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Abstract 

Landslide is a kind of severe natural disaster and societal hazard throughout the world. Among various effecting factors, water is 
commonly known as one of the major triggers for landslide failures. In this paper, a coupling model of water-seepage and 
stability analysis has been developed for analyzing the effect of water on the stability of slopes. A combination of spline curves 
and genetic algorithm is used to locate the critical slip surface for slope stability calculations. A new analytical solution of the 
linearized Boussinesq equation was developed for one-dimensional groundwater flow in unconfined aquifer. An actual landslide 
located in the Three Gorges Reservoir was analyzed by simulating the changes of the seepage field caused by rainfall and water 
level fluctuation. The influences of water seepage on the stability of landslide were discussed with emphasis. The results show 
that rainfall infiltration and the variation of water level can tremendously influence the stability of slopes. 

© 2013 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of School of Civil Engineering and Mechanics, Lanzhou University. 
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1. Introduction 

Landslides, as one of the natural disasters occurring all of a sudden, commonly cause severe damage, thus 
constituting a severe threat to human being’s life and property. According to statistics, from 1996-2000, landslides 
caused over 20 billions Yuan in damage and over 900 people deaths in China every year. In general, the occurring of 
a landslide is mainly related to bedrock geology, geotechnical properties, rainfall, groundwater conditions and land-
use conditions. Among them, water is commonly known as one of the major triggers for landslide failures. 
According to statistics, over 90% landslide failures were related to water. Especially, climate change will result in 
more frequent and intensive storm events, and the landslide disasters become increasingly more severe. However, 
the influence of water on slope stability is very complex. In general, the effects of water may manifest itself in many 
ways, such as soil suction reduction, pore pressure growth, water table lifting, soil unit weight rising, as well as anti-
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shear strength weakening [1-3]. As a result, the interactions of water and earth slope should be investigated and 
understood in a broader sense. 

During the recent decades, there have been extensive investigations on the mechanism of landslide failure caused 
by water seepage from rainfall or water level fluctuation. Many empirical and semi-empirical relationships have 
been established to estimate the relationship of rainfall and landslide failure quantitatively. However, most of the 
empirical researches aiming at a certain specific slope type or region only covered very limited parameter range. 
Accordingly, there seems to be a shift in emphasis from the empirical approach to the dynamic model to rainfall-
induced landslides [4-8]. Some researchers have analyzed the failure of slopes induced by fissure infiltration during 
rainstorm [9-12]. However comparatively, the dynamic study of interaction mechanism of water seepage and slope 
stability is still weak relatively. More and more investigations are concerned with the physical mechanism of 
landslide failure induced by water seepage. Therefore, the objective of the current research is to develop the coupling 
model of water seepage and slope stability for examining the effect of water seepage on slope stability, which will 
certainly be helpful for gaining an insight into the mechanism of water-induced landslide failures. 

2. Water seepage model in slopes 

2.1. Saturated-unsaturated seepage model 

All Under the assumption that the air pressure remains constant and the water is incompressible, the governing 
equation for seepage flows in a slope can be written as following [8]:  

( ) ( ) ( ) ,x y
H H HC h K h K h
t x x y y                        (1) 

where H h y  is the total hydraulic head; h is the pressure head; y is the elevation head; Kx and Ky are the 
hydraulic conductivities in the x and y directions, respectively; /C h  is the volumetric water retention 
capacity, and   is the volumetric water content. 

To solve eq. (1), the Galerkin finite element discretization in space and the finite difference discretization in time 
are used, and the triangle finite element is adopted. The relationship between the total hydraulic head H(x,y,t) and 
the nodal hydraulic head Hi(t) is approximately written as 
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1
( , , ) ( , ) ( ),i i

i
H x y t N x y H t                         (2) 

where Ni = (ai + bix + ciy)/2A, i = 1, 2, 3; A is the area of triangle element; ai, bi,and ci are given based on the triangle 
nodal coordinates. 

For the total solution domain, the matrix function is 

 ( ) ( ) ( ) d d 0.i i
x y i

e

N NH H HK h K h C h N x y
x x y y t              (3) 

Because the relationship between water content and matric suction is highly nonlinear, numerical approximation 
using C(h) = d/dh generally exhibits very poor preservation of mass balance problems [13]. Consequently, C(hi) = 

( t+ t t)/(ht+ t 
 ht) is used, and mass lumping is employed to improve the numerical stability of the finite element 

models since previous studies indicated that consistent mass formulation could cause numerical oscillations [14]. 
For an element e, the matrix equation is written as 
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where [ ( ) ( ) ( )] / 3.i j mK K h K h K h  Based on eq.(4), the equation including all the nodal points is obtained and 
simply expressed in the following form: 

 d[ ] [ ] 0.
d
HD H B
t              (5) 

Introducing a backward finite difference of the time derivative term, the eq. (5) is written as   

 .
t t t t

t t t t tB BD H H
t t

             (6) 

[D] and [B] are the functions of H t+ t, and the iterative scheme is employed to solve eq. (6). 
The model was validated by the experiments [15]. The soil belongs to a kind of fine sand with porous rate 

n=0.44 and the saturated hydraulic conductivity Ksat=3.3×103m/s. The comparison between observation and 
prediction by the proposed model is shown in Fig. 1. On the whole, the observation and the predicted results in 
water level exhibit a good agreement.  

