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THE A N A L Y T I C A L  S T U D Y  ON THE L A S E R  I N D U C E D  R E V E R S E - P L U G G I N G  

E F F E C T  BY U S I N G  THE C L A S S I C A L  E L AST IC  P L A T E  

T H E O R Y  (II) , R E V E R S E - B U L G E  MOTION 

Zhou Yichun ( ~ . , ~ ) ~  Duan Zhuping ( ~ ) '  Xie Bomin (~t'fll~)' 

A b s t r a c t  

The reverse-bulge motion (RBM) in the metallic foils, which is induced by 

.,fatially cylindrical long pulse laser, is examined in order to analyse the newly- 

discovered reverse-phlgging effect (RPE). An uncoupled, thin plate theory is used to 

determhw the induced flexural vibrations. The solution is obtained as the superposition 

of  two displacement .fields, representing the quasi-static and the dynamic behaviors. 

Meanwhile, the equivalent thermal Ioadiag and the dimensionless analysis of thin plate 

motion are presented, Numerical results presented may partially explain the RBM of 

thhl plate at the early stage of lasbr irradiation. 

Key words long-pulsed laser beam, the RPE, the RBM, thermal-elastic thin- 

plate theory 

I. I n t r o d u c t i o n  

A new type of damage, i. e. the RPE in studying the interaction of a single-mode long- 

pulsed Nd: Glass laser beam with copper and aluminum foils has been reported 1~-21. The RPE 

is different from the well-known damage types which are melting, vaporization and shock 

waves in materials. The process of the RPE in metallic foils induced by long-pulsed laser is 

divided into three macroscopic stages, i. e. t he  reverse-bulge formation, shear deformation 

localization and perforation. The RPE is also a typical 3 -  F (Flow-Fracture-Fragmentation) 

process. The temperature distribution analysis has shown that the temperature gradient in the 

axial direction is the key factor to induce the RBM. The discontinuity of temperature and its 

gradient on the rim of laser spot in the radial direction is the key factor to induce, shear 

deformation localization 131 . 

Based on the temperature field analysis in[ 3 ],the present study explores the characteristics 
& 

of the RBM in the metallic foils irradiated by a spatially cylindrical type long-pulse laser 
beam,  where the classical thin-plate theory is used. The exact solution is derived as the 

superposition of two displacement fields, representing the quasi-static and t h e  dynamic 

behaviors. In Section II, the theoretical considerations and the governing equations are 

outlined. In Section III, tlie quasi-static behavior of the transverse motion is obtained. In 

Section IV, the dynamic behavior of the transverse motion is investigated by using the Hankel 

transform and Laplace transform. Some numerical results, discussions and dimensionless 
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analysis are detailed in Section V. We conclude in Section VI with a summary of the main 

feartures of the present study. 

II .  G o v e r n i n g  E q u a t i o n s  

In the present study the transverse deflection of a thin plate irradiated by a pulse laser 

beam can be modelled on the basis of the assumptions: 

(l) The  thermal-mechanical coupling effect is neglected. The neglect of thermoelastic 

coupling is generally justifiable for the problems in which thermoelastic dissipation is not of 
primary interest 141. 

(2) We shall confine ourselves to the infinitesimal deformation theory. And thus, the effect 

of membrane force and shear force on the transverse deflection and tl~eir coupling cffect are 

ignored. 

(3) All the material, parameters are constant. This implies that the temperature-dependence 

of parameters is neglected. 

However, although the assumptions (2) and (3) may be invalid for the whole process of 

the PRE, they should be reasonable for the RBM. According to the classical (Kirchhoff) plate 

theory, the transverse displacement of the plate middle plane, as described in Fig. 3 in [3], 
is governed by the equations as follows: 

t A M , + P h O ~ _ O  t 2 .1 )  D! A2w + 1 - v 

initial condition 

[ °w I w = 0  (2 .2)  
|-0 ~ ' T  l-O 

boundary condition 

uJ = 0  (2 .3)  
r-b ~--~F v - b  

where /k is the Laplace operator, w represents the transverse displacement of the plate middle 

plane, D,=Eh3/, 1 2 ( l - v  2) denotes the bending stiffness, and E, v, p denote, respectively, the 

Young's modulus, Poisson ratio and mass density. Other notations are defined in [3]. The 

thermal moment or equivalent external loading in Eq. (2,1) is defined in term of the 

temperature rise O(r, z,  t) by 
j, J i / g  

Mt=aoEl_h,zO(  r , z , t  ) z d z  (2 .4)  

where ~o is the coefficient of thermal expansion. 

