
Nanoscale

PAPER

Cite this: Nanoscale, 2015, 7, 2561

Received 15th November 2014,
Accepted 16th December 2014

DOI: 10.1039/c4nr06759b

www.rsc.org/nanoscale

Statics and dynamics of electrowetting
on pillar-arrayed surfaces at the nanoscale

Quanzi Yuan* and Ya-Pu Zhao*

The statics and dynamics of electrowetting on pillar-arrayed surfaces at the nanoscale are studied using

molecular dynamics simulations. Under a gradually increased electric field, a droplet is pushed by the

electromechanical force to spread, and goes through the Cassie state, the Cassie-to-Wenzel wetting

transition and the Wenzel state, which can be characterized by the electrowetting number at the micro-

scale ηm. The expansion of the liquid is direction-dependent and influenced by the surface topology. A

positive voltage is induced in the bulk droplet, while a negative one is induced in the liquid confined

among the pillars, which makes the liquid hard to spread and further polarize. Based on the molecular

kinetic theory and the wetting states, theoretical models have been proposed to comprehend the physical

mechanisms in the statics and dynamics of electrowetting, and are validated by our simulations. Our

findings may help to understand the electrowetting on microtextured surfaces and assist the future design

of engineered surfaces in practical applications.

1. Introduction

Electrowetting is a powerful tool in manipulating small
droplets.1–5 Owing to a variety of micro/nanofluidic appli-
cations, such as lab-on-chip,6 energy harvesting,7 optoflui-
dics,8 biomedical devices9 etc., electrowetting has received
significant research attention in the past decade.

At the macroscale, an external applied voltage V reduces the
contact angle of a liquid droplet on a smooth solid
(Fig. 1b).10,11 In the usual electrowetting setup, a pure water
droplet with an ion concentration of 10−7 M spreads when
V ∼ 10 V.12 The external electric field is screened in the double
layer, whose thickness is the Debye screening length D ∼ 1 μm,
at the solid–liquid interface. The apparent contact angle θ

decreases from an initial contact angle θ0 and can be
described by the Lippmann–Young equation:

cos θ ¼ cos θ0 þ η; ð1Þ

where η = CV2/2γLV < 1, C = εε0/d, ε0, ε, d and γLV are the electro-
wetting number, the capacitance per unit area, the vacuum
permittivity, the relative permittivity, and the distance between
the electrodes and liquid–vapour interface energy, respecti-
vely.13,14 With the trend of miniaturization, more attention
has been drawn to smaller scales. At the microscale, the size of
a water droplet is smaller than D. The electric field permeates

the whole droplet, although the water is polarized to screen
the external field, especially at the interface.15 The electric
interaction is �P

i
jEj μij jLðjEj μij j=kBTÞ and could be simplified

as �P
i
jEj2 μij j2=kBT in a weak field, where E, μ, kB, T and L(x)

are the electric field vector, water dipole vector, Boltzmann
constant, absolute temperature and Langevin function,
respectively.16 Thus, the governing equation is the same as
that at the macroscale if we define an electrowetting number
at the microscale ηm = CmV

2/2γLV, where Cm is the effective
capacitance per unit area.

When a droplet electrowets on a rough surface, the situ-
ation becomes complicated.17,18 Under a weak voltage, the
droplet is in the Cassie state, and sits on a composite
surface of vapour and solid (Fig. 1c).19 With the increase in
voltage, the electromechanical force, i.e. the Maxwell force,
pulls the liquid to spread it and decreases the contact angle.

Fig. 1 Illustration of (a) a droplet of initial radius R0 on a smooth solid
with an equilibrium contact angle of θ0, and (b) a droplet electrowets on a
smooth solid with contact angle θ < θ0. (c) The Cassie state of a droplet
on a pillar-arrayed surface when voltage V is less than the critical voltage
Vc. (d) The Wenzel state of a droplet on a pillar-arrayed surface when
voltage V is larger than the critical voltage Vc. p, w and h are the period,
width and height of the pillars, respectively. R is the radius of the liquid.
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A Cassie-to-Wenzel wetting transition does not happen until
the applied voltage exceeds a critical value Vc.