 

Fig.1. Comparison between the experimental results and numerical results of water level. 
 (line is numerical results , dot is experimental results) 

2.2. An approximate solution for groundwater table location during reservoir drawdown 

As reservoir water is descending, the groundwater table in the adjacent aquifer falls down correspondingly. The 
prediction of groundwater table variations in the aquifer during reservoir drawdown is an important issue for 
stability analysis. Generally speaking, the governing equation for one-dimensional, lateral, unconfined groundwater 
flows is the Boussinesq equation [16] as below: 

 ( )
e

h K hh
t n x x              (7) 

in which h= groundwater table height from the impermeable aquifer base; K= hydraulic conductivity; ne= specific 
yield; x= horizontal coordinate. Rainfall infiltration is not taken into account. Moreover, the capillary effects on the 
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groundwater table elevation are neglected as well.  
In the meanwhile, the boundary and initial conditions for a semi-infinite aquifer in a slope look like: 

         1 1[ ( ), ] ( ), ( ) ( )cot , 0,h X t t H t X t H t t              (8) 

         ( , ) ih t h             0,t                         (9) 

         ,0 ih x h           1(0)cotH x                  (10) 

in which ( )X t = x -coordinate of the moving boundary and the origin of the x -coordinate is located at the toe of the 
sloped interface; = slope angle; ih = initial height of the groundwater table across the aquifer; and 1( )H t = 
reservoir water level at the left boundary . 

In reality, the groundwater flow in the adjacent aquifer may not instantly follow the variation of water surface in 
the reservoir, thus resulting in the formation of a seepage face on the slope if the reservoir water level drops quickly 
enough or seepage flows move slowly enough. In the present study, we assume that the exit point happens to be at 
the water surface of reservoir, namely, the effect of seepage face is neglected for the sake of convenient 
manipulation. Fig. 2 depicts an idealized cross section of the model under consideration. 

 

Fig.2. Sketch of idealized cross section for the model 

Then, we prefer firstly to consider the drawdown condition at a constant speed, that is, the reservoir water level 
can be specified as 

           1( ) iH t h Vt                             (11) 

in which V  is the drawdown speed of reservoir water level. Since 1( )H t  is a positive height of reservoir water level, 
which implies that Vt  should always be kept no larger than ih . 

Since the moving boundary condition in the mathematical formulation precludes analytical solutions even for the 
linearized Boussinesq equation, we have transformed the Boussinesq equation into an advection-diffusion equation 
to facilitate the solution of this moving boundary problem. Based on the Laplace transformation, we yield an 
analytical solution of a fixed boundary problem, which is further simplified to upper and lower polynomial solutions 
for convenient practical use [17]. 
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This analytic solution representing groundwater table variation in the adjacent aquifer during reservoir 
drawdown looks too complicated to be easily used for practical engineering. For convenient practical use, the 
analytic solution is further simplified to upper and lower polynomial solutions. 

 22 cot, expl i
Vth z t h VtM

z
                                     (14) 

         2
2

2 cot, exp cotu i
z Vth z t h VtM Vt

z
                       (15) 

        
4 3 20.1091 0.7501 1.9283 2.2319 1 0 2

( )
0 2

M     (16) 

The effectiveness of the approximate solution is verified by comparing the upper solution with numerical results. 
The simulations show that the upper polynomial solution compares reasonably well with the numerical one (Fig. 3).  

        

                                 (a) for different drawdown speeds V                                (b) for different slope angles  
Fig.3. Comparison between upper polynomial solutions and explicit finite-difference solutions 

 

3. Stability analysis model 

3.1.  Limit Equilibrium Method 

The slope stability is commonly analyzed by using the limit 
equilibrium method of slices. The failing soil mass is divided into a 
number of vertical slices to calculate the factor of safety, defined as 
the ratio of the resisting shear strength to the mobilized shear stress to 
maintain static equilibrium. Both force and moment equilibrium can 
be satisfied explicitly. Fig. 4 shows the details of inter-slice forces for 
a typical slice. 