For the convenience in the subsequent analysis, we introduce the following dimensionless 

variables 0 = 0 a~ t o  i f / ,=  M, 
h4T., ~ -- w ,a  h4T., ~    -- w,a l h2PoMr ' 

2f1 ,=  M ,  , if l  o = M9 
A h~'cromo l hZ Cro mo (2 .5 )  
4 4 
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Also, the basic dimensionless parameters are defined as 

± A aa: B =  ( a + ~ ) a :  hs-----a,T,,, h l ---- a ' = - - - - i f - '  D ' 

Im.,,a ( 1 - Ro)P,,,,,,, E h,= PaD--Q--E h ' - - - - ~ =  kanaTm ' hs= o---.-' ( 2 . 6 )  

Meanwhile, the following dimensionless parameters are used in the present study 

wp---- 24 ( 1 "-l-v) hzh4, Mt~8hsh4hs, mo ~- 8hlhsh4hs/( 1 -- v) 

ml---- 12( 1 - v ~ ) h e / h ~  ( 2 . 7 )  

where cr 0 is the yield strength at ambient temperature, M, and Mo are, respectivelY, the bending 
mon~ents in the radial and circumferential directions, 

_ n  l d~w • v a w  
M , :  ~ q - ~ z - - ~  r ~-~ ) M---2 v (2 .8)  

1 dW d:W M,  ( 2 . 9 )  
- ' ( r  ~ r  I"v'TT"r~) l - v  

For the convenience of writing in the subsequent derivation, the dimensionless variables 
0,  W, 2f'/'t, 21~,, ./lit0, ¢. and ~ are, respectively, replaced by 0, w, Mj, M,,  Me, r and z. 
Therefore, the governing equations of the RBM are  expressed in dinacnsionless form as 
follows: 

- l a"w 
A ' w + " ~ l A M ~ W m l ~ = O  (2 .10)  

initial conditions 

boundary conditions 

I w = = 0  (2 12) 
r~h~ ~ r~-hz 

The dimensionless thermal moment  M, is rewrittc,~ as 

M , =  - 'P~ Ozdz  ( 2 . 1 3 )  

Just  as in the,previous investigations 15-6], the deflection w is regarded as the sum of two terms, 

namely, w ~ w e + w ~  ( 2 . 1 4 )  

where w, ~nd wa represent, respectively, the quasi-static deflection and dynamic deflection. The 
quasi-static deflection w, satisfies the differential equation 

A ~ w . + - ~ A M , =  0 (2 .15)  
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together with the prescribed boundary conditions 

w. ,I-,, - -  a,,,. o.  jl 
r=hs 

= 0  ( 2 . 1 6 )  

The dynamic deflection ws must then satisfy the equation 

,~ _ O%R-- 0%,~ 0 IA w ~ - t - m l - - ~ ' l ' m l ~ :  (2.17) 

together with the boundary conditions 

Wd ] r~h~ 
0w,] 

= T r  , :h  =o (2.18) 

In addition, the initial conditions should be expressed as follows 

I ] aw~ ! _ aw. I 
tt, d = - w °  , Ot I = Ot 1,-o l - O  S -O  I - O  

(2.19)  

Consequently, (2.14)-(2.19) are the basic governing equations of dimensionless deflection 

w. Substituting some dimensionless variables into (2.8) and (2.9), the dimensionless bending 

moments M, and M,, are expressed as follows 

M,= _ [  a% ~ 06' -I 
v aw M, 
r ar ~- "Tl ) (2120) 

M o = - { v 0 %  4 1 aw Mj 
dr ~ r Or ~ T I  ) (2.21) 

III .  Q u a s i - S t a t i c  S o l u t i o n  

Substituting the dimensionless temperature rise expression (44) in [3] into the dimensionless 

thermalmoment expression (2.13), we have 

h, 1o(k , r ) f* (k . )  
M ' f - h - f ~  Z;(k.h,) 

where the g (k . ,  t) is expressed as 

g ( k . , t ) = l  g ( t ) + 2 ~  [ ( - 1 ) ' - 1 ]  [ g ( t )  
24 m-1 (m~)" 