20 The confined
vapour cannot sustain the above liquid, and therefore sud-
denly breaks down.21 Meanwhile, the droplet impales into the
pillars. Under a high voltage, the droplet is in the Wenzel
state, in close contact with the solid (Fig. 1d). Dai and Zhao
developed an extended electrowetting equation for rough
surfaces to predict the change of the contact angle under the
electric field.22 However, the statics and dynamics of
electrowetting on rough surfaces are still far from well under-
stood, especially at the nanoscale.

In this paper, a molecular picture of the electrowetting on
pillar-arrayed surfaces at the nanoscale is first provided using
molecular dynamics (MD) simulations. The statics and
dynamics of electrowetting on pillar-arrayed surfaces are
explored at the atomic level and compared with those on
smooth surfaces. With the increase of the external applied
voltage, the droplet goes through the Cassie state, the Cassie-
to-Wenzel transition and the Wenzel state, which is closely
related to the surface topology and the electrowetting number
at the microscale ηm. The critical voltage, which could trigger
the Cassie-to-Wenzel wetting transition, and its relation to the
surface roughness are also analysed. The electrowetting on
pillar-arrayed surfaces is found to be direction-dependent. The
polarized liquid is confined in the pillars, making the liquid
hard to spread and further polarize. Further, theoretical
models are proposed to understand the physical mechanisms
in the statics and dynamics of electrowetting, and are validated
by our simulations. Our findings may help to understand the
electrowetting on microtextured surfaces and assist the future
design of engineered surfaces in practical applications.

2. Model and methods

Large scale MD simulations implemented in LAMMPS23 were
carried out to explore the dynamics and phase transition of
electrowetting of a droplet on smooth and pillar-arrayed sur-
faces at the atomic level. The simulation domain was com-
posed of a smooth or pillar-arrayed hydrophobic solid surface
and a water droplet (radius R0 = 3 nm), as shown in Fig. 2.
Topological parameters [w, h, p], surface roughness ro and
density of roughness ϕs of these samples were varied and are
listed in Table 1.

The surface roughness is defined as the ratio between the
actual and projected surface areas and ro = 1 + 4 wh/p2 for
square pillars. The larger the ro is, the larger is the actual
surface area. The density of roughness is defined as the ratio
of the area of the top faces to the total base area and ϕs = w2/p2

for square pillars. Because the pillar heights of all the samples
are the same, the smaller the ϕs is, the larger is the space
among the pillars. The solid atoms were fixed during the simu-
lations.24 The droplet was modelled using the extended simple
point charge (SPC/E) water model25,26 with viscosity μ =
0.729 mPa s, density ρ = 994 kg m−3, and surface energy γLV =
0.0636 N m−1, which are close to those of real water. The water

droplet is modelled as a polar fluid and is not conductive. The
total potential energy Eij between two atoms i and j separated
by rij is the sum of the Lennard–Jones potential plus the Cou-
lombic pairwise interaction

Eij ¼ 4εij
σij
rij

� �12

� σij
rij

� �6� �
þ ke

qiqj
rij

; ð2Þ

where ε is the depth of the potential well, σ is the zero-crossing
distance for the potential, ke = 8.988 × 109 N m2 C−2 is the
Coulomb constant and q is the charge on the atom.

First, a water droplet was placed on an uncharged solid
surface to achieve an equilibrium state, as shown in Fig. 1 and
2. Then, two surfaces with a cross-sectional area of A separated
by a distance d were charged to imitate the usual setup of electro-
wetting. The top layer of the solid surface was charged with
Q, whilst the layer at the top of the simulation domain was
charged with −Q. Therefore, the applied electric field E and
voltage V can be calculated as E = Q/(Aε0εw) and V = Qd/(Aε0εw),
where ε0 and εw are the vacuum permittivity and the relative

Fig. 2 The simulation domain. From top to bottom: The top grey layer
is the electrode in electrowetting. The blue sphere is the water droplet.
The grey substrate is the pillar-arrayed hydrophobic solid surface. The
pillar width w, the pillar height h and the period of the array p are
labelled on the pillars.