The equations of force and momentum equilibrium are 
respectively written as       
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Fig.4.  Forces acting on a typical slice  
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where F is the safety factor; El and Er are the left and the right inter-slice forces, respectively. The total normal force 
and the pore water pressure on the slice base are Ni and U, respectively. The weight of slice is Wi. The angle 
between the slice base and the horizontal line is αi, and  is the inclination angle of inter-slice force. xG is x-
coordinate of slice center of gravity.  x is the slice width. 

3.2.  Method for searching for critical slip surface 

In application of limit equilibrium methods, the identification of the critical slip surface is of principal 
importance. In this study the spline curve in conjunction with genetic algorithm is used to search the critical slip 
surface, and Spencer’s method is employed to calculate the safety factor [18].  

s(x)
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(x1,y1)

(xn,yn)

Y

X
        

Fig.5.  General cross section of slope (a) and forces acting on a typical slice (b) 

A slip surface is represented by n nodal points with coordinates 1 1( , ),x y  2 2( , )x y , …, ( , )n nx y , respectively in 
the x-y plane (Fig. 5(a)). In order to minimize the number of variables, any two contiguous nodal points keep the 
same horizontal distance, which means 

  1 1( ) / ( 1)i i nx x x x n    for 2, 1i n                                                                   (19) 

The abscissas of all nodal points should be enclosed within minx and maxx , or mathematically 

  min maxix x x            for 1,i n                                                             (20) 

Also, 1y and ny could be determined based on the topographic profile ( )s x  

  ( )i iy s x               for 1i  and i n                                                          (21) 

As a result, a specific slip surface can be expressed mathematically by an n-element array 
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The objective function locating the critical slip surface, which is defined as a surface with the minimum factor of 
safety among all the available ones, can be stated 

 min ( )F S                            (23) 

To make the slip surface kinematically admissible, these segments defined by any two contiguous nodal points 
are further assumed to be concave upward which means that 

 1 2 1i n                        (24) 

where i ,the inclination of segments, is limited between -45O and 60O to avoid computational divergence 
encountered in search for the safety factor [19].  

Subsequently, the nodal points are connected by cubic-spline interpolation. Then the soil mass above the created 
slip surface is divided into many vertical slices. If there is a weak layer in the slope, it may intuitively be argued that 
the critical slip surface should extend along the weak layer for a substantial length of the slip surface. So if the 
abscissa of any slice base is lower than the weak layer, this slice base is adjusted to the weak layer. 

The Spencer’s method [20] is used to calculate the safety factor. The effect of inter-slice forces is included, by 
assuming the inter-slice force inclination angles of all slices to be equal. Both force and moment equilibrium is 
explicitly satisfied. Spencer’s method is applicable to slip surface of any shapes, and considered as one of the 
accurate methods in the slope stability analysis. Fig. 5(b) shows the details of inter-slice forces for a typical slice. 

The equations of force and momentum equilibrium can be respectively written as: 
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where F is the factor of safety. iP and 1iP are the right and the left inter-slice force, respectively. iN and iU are the 
total normal force and the pore water pressure on the slice base, respectively. W is the weight of slice and Q is 
the horizontal force of slice. i is the angle between the slice base and the horizontal line. is the inclination angle 
of inter-slice force. ih and ah are the height of force iP and the center of the slice, respectively. b is the width of the 
slice. 

An example is of a homogeneous slope (Fig. 6) with 317.64 /kN m , 10  and 9.8c kPa . Yamagami and 
Ueta [21] utilized nonlinear programming methods, which are the DFP method, the BFGS method, the method of 
conjugate directions by Powell and simplex method, to locate the critical slip surfaces and the Morgenstern and 
Price method  to calculate the factor of safety. Also Greco [22] used the Spencer’s method in combination with a 
pattern search and Monte Carlo for the same problem. The comparison of the current results with those obtained by 
different researchers is summarized in Table 1. 

Tab.1. Minimum safety factor given by minimization procedures for Example 

Method 
(a) Yamagami and Ueta (1988) (b) Greco (1996) (c) This Study 

BFGS DFP Powell Simplex Pattern search Monte Carlo Genetic algorithm 

Range of 
safety factor 1.338 1.338 1.338 1.339-

1.348 1.326–1.330 1.327–1.333 
1.324  (line) 

1.321 (spline) 

 
It shows that when the slip surface is connected by spline curve, a better result can be reached. When the number 

of nodal points ranges from 4 to 8, the difference of the minimum safety factor is 0.009 for spline curve but 0.046 
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for straight line. Comparison of the geometry of the critical slip surfaces (Fig. 6) indicates that 4 nodal points 
connected by spline curve can generate similar critical slip surface to 13 nodal points connected by straight lines 
[22]. 