[ mzr ' ~ ' / e x p  [ -- At ]  -- e x p [  -- C t ]  
- ~ , T !  ~, c -  A - 

g(k.,t) (3.1) 

e x p [  - B t ]  - e x p  [ - Ct] 
C - B  ] (3.2) 

For Eq. (2.15), we have 

ht d f a [ I d aw. a [ rOMJ~_  0 

aw° 
Integrating Eq. (3.3) and referring to the finiteness of w, and ~ at the point r=0 ,  we 

obtain w , = 4  C l r . , h y -  ] 1 . ( knr ) f* (k . )  g ( k . , t ) + C z  (3 .4)  
t. k:J]  (k,,hz) 
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where C, and C2 are integral constants which are determined with boundary conditions (2.16). 
Then we have 

o.--fir . (s.5) 

In order to understand the characteristics of the quasi-static bending moments 

distribution, we insert (3.5) into (2.20)-(2.21) and obtain the dimensionless bending moments 

M, ffiZT~I /*(k,)g(k,,t)kj.~ (k,hl) L~lq"iJ"h, (k*h2)q-~ "J''(k'r)] (3.6) 
~ t l  I¢ m 

M I ~-, l*(k,)~(k.,t) o----"~,2.~- kdl(k.h2) [ ( l - ~ , ) k . l o ( k " r ~  

(3.7) 

IV. D y n a m i c  So lu t i on  

To obtain an exact solution to Eq. (2.17) together with the prescribed boundary 

conditions (2.18) and the initial conditions (2.19), the dynamic deflection wd is expanded in 

following form 

wa~ ~tv](cr,,t)[', (tz,r)--.I1e(~ha~?)]o (a,r)] {4. '  

where a .  are the roots of the following equation 

.fo(a.hz)ll(oshz)+Yl(a.h2)Io(alh2)-~O (4.2)  

and I., J. are, respectively, the n-th order imaginary variable Bessel function and the n-th order 

Bessel function, Setting Ym as 

Io(a.h2) yt~Io (a.r)-lo(a~h2) ]o(a.r) (4.3)  

utilizing repeatedly the Bessel equation and some transforms, we prove readily that the 

eigenfunctions y .  are complete and orthogonal, that is; 

l~'ymy, rdr=O (m=/~.n) (4.4)  

In order to solve exactly the dynamic deflection w~, the modulus and some transforms are 
derived in the following. 

ht 
1. The  d e r i v a t i o n  o f  m o d u l u s  yS.rdr 

J 
o 

. h z  

Substituting (4.3) into the expression of modulus ~ y~,rdr weobtain 
o 

l~(a,hs)t, t...~_. 2Io(a.h2) " r ,  , r  (asr)~rdr 
i"' [z°' o o (4.5) 

3 

According to the following expression • 
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ih l i h, r'I,(a.rl'- ,dI~ (a.r)d" ',' I'*(a'r)rdr= 2 h ; l ~ ( a ' h ' ) - '  , d r  " 

and the imaginary variable Bessel equation, 

r' d2l*(a'r) -- dlo(a.r)  - a ; r ' I , ( a , r )  = 0 
dr a -t-r dr 

utilizing Eq, (4,7) and some transforms, we obtain 

I h' I , ' (a.h,)  I~(a.h,)]  I~ (a .r)rdr=-~h,  [ I ,  
0 

Similarly, utilizing the Bessel Equation 

2 dZJo(a.r) . dYo(a.r)+a~r~i,  (a.r)----O r dr  t -t-r~ dr 

~h, 1~ (a,r)rdr-----lh| [1] (a.hz) + l ]  (a.h,) ] 2 
0 

we obtain easily 

(4.2), we 

h i  

~0 I , (a .r) lo(a.r)rdr=O 

Substituting (4.8), (4.10) and (4.11) into (4.5), and referring to Eq. 
modulus as follows 

~h, ~ "I' (a,h,) o y . rdr=h ,  , 

2. The  t r a n s f o r m  eoef f i e i en t s  

h2 
(1) I0 "J'°(k"r)y'(ct"r)rdr 

Substituting (4.3) into the above expression, we have 

~h' .ro( k .r)y .(  a .r)rdr= li '  go ( k.r)[  Io(a.r ) 
0 

Utilizing the Bessel Eq. (4.7) and the following equation, 

I0 (a.h,)r (a.r)]rdr 

(4.8) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

obtain the 

(4.12) 