Table 1 Topological parameters of the smooth and pillar-arrayed
surfaces

Sample w (nm) h (nm) p (nm) ro ϕs

1 0.000 0.000 0.000 1.000 0.000
2 1.020 1.224 3.468 1.415 0.086
3 1.020 1.224 3.060 1.533 0.111
4 1.020 1.224 2.652 1.710 0.148
5 1.020 1.224 2.244 1.992 0.207
6 1.020 1.224 1.836 2.482 0.309
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permittivity of water, respectively. E ∼ 1 V nm−1 and V ∼ 10 V,
which are the typical values for pure water in the electro-
wetting setup. Generally, the contact angle of a water droplet is
used to characterize the wettability of a solid surface.27 When
an external voltage V is applied, a droplet electrowets the
hydrophobic solid surface and its contact angle decreases with
the increase of V. Therefore, the apparent wettability of the
solid surface increases with the increase of V. The simulation
time and time step were carefully selected so as to take fully
into account the behaviour of the droplet and the atomic
details.

3. Results and discussion
3.1 Statics of electrowetting on rough surfaces

The electrowetting of a water droplet on a smooth solid was
carried out as shown in Fig. 3a. When there was no external
voltage, the droplet wetted the hydrophobic surface with an
equilibrium contact angle θ0 = 125° (0.0 V, Fig. 3a). With an
increase in the voltage, the wettability of the solid increased. A
precursor film, i.e. a thin molecular film, advanced ahead of
the nominal contact line.28 Driven by the electric energy, the
bulk droplet spread on the top of the precursor film. However,
water did not completely wet the precursor film.29 What is
more, the precursor film showed a hydrophobic feature to the
above bulk droplet under a weak voltage (6.2 V, Fig. 3a),
because of the ice-like and two-dimensional hydrogen-bond
network in the precursor film.28 Further increase of the voltage
resulted in stronger polarization of the water at the interface,
making the contact angle θ smaller than 90° (12.4 V, Fig. 3a).
When V ≥ 18.6 V, the liquid completely wetted the solid and
became a liquid film. The variation of energy with the square
of the applied voltage V2, whose slope represents the capaci-
tance of the system, is plotted using black squares in Fig. 4.

The electrowetting of a water droplet on the pillar-arrayed
surfaces was simulated as shown in Fig. 3b–d. Taking Fig. 3c
as an example, typically the droplet went through two stages.
In the first stage, the droplet was deposited on the pillars with
a confined vapour layer filling the gap among the pillars. The
apparent contact angle θa of the water droplet on the pillars
with ro = 1.710 was about 140° when there was no external

electric field. Under a weak voltage, the droplet remained in
the Cassie state (<6.2 V, Fig. 3c). Driven by the electromechani-
cal force, the liquid tended to wet the surface of the pillars,
and the air pocket was compressed simultaneously. θa could
be obtained by considering both the Cassie–Baxter relation30

cos θ = ϕs(cos θ0 + 1) − 1 and eqn (1):

cos θa ¼ ϕsðcos θ0 þ ηm þ 1Þ � 1: ð3Þ

With further increase in voltage, the Cassie-to-Wenzel tran-
sition took place: the air pocket collapsed and the droplet
impaled into the pillars to change into the Wenzel state. In the
second stage, θa could be obtained by considering both the
Wenzel relation31 cos θ = ro cos θ0 and eqn (1):

cos θa ¼ roðcos θ0 þ ηmÞ: ð4Þ

The first stage was not necessary for surfaces with small ro.
In Fig. 3b, the wetting transition happened instantly when the
droplet was deposited on the pillars. The droplet was pulled by
the pillars to be in close contact with the solid and directly
went into the second stage. For surfaces with small ro and
large ϕs, the pinning force from the pillars to the liquid is
small and the expansion was easy in electrowetting (Fig. 3b).
For surfaces with large ro, the liquid was pinned by the pillars
and the droplet was hard to expand (Fig. 3d). As shown in
Fig. 4, the energy decreased almost linearly with the increase
of V2. The larger the surface roughness was, the smaller was
the capacitance of the system. The reason was because the
surface roughness increased the average distance between the
electrode and the liquid.

