.19088𝑡

3

1.0 + 2.1245𝑡 − 0.850547𝑡
2
− 0.407785𝑡

3
− 0.071839𝑡

4
,

Ψ (𝑉
𝑡6
(𝑡))
𝑃

=
0.1𝑡 − 0.0321052𝑡

2
− 0.0160753𝑡

3

1.0 + 2.07895𝑡 − 0.932089𝑡
2
− 0.388528𝑡

3
+ 0.000113259𝑡

4
.

(18)

Recalling 𝑡 = 1/𝑠, we obtain
Ψ (𝑇
𝑡6
(𝑡))
𝑃

=
0.1𝑠
3
− 0.521777𝑠

2
− 0.622784𝑠

1.0𝑠
4
− 9.1973𝑠

3
+ 18.5161𝑠

2
+ 0.0436746𝑠 − 0.0324062

,

Ψ (𝐼
𝑡6
(𝑡))
𝑃

= 10
−5

×
2.7𝑠
2
+ 9.19088𝑠

1.0𝑠
4
+ 2.1245𝑠

3
− 0.850547𝑠

2
− 0.407785𝑠 − 0.071839

,

Ψ (𝑉
𝑡6
(𝑡))
𝑃

=
0.1𝑠
3
− 0.0321052𝑠

2
− 0.0160753𝑠

1.0𝑠
4
+ 2.07895𝑠

3
− 0.932089𝑠

2
− 0.388528𝑠 + 0.000113259

.

(19)

Using the inverse Laplace transform, we have

𝑇LPL (𝑡) := Ψ
−1

(Ψ (𝑇
𝑡6
(𝑡))
𝑃
)

= −0.0161448𝑒
−0.0425685𝑡

− 0.0174215𝑒
0.0410798𝑡

+ 0.133575𝑒
2.97986𝑡

− 8.63837 × 10
−6

𝑒
6.21892𝑡

,

𝐼LPL (𝑡) := Ψ
−1

(Ψ (𝐼
𝑡6
(𝑡))
𝑃
) = 10

−5

× [0.420561𝑒
−2.41214𝑡

+ 3.48737𝑒
0.61872𝑡

− 2𝑒
−0.165538𝑡

× (1.95397 cos (0.143987𝑡)

− 3.15941 sin (0.143987𝑡))] ,

𝑉LPL (𝑡) := Ψ
−1

(Ψ (𝑉
𝑡6
(𝑡))
𝑃
) = 0.100023𝑒

−2.39987𝑡

− 0.0000742602𝑒
−0.272939𝑡

+ 0.0000120428𝑒
0.000291303𝑡

+ 0.0000387879𝑒
0.593571𝑡

,

(20)

where Ψ
−1
(⋅) denotes the inverse Laplace transform. Till

now, we have stated completely the posttreatment of ADM.
In this way, we obtain the approximate solutions 𝑇

𝑃3
, 𝐼
𝑃3
,

and 𝑉
𝑃3

by using the posttreatment Padé approximation and
𝑇LPL(𝑡), 𝐼LPL(𝑡), and 𝑉LPL(𝑡) by using the posttreatment Padé
approximation and Laplace transform, respectively.
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Figure 1: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM for 𝑇(𝑡).
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Figure 2: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM for 𝐼(𝑡).

4. Numerical Results

In this section, we demonstrate the effectiveness of the post-
treatment technique, that is, the Padé approximation and the
Laplace transform. For simplicity, if the Padé approximation
is used to conduct the results of ADM, we call it ADM-
Padé; if we use Padé approximation and Laplace transform
to obtain the results of ADM, we call it ADM-LPL. We use
the classical RK4method, ADM, ADM-Padé, and ADM-LPL
to solve HIV infection model (1). Numerical results of these
methods are displayed by graphics.

Figures 1, 2, and 3 show the results of KR4, ADM-[3/3]
Padé approximation, and ADM for functions 𝑇(𝑡), 𝐼(𝑡), and
𝑉(𝑡), respectively. From Figure 1, we see that the result of
ADM is closer to that of RK4 than that of ADM-[3/3] Padé
approximation when the time is growing. From Figures 2 and
3, we see that the results of ADM-[3/3] Padé approximation
are closer to those of RK4 than those of ADM for 𝐼(𝑡) and
𝑉(𝑡) when the time is growing. From Figures 1, 2, and 3, we
observe that Padé approximation is a better tool that can be
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Figure 3: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM for 𝑉(𝑡).
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Figure 4: Curves of KR4 and ADM-[3/3] and ADM-[4/4] Padé
approximations for 𝑇(𝑡).

used to obtain the results of ADM. This coincides with the
theoretical analysis about Padé approximation. But, for HIV
infection model (1), Figures 1, 2, and 3 show that the results
of ADM-[3/3] Padé approximation are the same as those of
ADM in a small time interval.

Figures 4, 5, and 6 show the results of KR4, ADM-[4/4]
Padé approximation [4], andADM-[3/3] Padé approximation
for the functions𝑇(𝑡), 𝐼(𝑡), and𝑉(𝑡), respectively.We see that
the results of ADM-[3/3] Padé approximation are closer to
those of KR4 than those of ADM-[4/4] Padé approximation
when the time is growing, for functions 𝑇(𝑡), 𝐼(𝑡), and
𝑉(𝑡) whatever. This coincides with the theoretical analysis in
Section 3.Therefore, forHIV infectionmodel (1), Figures 4, 5,
and 6 show that the results ofADM-[3/3] Padé approximation
are the same as those of ADM-[4/4] Padé approximation in a
small time interval.

Figures 7, 8, and 9 show the results of KR4, ADM-[3/3]
Padé approximation, and ADM-LPL for the functions 𝑇(𝑡),
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Figure 5: Curves of KR4 and ADM-[3/3] and ADM-[4/4] Padé
approximations for 𝐼(𝑡).
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Figure 6: Curves of KR4 and ADM-[3/3] and ADM-[4/4] Padé
approximations for 𝑉(𝑡).
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Figure 7: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM-LPL for 𝑇(𝑡).
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Figure 8: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM-LPL for 𝐼(𝑡).
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Figure 9: Curves of KR4, ADM-[3/3] Padé approximation, and
ADM-LPL for 𝑉(𝑡).

𝐼(𝑡), and 𝑉(𝑡), respectively. Figure 7 shows that the result of
ADM-LPL is almost the same as that of RK4 for function𝑇(𝑡).
And Figure 8 shows that ADM-[3/3] Padé approximation
outperformsADM-LPLwhen the time is growing. Because of
the scalar of the longitudinal coordinates in this figure, there
is no much error for 𝐼(𝑡). Figure 9 shows that the result of
ADM-LPL is almost the same as that of RK4 for the function
𝑉(𝑡), too.Therefore, for HIV infectionmodel (1), Figures 7, 8,
and 9 show that the results ofADM-[3/3] Padé approximation
are the same as those of ADM-LPL in a small time interval.

In summary, the results of ADM, ADM-Padé, and ADM-
LPL are the same when they are used to solve HIV infection
model (1) in a small time interval. From the results of these
methods, we find that ADM-LPL is the best method for
solvingHIV infectionmodel (1). Generally speaking, we need
to find good posttreatment to conduct the result of ADM,
which makes the results better when the time is growing.
Padé approximation and Laplace transform are such good
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tools as needed. For HIV infection model (1), our numerical
experiments have shown the effectiveness of posttreatment by
using Padé approximation and Laplace transform.
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