(4.1s) 

dr z 

we have 

_ ( k  Z " .I.aa_)rio(a,r)j.o(k,r)= ff_ff__r..[r[o(a,r) d l ,  (k.r)  dIo(a.r  ) -P  d r  lo(k,r)] (4.tS) dr + 
Consequently, we obtain 

h,i _ro(a.hz)J. (k.h, ) ,(4.16) I h' rIo(a,r)lo(k,r)dr= k; +a'- 
0 
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where the identity J,,(ksh,)----O is used. Similarly, we obtain the following expression 

I h2k~ J'o(a.h:)I1(kshz) In rlo(a.r)lo(k.r)dr---- k l  --a t - 
o 

Finally, we have the following transform coefficient, 

t h, r o ( k .r  ) y .  ( asr ) ¢d r= _ 2h2 k.a j_ lo ( a,hz )11( kohz ) k; - a ,  
@ 

(4 .17)  

(4.18) 

l 
h2 

(2) (hl - r" - )y . (a . r ) rdr  
o 

According to the following expressions 

lh2 ~hs h~ 
Io (a.r)rdr---- ht Ii(ash~), J'o (a . r ) rdr= ]l(a.h2) (4 19) 

0 ~ s  0 ~ n  " 

we have 

[ h2 2h2 
Ys (a.r)rdr---- fl(anh2) (4.20)  

0 ~ s  

h2 h|  . . 2 h i  I + 4h2 r ~o I°(a'r)rSdr---- as I~ (a.h~) ~ a l  o (a~h2) " -~-- l (a .h2)  (4.21)  

I h' hi . 2 h ~ .  
o 1o (a~r)rSdr= • as ]J (ash2)-i---d-~-Jo (a~h2)-  Jl(a.h2) (4.22)  

Finally. we have the following transform coefficient, 

. 

I h' ( h | - r ~ ) y ~  (a.r)  rdr----4h_-~'~Io(a.hO (4 23) 
0 

T r a n s f o r m  coe f f i c i en t  W~(an,t) 
Substituting expression (4.1) into Eq. (2.17), we have the following equation on the 

unknown variable w~(as , t )  

a.~.w~(as,t) y ,  (a ,r)  q-m,.~,,  dzw~(a" ,t) 
dt z 

a n  CI n 

~ 2 ~ s  n y . (  anr) - F m l ~ - - - v  (4.24)  

Referring to the orthogonality, of the eigenfunction b's, the right side and the left side of 
Eq. (4.24) times, simultaneously, ys (a . r ) r  and integrating them, meanwhile substituting the 
modulus (4.12) into the new equation, finally, we obtain the ordinary differential equation on 

o the unknown variable w~(as, t) as follows 

a. , , , .o (a .hz)w~(as , t )q-mlh ' , I~(ash2)  dZw'~(a"t)  h2 dtZ -, " -~ry~rar=o 

Substituting (4.18) and (4.23) into the last term on the left side of Eq. (4.25), we have 

h, d2w. . 2. v--, /*,(ks) k~Io (a.h~) d2~(k . , t )  1o "--d-~ y .rar=-~t  P , (4 .26)  % "11Lk~h,) ( k ~ - a ' - ) a  ~, dt z 

(4 .25)  
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Furthermore, we obtain the ordinary differential equation as follows 

d2w" ~ F a" " , dZ , (k . , t )  - + + w ~ +  " o dP ~:7"~ml F (k, ,a., dr" ---- 
where 

(k,,~.)-- :2 ~ 7 ,  k:f,(.~.) 
F ----~-~1~ (k.h,)Io(a.h,) (k. - a. )a ~, 

Using Eq. (3.2) and the following formula 

we have 

~ + 2 ~  [ ( - i ) " -  i] =.,'" (m=)'  = 0  

[ ag i :~0 • = 0  
g s.o d t  t-o 

(4.27) 

(4.28) 

(4.29) 

(4.~:) 

where 

' ~ d' .~(k. . t ' )si  n [.j~m t,)d t, C"(t) '- lo ~ ' F  (k"'a"" "dr" 
k I 

k .  