The variation of θa with respect to V was quantitatively
recorded in Fig. 5a. When the droplet electrowetted on a
smooth surface (black squares), θa decreased with the increase
of V, which obeyed eqn (1) (the Lippmann–Young equation)
shown in the black dashed line. When θa reached zero, the
electrowetting was saturated and θa could no longer decrease.
When the droplet electrowetted on a pillar-arrayed surface, the
decrease of θa was slower than that on a smooth surface. For
small ro = 1.415, the droplet was initially in the Wenzel state.
So θa decreased as described in eqn (4) until it reached a

Fig. 3 Equilibrium configurations of a water droplet electrowetting on
(a) a smooth surface, and pillar-arrayed surfaces with (b) ro = 1.415, (c)
ro = 1.710 and (d) ro = 2.482 under different voltages.

Fig. 4 Variation of the equilibrium energy of the system with respect to
square of the applied voltage. The symbols represent samples with
different surface roughnesses.
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saturated value θs ≈ 42.64°. For large ro, the droplet changed
from the Cassie state to the Wenzel state. So there existed a
turning point of θa, which corresponded to the critical voltage
Vc when wetting transition happened. Eqn (3) was used to fit
the variation of θa before Vc, while eqn (4) was used to fit θa
after Vc, which are represented by the dashed lines in Fig. 5a.
Vc was found to increase with the increase of ro and ϕs

(Fig. 5b). With larger ro or ϕs, the distance (p − w) between
two adjacent pillars is shorter. According to the Young–
Laplace equation, a larger pressure is needed to overcome the
Laplace pressure P = 2γLV/(p − w). Therefore, a larger critical
voltage Vc is necessary.

The electrowetting on pillar-arrayed surfaces depends on
the wetting directions. There exist fast and slow directions for
the electrowetting, which varies with the applied voltage. Fig. 6
is plotted in polar coordinates, in which the radial coordinate
represents the voltage, the angular coordinate represents the
direction and the colour represents the distance between the
origin and the liquid front labelled by the colour legend. The

electrowetting on a smooth solid was isotropic, as shown in
Fig. 6a. With the increase of the voltage, the projection of the
droplet gradually expanded in the shape of nearly a circle.

In contrast, the electrowetting on a pillar-arrayed surface
was anisotropic, i.e. the liquid radius depended on the spread-
ing directions, as shown in Fig. 6b–f. The liquid propagated
ahead of the bulk among the charged pillars. The charged
pillars drive the liquid to electrowet, while it dissipates energy
for the liquid to spread from one pillar to another. The dis-
tance between the pillars varied with the flow direction. The
electrostatic force is inversely proportional to the distance and
the net charge on each pillar is the same. Hence, when the dis-
tance between two pillars is shorter in a direction, the driving
force is large, making the liquid electrowet faster. Therefore,
the spreading radius on a pillar-arrayed surface depends on
the direction. Furthermore, the velocity was symmetric about
the orthogonal and diagonal directions because of the arrange-
ment of the pillars.32 Taking Fig. 6c as an example, when V = 6
V, the liquid radius spread slower along 0°, 45° and 90°, and
faster along 22.5° and 67.5°. When V = 12 V, the fast and slow
directions changed: the liquid radius spread slower along 0°,
35°, 65° and 90°, and faster along 20°, 45° and 70°. By compar-
ing Fig. 6, we found the fast and slow directions depend on
the surface roughness and the voltage. The overall color of
Fig. 6b–f gradually changed from red to blue, which implies
that the liquid radius decreased with the increase of the
surface roughness under a certain voltage.

The water molecules, especially at the interface, are polar-
ized when an external voltage is applied. The electric field
formed by the polarized liquid counteracts the effect of the
external field,33 and the induced local voltage together with
the confinement of the pillars may be the reason for saturation
in electrowetting on rough surfaces. When a droplet electro-
wetted on a smooth solid, the induced positive voltage was
mainly located in the bulk droplet, while the negative voltage
concentrated in the precursor film, as shown in Fig. 7a.

Fig. 5 (a) Variation of the apparent contact angle with respect to the
applied voltage. The symbols represent samples with different surface
roughnesses. (b) Variation of the critical voltage Vc with respect to the
surface roughness ro (black squares) and the density of roughness ϕs

(blue circles). The critical voltage Vc is defined as the voltage when the
Cassie-to-Wenzel wetting transition happens.