 

     
Fig.6. Cross section of slope of Example. The solid line 
represents the critical slip surface of this study, and the 
broken line is the solution given by Greco(1996) 

       Fig.7. The variation of safety factor of slope with the 
drawdown velocity of water level 

4. Effects of water seepage on slope stability  

4.1. The effect of water level drawdown on slope stability 

In section 2.2, an analytical solution of the linearized Boussinesq equation was developed for one-dimensional 
groundwater flow in unconfined aquifer. Based on the analytical solution, the stability of slope can be conveniently 
analyzed by using the stability analysis model. Based on the model shown in Fig. 2, we studied the effect of 
drawdown velocity of water level on the stability of slope. The results are shown in Fig. 7. Obviously, the faster the 
reservoir water level dropped down, the more the safety factor of slope reduced. It means the drawdown velocity of 
water level is a key factor of affecting the stability of slope. The greater drawdown velocity of water level would 
reduce the stability of slopes.   

        
Fig. 8. Stability charts subjected to water level drawdown  
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By using the method to calculate the safety factor of slope needs a complex iteration calculating process. For 
convenient practical use, a series of stability charts subjected to water level drawdown are presented by establishing 
the function relationship of two nondimensional parameters of / tanF and / ( tan )d dc H  (see Fig. 8). And the 
safety factors can be obtained from the charts without the need for iteration. 

4.2.  Case Study  

4.2.1.  Brief introduction of Huayuan landslide 

Huayuan landslide is located in Wanzhou District, Chongqing of China. The landslide occurred on the bank of 
Three Gorges Reservoir, with a length of about 380 m, a maximum width of 360 m, an average thickness of 18 m 
and a total volume of about 2470000 m3. Fig. 9 shows the cross section of the landslide. Based on some test results, 
the unit weight and strength parameters adopted in the limit equilibrium analyses are shown as: =20kN/m3, c 
=15kPa, =16°. Considering the effect of the matrix suction on shear strength, b =13° and satk =1.0m/d. 

Fig. 9. Cross section of Huayuan landslide, which locates in Wanzhou District, Chongqing of China 

4.2.2.  Rainfall records and The process of water level for Three Gorges Reservoir operation 

To investigate the effects of rainfall and Three Gorges Reservoir operation on the stability of the slope, the 
rainfall records collected by Fengjie monitoring station in 1998 and the water level process for reservoir operation 
are used. The rainfall records in 1998 is shown in Fig. 10, and the water level process of reservoir is shown in Fig. 
11. 
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4.2.3. Numerical results  
The saturated-unsaturated seepage model is applied to calculate the transient pore water pressure field in the 

slope caused by the rainfall and water level fluctuation. And the limit equilibrium method is employed to analyze 
the stability of slope. In order to examine the influences of rainfall and water level fluctuation on the slope stability, 
we firstly simulated the change process of the safety factor of slope caused by rainfall and water level fluctuation, 
respectively. Then we further calculated the development of slope safety factor under the joint action of rainfall and 
the water level fluctuation of reservoir. The simulated results are shown in Fig. 12.  

 

Fig. 12. Development of the safety factor caused by the joint action of rainfall and the water level fluctuation 

The simulated results show that both rainfall and water level fluctuation of reservoir may cause the reduction of 
slope stability. The main reason leading to the reduction of slope stability is the increase of the total soil weight and 
the slight improvements of pore pressure in slip surface caused by rainfall infiltration and water level fluctuation. 
Especially, the continual rainfall leads to a continued reduction of safety factor of slope. The influence of water level 
fluctuation on the slope stability is complex, and the safety factor of slope will fluctuates with the reservoir water 
fluctuates. Under the joint action of both rainfall and water fluctuation, the safety factor of this landslide would have 
an observable decrease, and the slope is likely to occur instability. Moreover, the analysis above reveals that seepage 
caused by rainfall and water level fluctuation play a significant role on the stability of slopes. 

5. Summary and Conclusions 

With the finite element method and the limit equilibrium method, a coupling model of water-seepage and 
stability analysis has been developed. This model is able availably reflect the variations in pore pressure field in 
slopes, dead weight of soil, and the softening of soil strength caused by water seepage.    

A combination of spline curves and genetic algorithm is used to locate the critical slip surface for slope stability 
calculations. When the slip surface is defined by spline curves, fewer nodal points are needed to reach the same 
accuracy, and to generate rational slip surfaces.  

A new analytical solution of the linearized Boussinesq equation was developed for one-dimensional 
groundwater flow in unconfined aquifer. A series of stability charts subjected to water level drawdown are presented 
for convenient practical use, and the safety factors can be obtained from the charts without the need for iteration. 

As case study, an actual landslide was studied to analyze the effects of rainfall and water level fluctuation on the 
seepage field and the slope stability. The results show that rainfall infiltration and the variation of water level can 
tremendously influence the stability of slope.  
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