Setting tile notations LOt) and L,-O1) as 

(4.32) 

(4.33) 

' [ -" t ' ) d t '  L..(rD = ~0 e x 9 [  - 0 t ' l c o s  a '  

(4 .34)  

(4.35) 

we obtain 

L,(r/) = .~-- 1 [~_= at ~/a~" t +-:~+ mt 
r/- ms 

! e x p [ - r ] t ] s i n  [ a"Z t ~ 

z ~z , ,  ° .  
- - - ~ ~ m  exp [  - r / t ]  (4.36) 

Ldr/ )  = 
I I a2 a~ [~'-lexp[-rlt]c°s(~ , ) , I  

1 +--~-¢ ml 

. 

+ ~ - v d - - ~ t  e x p [ - r / t ]  " ,7' ( 4 . 3 7 )  

Substituting (3.2) into (4.32) and (4.33), we obtain, respectively, the following expressions 

, t  G .# .- - G 2 - 

w'~ (a . , t  )=C. (  t ) cosl--7:-2-"~--t~+ D,( t ) s i n ( ~ t  } 
X ~ l  17'11 I "~ ,V, t r l  l l 

Consequently. referring to Eq. (4.27) we have the transform coefficient w~ (a,,, t) as follows 

(4.3o) 



Thc Reverse-Bulge Motion of the Reverse-Plugging Effect 615 

El(a . .k . , t )= ( '  d = # ( k = ' t ' )  " a' 'o-" d,  '~  sin ( ~ i m l  " )  dr' 

= 2"4" [A"L,(A) -BZL~(B~].. -]- 2 ~"~,=.l [(-- ' ( '~n) i l )  = -  1] {AZL=(A) -B'LI(B) 

_(  m= 'I'F A=L,(A)-C'-'E,(C) 
%, hi / L ' C - A  

"'d=gfk"'t') / az" t')dt" 
E , ( ~ . , k . , t ) = l o  - at,~ cost~--~---Tm, 

B i L l  (B )  - CZLl (C)  (4.38) 

=~E~'S..<.4>-S~'S.,;B,I+.,~ C~',)'-,~ {A'S.,<A)-B'L,<B) 

Finally, we have 

~°:<<,..,) =[ E,w<..=.>~,c<-.. ~.,,)}oo../~----~-~: ,) 
ll w 

-[r.,~<,<....)~<.,.~..,> ]~. '  °: ,) <, ,0~ 
- t ~ / , , , - = = 7  " 

kF 

Consequent ly ,  inser t ing (4.40) in to  (4.1), we obta in  the. exact solut ion o f  dynamica l  def lect ion 

u,,<t in the fo l l ow ing  

=.= o.,,. 

• <,; i0 (a , ,h , )  f° ( a . r ) ]  '))[ (4.41) 

Finally, substituting (4.1) and (4.41) into (2.14) we obtain the exact solution of dimensionless 
deflection w. 

0"40 I- M~I.0E- 3) 

0.,21\,!, ~2~'-.'-:.. ,, 

o.®l ~:t::4" , ,<,.o~. -:, 
0.0 0.8 1.6 2.4 3.2 4.0 4~8 

Fig. 1 Histories  o f  M, at  point  r=O Fig. 2 
wi th  different va lues  of  h~ 

t,..,(1.oE- 3) .,. 
1.0 

OA I 
02[ 
0"0 /h 
"~ s ;o i5 2'o z'5 ~ 3's 40 ~ 

The variat ion of T~.,~ and T~2 with h?', 
where T~,,~ a n d  7"~.,~ are, respectively, 
the t ime, when M, at point  ( r~0 )  and 
OM,/Or on the rim of laser s~pbt 
reach their  max imum values 
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w h e r e  M, .... is t h e  m a x i m u m  

v a l u e  o f  M, a t  t h e  p o i n t  r = 0  

0.40 

0.:~2 

0.24 

0.16 

0.08 

0.00 
F ig .  4 

- I ~ - - - L  . . . .  L ~ R 
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T h e  v a r i a t i o n  o f  M, w i t h  r. w h e r e  
t=3.TX 10-' a n d  h?'=25 

M, and M,(t.0E-3) 

t I ~se g 
-0,50 , , 
-Loo : M. . 