Fig. 6 Spreading radius in different directions with respect to the
applied voltage for (a–f ) samples 1–6. The origin O is put in the center
of the droplet. The two colour legends are for (a) and (b–f ), respectively.
The radial coordinate represents the voltage, the angular coordinate
represents the direction and the colour represents the spreading radius.

Fig. 7 The local voltage distribution caused by the water droplet on (a)
a smooth surface and on pillar-arrayed surfaces with (b) ro = 1.415, (c) ro
= 1.710 and (d) ro = 2.482, under different external voltages. The color
represents the local voltage. The bottom of each figure is the solid
surface and the top is the top electrode, as shown in Fig. 2.
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Hence, the bulk droplet and the precursor film formed a
dipole to screen the external electric field. With the increase of
the external voltage (12.4 V), the voltage of the spherical cap
became larger, and so did the bottom layer, which could be
reflected by the change in color. When the external voltage was
increased to 18.6 V, the bulk droplet vanished and there was
only a liquid layer, which means that the liquid completely
wetted the solid surface, as shown in Fig. 3a. On further
increasing the voltage (24.8 V), the liquid could not be further
polarized.

The situation was different on pillar-arrayed surfaces
(Fig. 7b–d). The induced positive voltage was still located in
the bulk, while the negative voltage was mainly confined
among the pillars. Because of the excess surface area of the
pillars, the external electric field increased the affinity of the
water molecules in the forest of pillars. The pillars were
charged with positive Q, and the liquid with negative voltage
was confined among the pillars and attracted by the pillars. It
dissipated more energy to push the water confined in the
pillars. The attractive interaction between the liquid and the
pillars blocked the further spreading of the liquid. The denser
the pillars are, the stronger are the confinement and attraction
of the pillars to the liquid. When ro is small, the blue part
became smaller with the increase of the external voltage,
which implied that the negative part of the dipole gradually
spread among the pillars. However, the apparent contact angle
saturated at about 42.64° as shown in Fig. 5a. When ro was
large, the blue part expanded but did not become smaller,
which meant that it was hard to drive the negative part of the
dipole to spread even under a high external voltage. Because of
the confinement of the pillars, the induced negative voltage
blocked the further decrease of the apparent contact angle.
The introduction of new length scales might be the reason for
saturation in electrowetting on a rough surface.34

3.2. Dynamics of electrowetting on rough surfaces

In the dynamic wetting process, the liquid wets the solid with
the capillary velocity UCA = γLV/μ. In the electrowetting process,
the liquid spreads on the solid with a characteristic speed of
UEL = ηmUCA = CmV

2/2μ. Because ηm < 1, UEL < UCA ∼ 102 m s−1.
We quantitatively recorded the evolution of the spreading
radius R with respect to time in our MD simulations, as shown
in Fig. 8.

For the smooth surface, R expanded smoothly and tended
to an equilibrium value (Fig. 8a). If we use the power law
R ∼ tn to fit these curves, the scaling exponent n increased with
the external voltage V.28 For the pillar-arrayed surfaces, there
existed a sharp transition in the R–t curves because of surface
topology and the Cassie-to-Wenzel transition. In the case of
Fig. 8b, the droplet stayed in the Wenzel state on the surface
with ro = 1.415. In the case of Fig. 8d, the droplet was initially
in the Cassie state and changed into the Wenzel state when V
exceeded Vc. The complex interactions between the pillars and
the liquid made the evolution of R on pillar-arrayed surfaces
seem arbitrary. However, the dynamics of the liquid obeyed
rules, depending on the wetting state.