-1,~o I Ri  
0.0 0.6 1.2 1,8 2.4 3,0 3.6 4.2 

Fig .  5 T h e  v a r i a t i o n  o f  M, a n d  M,, w i t h  r, where t =  1.5 × 10 -~ a n d  h; ' =25  

• tS(l.OE-- 3) 

~.::, ~ . . . . . .  
% 

. \  

I~ lid "~L3II ,).6~). b.!gtl [.2ii ~.;.0 • :,;I~O 

(a) two-dimensional shape 

F ig .  6 
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(b)  three-dimensional  shape 

D e f l e c t e d  s h a p e  Of  t h e  m i d d l e  p l a n e  o f  a t h i n  p l a t e ,  
w h e r e  t=3.0× l0 - '  a n d  h 7 ' = 2 5  

- W(t.0E- 2) 

0.20 - -  I 

0,I0 /" f% 

- o o o  l i \ - .  

--0.10 ~ ~ ~ ~-d, 
~W,  

--0.20 t ( l : 0 E ~ 3 )  
o.oo o.~o o.6o o.~ l.'zo 1.5o 

Fig .  7 T h e  h i s t o r i e s  o fw, ,w~ a n d  w a t  

t h e  p o i n t  r=O, w h e r e  h ? ~ 2 5  

- W(I.0E-- 2) 
0.40  -ow) . :  
0.32 

0.24 

0.08 , ~  f 

0 . 0  610  ~ 2 . 0  ~ 8 . 0 '  ~ . 0  3 0 . 0  r ~ . 0  

Fig .  8 T h e  v a r i a t i o n s  o f w ~ . ,  w,~,, a n d  
u~,, w i t h  hi-', w h e r e  We~., , w,~,  
a n d  w~x a r e ,  r e s p e c t i v e l y ,  t h e  

m a x i m u m  v a l u e s  o f  w,, tu~ a n d  w 
- a t  t h e  p o i n t  r = 0  
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20.0 -W,, 
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aw~ at the point r=O 
at 

and Fig.  10 

w,,(1.og- 2) 

03, ! /1~,,  
0.3G 1 'W,., 
0.24 

o.18 / i-" ~V~., 

0.,2 / . ,¢i-- . ~ , .  
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" Ow Ow, 
T h e  v a r i a t i o n s  o f  -'-07' 

O w a  
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V .  C a l c u l a t e d  R e s u l t s  a n d  D i s c u s s i o n s  

Experimental results r'-:l and the analysis of temperature fields show that only the spatially 

cylindrical distribution of laser offers a formidable potential for the RPE. Consequently, the 

spatially cylindrical laser beam, which was described in Fig. 2 in [3], is supposed in the present 

study. Meanwhile, the temporal shape is expressed as formula (22) in [3] and the target 

material is H65 copper alloy foils. The characteristics of the thermal moments, the transverse 

deflection and the quasi-static bending moments are analyzed in the following. 

1. D i m e n s i o n l e s s  a n a l y s i s  

The characteristics of the RBM, i. e., the motion state at the early stage of laser 

irradiation,, are determined by the laser parameters, the material parameters and the geometric 

parameters. In other words, there isihe following implicit function 

gt[ h , a , a , D ,  (a + f l )  , ao ,7"~ , Im ,x / ko ,E ,cro ,P]  = 0  (5 .1 )  

where I m a x = ( l - R o ) P m , x / n a  2 is the maximum laser intensity absorbed by the target. 

If the dimensions of distance [L], time [7], mass [M] and temperature [K] are selected as 

basic dimensions, the dimensions of these variables are: 

[hi----ILl [a]----[L] [ a ] = [ T  -1] [ D ] = E L ' T - ~ ]  [ (a+f l ) ] - - - - - [T- t ]  

[ a o ] = [ K - ' ]  [ 7 " , . ] = [ K ]  [ I m ~ J k o ] = [ K L  -t] [ E ] = [  M L - ~ T - z ]  

[Cro]=EML-,T-"- ? [p] = EML-~] (5.2) 

According to the l'I theorem, we have 

,~[h',a ' ,~' ,D',(a+B)',a0",T~,(I., , , , /k0)"E',cr0",*P', ,] = 0  (5.3) 

Substituting the dimension of each variable in (5.2) into Eq. (5.3), and let the factors of [L], 
[T], [M] and [K] on the left part of Eq. (5.3), respectively, be zero, we obtain the following 
four equations: 

XI + Xz "I- 2X4 -- Xs -- Xg -- Xto -- 3XI I = O 

x~ + x4 + xs + 2x. + 2xlo----- O 

X,+Xlo+X~I= 0 

--Xs+X'~+Xs=O 

(5.4) 
(5.5) 
(5 .6)  

(5.7) 

From Eqs. (5.4)--(5.7), eliminating x.,, x4, x7 and xg, we have the following expression 
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~ ~ ( h/a ) ' ,  ( aa'L / D) ", [ ( a + fl)a~'/ D]' , (  aoT,,,)',( Im.xa/koT,,, ) ", 
(oo/E)',(P/:F/a:;E)'at].---- 0 .(5.8). 

Finally, we obtain seven basic dimensionless parameters which are the  same as that in 

expression (2.6) in the following 

hj=h/a,  A=aa~/D, B=(a+/3)a~'/D, • h:---aoT,,, 

h,=imo,,a/koT,,, h~=E/cr,, he----PD':/aZE (5 .9 )  

In the above expressions, h, is the laser-target geometric dimensionless parameter. A and B are 

the coupled dimensionless parameters which are concerned with the temporal-spatial shape of 
laser beam and the thermophysical properties of materials, h~ is the maximum deformable 

quantity of solid target, h, is the coupled dimensionless-parameter which is concerned with the 

laser intensity, geometric parameter and the thermophysical properties of materials, h~ is the 

dimensionless parameter of mechanical property of materials, h~ is the coupled dimensionless 

parameter which is concerned with the mechanical-thermal properties of materials. From (2.5) 

and (2.7), we see easily that the temperature rise 0, deflection w, equivalent thermal loading 

M,, quasi-statiC bending moments .M, and M,, all depend linearly on h,. This implies that the 

above physical variables depend linearly on the intensity of the incident laser beam. 
Meanwhile, to, M,, M, and Mo all depend linearly on h~. The reason is that M,, M, and M,, 
result in target deformation, and w reflects the deformable quantity of  target. Also, we see that 

MI, M, and M,, all depend linearly on h.~. In other words, the larger Young's modulus E is and 

the less yield strength a, is, the more easily the target approches the yield threshold. From (2.5) 

and (2.7), we also see that each variable depends nonlinearly on h,  A, B and h6 respectively. 

Now supposing that the laser, parameters are fixed, we only study the dependence of some 

physical variables on h~. The l~asic parameters of H65 copper alloy for our typical experiment 

are: D=0,335cm2/s, a=0.25cm. Co.nsequently, we have to=0.187s, A=2800, B = !.77x 104, h6 

= 1.562× 10 -'1 and ,'=0.163. 

2. T h e r m a l  m o m e n t  and quasi-static bending m o m e n t s  

[3] shows that the thermal moment M, is the key factor to induce the early motion, i. e., 

the R B M .  Fig. 1 displays histories of M, at the point r = 0  with different values of h,. A 

comparison of  Fig. 1 with Fig. 3 and Fig. 4 in [3] shows that the temperature difference of  

both surfaces and the thermal moment reach simultaneously maximum values. AddftiOrfally, 

when the temperature distribution in axial direction comes into close agreement, the thermal~ 

moments diminish to zero, Meanwhile, the less h, is, the shorter t, is, where t, is the time, when 

M, takes effect on the RBM. The more h~ is the longer t, is. 

Fig. 2 shows the variations of  T , , I  and Tin,2 with /fit, where 7",,, and T,.,2 are, 

OM, respectively, the time when M, at the point r = 0  and ~ on the rim of laser spot reach 

their maximum values. It is seen easily that T,, ,  and T,..~are inversely proportional to h? I. 

Fig. 3 shows the Variation of  Me.,,  with h;", where Mr,,., is the maximum value of M, at the 

point r=0 .  From this figure, we see that M, increases with the increasing of h;-' when h? '<  15. 

However, M, decreases witll the increasing of  h~ "~ when h? t > 15. There is a extreme value 

point of  h~ "t for which the incidentlaser damages the target most effectually. 
Fig. 4 displays the variation of M, with r, where t = 3 . 7 ×  10-" and h?~=25, As expected, 
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the response 'of M, across the irradiated target .generally follows the: temperature distribution 

and the laser profile. M, is uniform within the laser spot and drops sharply near the edge of 

the laser profile. The special distribution of M, implies that the spatially cylindrical type pulse 

laser offers a formidable potential for the exhibition of the RPE. 