For instance, we adopted the molecular kinetic theory
(MKT), which was proposed by Eyring et al.,35 to analyze the
dynamics of electrowetting. For the water molecules that jump
between gold surface sites separated by a distance λ with an
equilibrium frequency κ0 = (kBT/μvm)exp(−λ2Wa/kBT ), the
advancing velocity U = 2κ0λ sinh(Fλ

2/2kBT ), driven by the
driving work per unit area F, where kB, T, vm, μ and Wa are the
Boltzmann constant, absolute temperature, molecular flow
volume, fluid viscosity and work of adhesion between the solid
and the liquid, respectively. In our case, the ratio of the
driving work Fλ2 to the thermal energy kBT is of the order of
0.1 to 1. Therefore, sinh(Fλ2/2kBT ) ≈ Fλ2/2kBT could be a good
approximation. We could simplify the governing equation of
the liquid:

U ¼ Fλ3

μvm
exp � λ2Wa

kBT

� �
: ð5Þ

Once the liquid–solid pair and the topology of the substrate
are fixed, μ, λ, vm and Wa are all constant, U = C1F/μ, where
C1 = (λ3/vm)exp(−λ2Wa/kBT ) is a constant of the order of
10−4–10−1.

When a droplet electrowets on a smooth surface, F =
γLV(cos θ0 + ηm − cos θ), the governing equation is obtained
from eqn (5):

U ¼ Ṙ ¼ C1
γLV
μ

cos θ0 þ CmV2

2γLV
� cos θ

� �
; ð6Þ

where UCA = γLV/μ is the capillary velocity. In our models, the
evaporation is not taken into consideration, so the total mass
(or volume) of the droplet does not change. Taking into
account the geometry of the droplet θ = θ (R) and substituting
into eqn (6), we can achieve the dynamics of electrowetting on
a smooth solid.

When a droplet electrowets on a pillar-arrayed surface, the
governing equations for the Cassie and Wenzel state are distin-
guished. If the droplet sits on the air pocket and the pillar

Fig. 8 MD results of the evolution of the spreading radius with respect
to time for droplet electrowetting on (a) a smooth surface, and on pillar-
arrayed surfaces with (b) ro = 1.415, (c) ro = 1.710 and (d) ro = 2.482. The
squares, circles, triangles and diamonds represent data under an exter-
nal voltage V = 6.2, 12.4, 18.6 and 24.8 V, respectively.
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tops, F = γLV[ϕs(cos θ0 + ηm + 1) − 1 − cos θ], the governing
equation of the Cassie state is

U ¼ Ṙ ¼ C1
γLV
μ

ϕs cos θ0 þ CmV2

2γLV
þ 1

� �
� 1� cos θ

� �
: ð7Þ

If the liquid penetrates into the pillars and is in close
contact with the solid, F = γLV[ro(cos θ0 + ηm) − cos θ], the gov-
erning equation of the Wenzel state is

U ¼ Ṙ ¼ C1
γLV
μ

ro cos θ0 þ CmV2

2γLV

� �
� cos θ

� �
ð8Þ

Taking into account the geometry of the droplet θ = θ(R)
and substituting into eqn (7) and (8), we can obtain the
dynamics of electrowetting on pillar-arrayed surfaces.

Taking into account the physical quantities used in our
simulations, we numerically solved eqn (6) for smooth surfaces
and eqn (7) and (8) for rough surfaces, respectively, and the
evolution of the spreading radius with respect to time was
obtained, as shown in Fig. 9. The theoretical predictions fitted
well with the MD results.

4. Conclusions

In this article, MD simulations and theoretical approaches are
employed to explore the statics and dynamics of droplet
electrowetting on pillar-arrayed surfaces at the nanoscale. The
electrowetting number at the microscale ηm = CmV

2/2γLV is
important in characterizing the electrowetting state. When
there is no external electric field, the droplet is in the Cassie
state. When an external electric field is applied, electromecha-
nical force increases with the increase of the voltage to push
the droplet towards the solid and pull the liquid to spread.
The Cassie-to-Wenzel wetting transition takes place and the
droplet suddenly changes to the Wenzel state as long as the
voltage exceeds a critical value. We also found that the expan-
sion of liquid depends on its direction because of the arrange-

ment of the pillars. The external field induces a positive
voltage in the bulk droplet and a negative one confined in the
pillars, which makes the liquid hard to spread and further
polarize. We have proposed theoretical models to comprehend
the physical mechanisms in the statics and dynamics of
electrowetting, which are validated by our simulations. Our
findings may help to understand the electrowetting on micro-
textured surfaces and assist the future design of engineered
surfaces in practical applications.
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