Fig. 5 displays the variation of M, and M,, with r, where t = 1.5× 10-'and h?'=25. M, is 

uniform within the laser SPOt and decrease gradually to zero near the edge of laser spot. 

However, the characteristic of Mo is very different from that of M,. Mo is positive and uniform 

within the laser spot. However, near the edge of laser spot, Mo drops sharply to minimum 

negative value and then increases gradually to zero. The extraordinary feature of M, and Mo 

demand Us to investigate emphatically the characteristics of deformation near the edge of the 
laser spot. 

3. The  a n a l y s i s  of  d e f o r m a t i o n  

The results of numerical analysis.of the RBM are graphically displayed in the figures 

which follow. The analysis of the RBM include quasi-static deformation w,, dynamical 

Ore, . OWd' am and gradient auJ deflection ws, total deflection w ~and their velocity T '  - " ~ - '  at O r '  
aw, Ow~ 
Or ' dr 

Fig. 6 (a) and (b) display, respectively, two and three dimensional deflected shape of the 
middle plane of a thin plate, where h? '=25. In the geometric configuration of the structure, 

discribed in Fig. 3 in [3], the deflection value is positive if the thin plate deflects in the same 

direction as the laser incident direction. The negative values of deflection in the early stage of 

laser irradiation show that the middle plane of the-thi n plate bulges :in the direction opposite 

to the laser incident direction. The maximum value o f w  is 0.26, obtained from Fig. 6 (a). The 

corresponding factual deflection is 1.84h in the case of h~=0.0155 and h,=66.4, where, we 

observed that the specimen had ,exhibited the RPE. The prediction of the RBM presented here 

agrees qualitatively with the experimental observation, 

Fig. 7 displays the histories ofw, ,  w~ and w a t t h e  point r=0 ,  where h? '=25.  It is s~en 

that the contribution of w, to the RBM takes positive effect during the whole period of laser 

irradiation. However, the contribution of w.~ to the RBM takes negative effect at the:beginning 

of laser irradiation. Meanwhile, the dynamical deflection induces flexural vibration. Fig. 8 

shows the variation ofwo~,~,w~=~ and w,~, with h?', where w~,,~,w~,~, and W~,, are, respectively, 

the maximum values at point r=0 .  wo,,, increase rapidly with the increasing of h?'. z~,~,,~ 

increase slowly with the increasing of h? ~. Therefore, h, has important effect on the RBM. 

aw aw. a ~  Fig. 9 displays the histories of . ~  , ~ and at at the point r=0 .  Note that 

the characteristics of the velocity shown in Fig. 9, and the deflection shown in Fig. 8 are 

OZw m,~ _ 2.2 x 105. The corresponding Owm,x --16.5 and t2 identical. Fig. 9 shows that at 0 

factual velocity and acceleration are, respectively, 6.2m/s and 4.53 x 10Sm/s 2 in the case of h~ = 

0.0155 and h, = 66.4, where, we observed that the specimen had exhibited the RPE. 

~ r '  Ow~ 6w -and with r. Because of the Fig. 10 displays the variations of ~ ,  Or 

spatially cylindrical distribution of the .laser shape, temperature and equivalent thermal 
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loading, the deflection gradients have a point of inflection which is on the rim of laser spot. 

Although the above numerical results and experimental observation show that ihe deflection 

is not quite large, the discontinuities of OZw on the rim of laser spot demand us to 

consider the effect of membrane forces. 

VI. Concluding Remai'ks 

The RBM on the newly-discoversed RPE is examined by using the uncoupled thin plate 
theory. Meanwhile, the equivalent thermal loading was presented. The dimensionless analysis 

of the thin plate motion at the early stage of laser irradiation is given. Numerical results 
presented show that the rim of laser spot is an extraordinary region whit:h we should 
emphatically study. 

Whereas, the plate material properties have been assumed ,to be independent of 

temperature in this study. For the situation with large temperature variation, especially on the 

rim of laser spot, it will be necessary to account for temperature-dependent properties. This 

effect, along with the inclusion of thermomechanieal cofipling in the heat conduction equatioia 

and the membrane forces and the shear forces, will be dealt with in forthcoming papers. 
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